• Nem Talált Eredményt

4.9.1 Protein normalization

The results from protein identification and quantifica-tion were imported into Perseus software.113 Data were

normalized by log2 transforming the protein intensities, and standardization was performed by subtracting indi-vidual values by the median in each sample. The proteins showing less variability across all batches that were identi-fied in 100% of the samples were used to correct the abun-dance differences between batches. To do that, individ-ual protein intensities in each batch were subtracted by the median abundance of selected proteins in the specific batch. After correction, the median abundance for each protein across all samples was calculated and reported as the relative abundance in our melanoma proteome.

4.9.2 Stoichiometry of acetylated lysines

The lysine acetylation stoichiometry identification and quantification were estimated as previously described.80,81 Briefly, raw files were analyzed with Pview software to identify and calculate the site-specific acetylation occu-pancy. Also, only those peptides identified in both, Pview and Proteome Discoverer were considered for reporting their acetylation stoichiometry.

4.9.3 Kinase-specific phosphorylation site prediction

Phosphopeptides sequences were edited to include “#” in front of the S, T, or Y phosphorylation sites. The back-ground database consisted of a fasta file from all iden-tified phosphorylated proteins in this study. The soft-ware motifeR112 was used to align the phosphopeptide sequences with the background database, providing a uni-form sequence length of 15 amino acids. The motifeR was also used to enrich phosphorylation motifs and retrieve kinase-substrate annotation. All kinases identified in the MM500 proteome and kinases predicted by the enriched motifs were visualized in the context of the human kinome superfamily using Coral.78

D A T A A N D C O D E AVA I L A B I L I T Y

The data that support the findings of this study are openly available in ProteomeXchange at http://www.

proteomexchange.org/, reference numbers PXD001725, PXD001724, PXD009630, PXD017968, and PXD026086 and will be complemented by the addition of more data from the study. The TCGA data was downloaded from cBioPortal https://www.cbioportal.org. The code for MM500 study can be found at https://github.

com/rhong3/TCGA_melanoma. Table S1 of Support-ing Information is available at https://github.com/

rhong3/TCGA_melanoma/tree/master/Supporting%

20Information%20tables.

A C K N O W L E D G M E N T S

This study was supported by grants from the Berta Kam-prad Foundation, the Mats and Stefan Paulsson Trust, Lund, Sweden, and the National Research Foundation of Korea (MSIP; 2015K1A1A2028365). We would like to thank Thermo Fisher Scientific for their generous support and Liconic UK, for Biobanking support. This work was done under the auspices of a Memorandum of Understanding between the European Cancer Moonshot Center in Lund and the U.S. National Cancer Institute’s International Can-cer Proteogenome Consortium (ICPC). ICPC encourages international cooperation among institutions and nations in proteogenomic cancer research in which proteogenomic datasets are made available to the public. This work was also done in collaboration with the U.S. National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC). The study was also conducted under the Mem-orandum of Understanding between the Federal Univer-sity of Rio de Janeiro, Brazil (grants CAPES 88887.130697, CNPq 440613/2016-7 and 308341-2019-8, and FAPERJ E-26/210.173/2018 to G.B.), and Lund University, Sweden. We thank the Brazilian foundation CAPES for the scholarship to N.W and acknowledge the support to I.B.N by the Hun-garian Academy of Sciences (OTKA-NKFI, K-125509).

O R C I D Fábio C. S. Nogueira https://orcid.org/0000-0001-5507-7142

R E F E R E N C E S

1. Adhikari S, Nice EC, Deutsch EW, et al. A high-stringency blueprint of the human proteome.Nat Commun.

2020;11(1):5301.

2. Erdmann F, Lortet-Tieulent J, Schüz J, et al. International trends in the incidence of malignant melanoma 1953-2008-are recent generations at higher or lower risk?.Int J Cancer.

2013;132(2):385-400.

3. Grzywa TM, Paskal W, Włodarski PK. Intratumor and intertu-mor heterogeneity in melanoma.Transl Oncol. 2017;10(6):956-975.

4. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012.Int J Cancer. 2015;136(5):E359-E386.

5. Bagchi S, Yuan R, Engleman EG. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance.Annu Rev Pathol Mech Dis. 2021;16(1):223-249.

