• Nem Talált Eredményt

In what follows we recall some limit theorems for continuous local martingales. We use these limit theorems for studying the asymptotic behaviour of the MLE of b. First we recall a strong law of large numbers for continuous local martingales.

C.1 Theorem. (Liptser and Shiryaev [36, Lemma 17.4]) Let Ω,F,(Ft)tR+,P

be a filtered probability space satisfying the usual conditions. Let (Mt)tR+ be a square-integrable continuous local martingale with respect to the filtration (Ft)tR+ such that P(M0 = 0) = 1. Let (ξt)tR+ be a progressively measurable process such that

P Z t

0

ξu2dhMiu <∞

= 1, t∈R+, and

Z t

0

ξu2dhMiu a.s.

−→ ∞ as t→ ∞, (C.1)

where (hMit)tR+ denotes the quadratic variation process of M. Then Rt

0ξudMu Rt

0ξ2udhMiu

−→a.s. 0 as t→ ∞. (C.2)

If (Mt)tR+ is a standard Wiener process, the progressive measurability of (ξt)tR+ can be relaxed to measurability and adaptedness to the filtration (Ft)tR+.

The next theorem is about the asymptotic behaviour of continuous multivariate local martingales, see van Zanten [46, Theorem 4.1].

C.2 Theorem. (van Zanten [46, Theorem 4.1]) Let Ω,F,(Ft)tR+,P

be a filtered probability space satisfying the usual conditions. Let (Mt)tR+ be a d-dimensional square-integrable continuous local martingale with respect to the filtration (Ft)tR+ such that P(M0 = 0) = 1. Suppose that there exists a function Q:R+→Rd×d such that Q(t) is an invertible (non-random) matrix for all t∈R+, limt→∞kQ(t)k= 0 and

Q(t)hMitQ(t) −→P ηη as t→ ∞,

where η is a d×drandom matrix. Then, for eachRk-valued random vector v defined on (Ω,F,P), we have

(Q(t)Mt,v)−→D (ηZ,v) as t→ ∞,

where Z is a d-dimensional standard normally distributed random vector independent of (η,v).

We note that Theorem C.2 remains true if the function Q is defined only on an interval [t0,∞) with some t0 ∈R++.

Acknowledgements

We would like to thank the referee for his/her comments that helped us to improve the paper.

References

[1] Alfonsi, A., (2005). On the discretization schemes for the CIR (and Bessel squared) processes.

Monte Carlo Methods and Applications 11(4)355–384.

[2] Barczy, M., Ben Alaya, M., Kebaier, A. and Pap, G. (2016). Asymptotic behav-ior of maximum likelihood estimators for a jump-type Heston model. Available on ArXiv:

http://arxiv.org/abs/1509.08869

[3] Barczy, M., D¨oring, L., Li, Z. and Pap, G. (2013). On parameter estimation for critical affine processes. Electronic Journal of Statistics 7 647–696.

[4] Barczy, M., Li, Z. and Pap, G. (2015). Yamada–Watanabe results for stochastic differential equations with jumps. International Journal of Stochastic Analysis Volume 2015 Article ID 460472, 23 pages.

[5] Barczy, M., Li, Z. and Pap, G. (2015). Stochastic differential equation with jumps for multi-type continuous state and continuous time branching processes with immigration. ALEA. Latin American Journal of Probability and Mathematical Statistics.12(1) 129–169.

[6] Ben Alaya, M. and Kebaier, A.(2012). Parameter estimation for the square root diffusions:

ergodic and nonergodic cases. Stochastic Models 28(4)609–634.

[7] Ben Alaya, M. and Kebaier, A. (2013). Asymptotic behavior of the maximum likelihood estimator for ergodic and nonergodic square-root diffusions.Stochastic Analysis and Applications 31(4) 552–573.

[8] Billingsley, P. (1999). Convergence of probability measures, 2nd ed. John Wiley & Sons, Inc., New York.

[9] Bhattacharya, R. N.(1982). On the functional central limit theorem and the law of the iterated logarithm for Markov processes.Zeitschrift f¨ur Wahrscheinlichkeitstheorie und Verwandte Gebiete 60 185–201.

[10] Cox, J. C.,Ingersoll, J. E.andRoss, S. A.(1985). A theory of the term structure of interest rates. Econometrica 53(2)385–407.

[11] Dawson, D. A. and Li, Z. (2006). Skew convolution semigroups and affine Markov processes.

The Annals of Probability 34(3)1103–1142.

[12] Dudley, R. M. (1989). Real Analysis and Probability. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, California.

[13] Duffie, D. and Gˆarleanu, N. (2001). Risk and valuation of collateralized debt obligations.

Financial Analysts Journal 57(1) 41–59.

[14] Duffie, D.,Filipovi´c, D.andSchachermayer, W.(2003). Affine processes and applications in finance.Annals of Applied Probability 13984–1053.

[15] Feller, W. (1951). Two singular diffusion problems.Annals of Mathematics 54(1)173–182.

[16] Filipovi´c, D. (2001). A general characterization of one factor affine term structure models.

Finance and Stochastics 5(3) 389–412.