6. Davis LE, Shalin SC, Tackett AJ. Current state of melanoma diagnosis and treatment. Cancer Biol Ther. 2019;20(11):1366-1379.

7. Gide TN, Wilmott JS, Scolyer RA, Long G V. Primary and acquired resistance to immune checkpoint inhibitors in metastatic melanoma.Clin Cancer Res. 2018;24(6):1260-1270.

8. Luther C, Swami U, Zhang J, Milhem M, Zakharia Y. Advanced stage melanoma therapies: detailing the present and exploring the future.Crit Rev Oncol Hematol. 2019;133:99-111.

9. Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and immunotherapies: optimizing outcomes in melanoma.Nat Rev Clin Oncol. 2017;14(8):463-482.

10. Haugh AM, Johnson DB. Management of V600E and V600K BRAF-mutant melanoma. Curr Treat Options Oncol.

2019;20(11):81.

11. Roskoski R. Targeting oncogenic Raf protein-serine/threonine kinases in human cancers.Pharmacol Res. 2018;135:239-258.

12. Ascierto PA, Kirkwood JM, Grob J-J, et al. The role of BRAF V600 mutation in melanoma.J Transl Med. 2012;10(1):85.

13. Robert C, Grob JJ, Stroyakovskiy D, et al. Five-year outcomes with dabrafenib plus trametinib in metastatic melanoma. N Engl J Med. 2019;381(7):626-636.

14. Larkin JMG, Yan Y, McArthur GA, et al. Update of progression-free survival (PFS) and correlative biomarker analysis from coBRIM: phase III study of cobimetinib (cobi) plus vemurafenib (vem) in advanced BRAF -mutated melanoma.J Clin Oncol.

2015;33(15_suppl):9006-9006.

15. Spallone G, Garofalo V, Picchi E, et al. Prolonged survival of a patient with brain melanoma metastasis treated with BRAF and MEK inhibitors combination therapy.G Ital di Dermatologia e Venereol. 2020;155(2).

16. Long GV, Stroyakovskiy D, Gogas H, et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma.N Engl J Med. 2014;371(20):1877-1888.

17. Callahan MK, Postow MA, Wolchok JD. Targeting T cell co-receptors for cancer therapy.Immunity. 2016;44(5):1069-1078.

18. La-Beck NM, Jean GW, Huynh C, Alzghari SK, Lowe DB.

Immune checkpoint inhibitors: new insights and current place in cancer therapy.Pharmacother J Hum Pharmacol Drug Ther.

2015;35(10):963-976.

19. Rausch MP, Hastings KT. Immune checkpoint inhibitors in the treatment of melanoma: from basic science to clinical appli-cation. In: Ward WH, Farma JM, eds.Cutaneous Melanoma:

Etiology and Therapy. Brisbane, Australia: Codon Publications;

2017:121-142.

20. Weiss SA, Wolchok JD, Sznol M. Immunotherapy of melanoma:

facts and hopes.Clin Cancer Res. 2019;25(17):5191-5201.

21. Pasquali S, Hadjinicolaou A V, Chiarion Sileni V, Rossi CR, Mocellin S. Systemic treatments for metastatic cutaneous melanoma.Cochrane Database Syst Rev. 2018;2(2):CD011123.

22. Lim SY, Menzies AM, Rizos H. Mechanisms and strategies to overcome resistance to molecularly targeted therapy for melanoma.Cancer. 2017;123(S11):2118-2129.

23. Winder M, Virós A, Mechanisms of drug resistance in melanoma. 2017;249:91-108. https://doi.org/10.1007/164_2017_

17

BETANCOURT et al. 23 of 25

24. Amaral T, Sinnberg T, Meier F, et al. MAPK pathway in melanoma part II—secondary and adaptive resistance mecha-nisms to BRAF inhibition.Eur J Cancer. 2017;73:93-101.

25. Mourah S, Louveau B, Dumaz N. Mechanisms of resistance and predictive biomarkers of response to targeted therapies and immunotherapies in metastatic melanoma.Curr Opin Oncol.

2020;32(2):91-97.

26. Calderwood SK. Tumor heterogeneity, clonal evolution, and therapy resistance: an opportunity for multitargeting therapy.

Discov Med. 2013;15(82):188-194.http://www.ncbi.nlm.nih.gov/

pubmed/23545047.