[17] Filipovi´c, D., Mayerhofer, E.and Schneider, P.(2013). Density approximations for mul-tivariate affine jump-diffusion processes. Journal of Econometrics 176(2) 93–111.

[18] Fu, Z. and Li, Z.(2010). Stochastic equations of non-negative processes with jumps.Stochastic Processes and their Applications 120 306–330.

[19] Huang, J., Ma, C. and Zhu, C. (2011). Estimation for discretely observed continuous state branching processes with immigration. Statistics and Probability Letters 811104–1111.

[20] Ikeda, N.andWatanabe, S. (1989).Stochastic Differential Equations and Diffusion Processes, 2nd ed. North-Holland/Kodansha, Amsterdam/Tokyo.

[21] Jacod, J. and M´emin, J. (1976). Caract´eristiques locales et conditions de continuit´e absolue pour les semi-martingales. Zeitschrift f¨ur Wahrscheinlichkeitstheorie und Verwandte Gebiete,35 1–37.

[22] Jacod, J. and Protter, P.(2012). Discretization of processes, Springer, Heidelberg.

[23] Jacod, J. and Shiryaev, A. N. (2003). Limit Theorems for Stochastic Processes, 2nd ed.

Springer-Verlag, Berlin.

[24] Jiao, Y., Ma, C.andScotti, S.(2016). Alpha-CIR model with branching processes in sovereign interest rate modelling. Available on ArXiv: http://arxiv.org/abs/1602.05541

[25] Jin, P., R¨udiger, B. and Trabelsi, C. (2016). Exponential ergodicity of the jump-diffusion CIR process. In: Stochastics of environmental and financial economics—Centre of Advanced Study, Oslo, Norway, 2014–2015, pages 285–300, Springer Proceedings in Mathematics & Statis-tics, 138, Springer, Cham.

[26] Keller-Ressel, M.(2008). Affine Processes - Theory and Applications in Finance.PhD Thesis, Vienna University of Technology, pages 110.

[27] Keller-Ressel, M. (2011). Moment explosions and long-term behavior of affine stochastic volatility models. Mathematical Finance 21(1)73–98.

[28] Keller-Ressel, M. and Mijatovi´c, A.(2012). On the limit distributions of continuous-state branching processes with immigration. Stochastic Processes and their Applications 122 2329–

2345.

[29] Keller-Ressel, M.and Steiner, T.(2008). Yield curve shapes and the asymptotic short rate distribution in affine one-factor models. Finance and Stochastics 12(2)149–172.

[30] K¨uchler, U.and Sørensen, M.(1997).Exponential families of stochastic processes, Springer-Verlag, New York.

[31] Kyprianou, A. E. (2014).Fluctuations of L´evy Processes with Applications, 2nd ed. Springer-Verlag, Berlin Heidelberg.

[32] Lamberton, D. and Lapeyre, B. (1996). Introduction to Stochastic Calculus Applied to Fi-nance. Chapman & Hall/CRC.

[33] Li, Z. (2011).Measure-Valued Branching Markov Processes. Springer-Verlag, Heidelberg.

[34] Li, Z. (2012). Continuous-state branching processes. Available on ArXiv:

http://arxiv.org/abs/1202.3223

[35] Li, Z. and Ma, C. (2013). Asymptotic properties of estimators in a stable Cox-Ingersoll-Ross model. Stochastic Processes and their Applications 125(8) 3196–3233.

[36] Liptser, R. S. and Shiryaev, A. N. (2001). Statistics of Random Processes II. Applications, 2nd edition. Springer-Verlag, Berlin, Heidelberg.

[37] Luschgy, H. (1992). Local asymptotic mixed normality for semimartingale experiments. Prob-ability Theory and Related Fields 92151–176.

[38] Luschgy, H. (1994). Asymptotic inference for semimartingale models with singular parameter points. Journal of Statistical Planning and Inference 39 155–186.

[39] Ma, R. (2013). Stochastic equations for two-type continuous-state branching processes with immigration. Acta Mathematica Sinica, English Series 29(2)287–294.

[40] Mai, H.(2012). Drift estimation for jump diffusions: time-continuous and high-frequency obser-vations. Ph.D. Dissertation. Humboldt-Universit¨at zu Berlin.

[41] Overbeck, L. (1998). Estimation for continuous branching processes. Scandinavian Journal of Statistics 25(1)111–126.

[42] Overbeck, L.andRyd´en, T.(1997). Estimation in the Cox-Ingersoll-Ross model.Econometric Theory 13(3) 430–461.

[43] Pinsky, M. A. (1972). Limit theorems for continuous state branching processes with immigra-tion. Bulletin of the American Mathematical Society 78(2)242–244.

[44] Sato, K.-I. (1999).L´evy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge.

[45] Sørensen, M.(1991). Likelihood methods for diffusions with jumps. In: N. U. Prabhu and I.V.

Basawa, Eds., Statistical Inference in Stochastic Processes, Marcel Dekker, New York, 67–105.

[46] van Zanten, H. (2000). A multivariate central limit theorem for continuous local martingales.

Statistics & Probability Letters 50(3)229–235.