27. Roesch A. Tumor heterogeneity and plasticity as elusive drivers for resistance to MAPK pathway inhibition in melanoma. Onco-gene. 2015;34(23):2951-2957.

28. McGranahan N, Swanton C. Clonal Heterogeneity and tumor evolution: past, present, and the future.Cell. 2017;168(4):613-628.

29. Ramón y Cajal S, Sesé M, Capdevila C, et al. Clinical implica-tions of intratumor heterogeneity: challenges and opportuni-ties.J Mol Med. 2020;98(2):161-177.

30. Ahmed F, Haass NK. Microenvironment-driven dynamic het-erogeneity and phenotypic plasticity as a mechanism of melanoma therapy resistance.Front Oncol. 2018;8:173.

31. Akbani R, Akdemir KC, Aksoy BA, et al. Genomic classification of cutaneous melanoma.Cell. 2015;161(7):1681-1696.

32. National Cancer Institute. The Cancer Genome Atlas Program.

https://www.cancer.gov/about-nci/organization/ccg/research/

structural-genomics/tcgaPublished 2021. Accessed March 1, 2021.

33. Fiore L, Rodriguez H, Shriver C. Collaboration to acceler-ate proteogenomics cancer care: the Department of Veter-ans Affairs, Department of Defense, and the National Can-cer Institute’s Applied Proteogenomics OrganizationaL Learn-ing and Outcomes (APOLLO) Network.Clin Pharmacol Ther.

2017;101(5):619-621.

34. Rodland KD, Piehowski P, Smith RD. Moonshot objectives.

Cancer J. 2018;24(3):121-125.

35. Hodis E, Watson IR, Kryukov GV, et al. A landscape of driver mutations in melanoma.Cell. 2012;150(2):251-263.

36. Weinberg SE, Chandel NS. Targeting mitochondria metabolism for cancer therapy.Nat Chem Biol. 2015;11(1):9-15.

37. Zong W-X, Rabinowitz JD, White E. Mitochondria and cancer.

Mol Cell. 2016;61(5):667-676.

38. Lamb R, Ozsvari B, Lisanti CL, et al. Antibiotics that tar-get mitochondria effectively eradicate cancer stem cells, across multiple tumor types: treating cancer like an infectious disease.

Oncotarget. 2015;6(7):4569-4584.

39. Lee JH, Shklovskaya E, Lim SY, et al. Transcriptional down-regulation of MHC class I and melanoma de-differentiation in resistance to PD-1 inhibition.Nat Commun. 2020;11(1):1897.

40. Newell F, Kong Y, Wilmott JS, et al. Whole-genome landscape of mucosal melanoma reveals diverse drivers and therapeutic targets.Nat Commun. 2019;10(1):3163.

41. Schwanhäusser B, Busse D, Li N, et al. Global quan-tification of mammalian gene expression control. Nature.

2011;473(7347):337-342.

42. Yoshihama S, Roszik J, Downs I, et al. NLRC5/MHC class I transactivator is a target for immune evasion in cancer.Proc Natl Acad Sci. 2016;113(21):5999-6004.

43. Sanchez A, Kuras M, Murillo JR, et al. Novel functional proteins coded by the human genome discovered in metas-tases of melanoma patients.Cell Biol Toxicol. 2020;36(3):261-272.

44. HPP Data Interpretation Guidelines. https://www.hupo.org/

HPP-Data-Interpretation-Guidelines. Published 2019. Accessed March 8, 2021.

45. Koizumi H, Kartasova T, Tanaka H, Ohkawara A, Kuroki T. Differentiation-associated localization of small prolne-rich rotein in normal and diseased human skin. Br J Dermatol.

1996;134(4):686-692.

46. Carregaro F, Stefanini ACB, Henrique T, Tajara EH. Study of small proline-rich proteins (SPRRs) in health and disease: a review of the literature.Arch Dermatol Res. 2013;305(10):857-866.

47. Liu Q, Zhang C, Ma G, Zhang Q. Expression of SPRR3 is associ-ated with tumor cell proliferation and invasion in glioblastoma multiforme.Oncol Lett. 2014;7(2):427-432.

48. Akabane H, Sullivan RJ. The future of molecular analysis in melanoma: diagnostics to direct molecularly targeted therapy.

Am J Clin Dermatol. 2016;17(1):1-10.

49. Betancourt LH, Szasz AM, Kuras M, et al. The hidden story of heterogeneous B-raf V600E mutation quantitative pro-tein expression in metastatic melanoma—association with clinical outcome and tumor phenotypes. Cancers (Basel).

2019;11(12):1981.

50. Vanni I, Tanda ET, Dalmasso B, et al. Non-BRAF mutant melanoma: molecular features and therapeutical implications.

Front Mol Biosci. 2020;7:172.

51. Ostrem JML, Shokat KM. Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design.

Nat Rev Drug Discov. 2016;15(11):771-785.

52. Rossi M, Pellegrini C, Cardelli L, Ciciarelli V, di Nardo L, Fargnoli MC. Familial melanoma: diagnostic and management implications.Dermatol Pract Concept. 2019;9(1):10-16.

53. Helgadottir H, Ghiorzo P, van Doorn R, et al. Efficacy of novel immunotherapy regimens in patients with metastatic melanoma with germline CDKN2A mutations.J Med Genet.

2020;57(5):316-321.

54. Arap W, Knudsen ES, Wang JY, Cavenee WK, Huang H-JS. Point mutations can inactivate in vitro and in vivo activ-ities of p16INK4a/CDKN2A in human glioma. Oncogene.

1997;14(5):603-609.

55. Van Raamsdonk CD, Bezrookove V, Green G, et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi.

Nature. 2009;457(7229):599-602.

56. Onken MD, Worley LA, Long MD, et al. Oncogenic mutations in GNAQ occur early in uveal melanoma.Investig Opthalmology Vis Sci. 2008;49(12):5230.

57. Van Raamsdonk CD, Griewank KG, Crosby MB, et al.

Mutations in GNA11 in uveal melanoma. N Engl J Med.

2010;363(23):2191-2199.

58. Ominato J, Fukuchi T, Sato A, et al. The role of mutation rates of GNAQ or GNA11 in cases of uveal melanoma in Japan.Appl Immunohistochem Mol Morphol. 2017:1.

59. Livingstone E, Zaremba A, Horn S, et al. GNAQ and GNA11 mutant non-uveal melanoma, a subtype distinct from both cutaneous and uveal melanoma. Br J Dermatol.

2020;183(5):928–939.

60. Lyle M, Long GV. Diagnosis and treatment of KIT-mutant metastatic melanoma.J Clin Oncol. 2013;31(26):3176-3181.

61. Liang J, Wu Y-L, Chen B-J, Zhang W, Tanaka Y, Sugiyama H.

The C-kit receptor-mediated signal transduction and tumor-related diseases.Int J Biol Sci. 2013;9(5):435-443.

62. Carlino MS, Todd JR, Rizos H. Resistance to c-Kit inhibitors in melanoma: insights for future therapies. Oncoscience.

2014;1(6):423-426.

63. Abdou Y, Kapoor A, Hamad L, Ernstoff MS. Combination of pembrolizumab and imatinib in a patient with double KIT mutant melanoma.Medicine (Baltimore). 2019;98(44):e17769.

64. Smetana K, Lacina L, Kodet O. Targeted therapies for melanoma.Cancers (Basel). 2020;12(9):2494.

65. Kong Y, Si L, Zhu Y, et al. Large-scale analysis of KIT aber-rations in Chinese patients with melanoma.Clin Cancer Res.

2011;17(7):1684-1691.

66. Gong HZ, Zheng HY, Li J. The clinical significance of KIT muta-tions in melanoma.Melanoma Res. 2018:1.

67. Cirenajwis H, Ekedahl H, Lauss M, et al. Molecular stratifica-tion of metastatic melanoma using gene expression profiling : prediction of survival outcome and benefit from molecular tar-geted therapy.Oncotarget. 2015;6(14):12297-12309.

68. Betancourt LH, Pawłowski K, Eriksson J, et al. Improved sur-vival prognostication of node-positive malignant melanoma patients utilizing shotgun proteomics guided by histopatholog-ical characterization and genomic data.Sci Rep. 2019;9(1):5154.

69. Ubersax JA, Ferrell Jr JE. Mechanisms of specificity in protein phosphorylation.Nat Rev Mol Cell Biol. 2007;8(7):530-541.

70. Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M. The growing landscape of lysine acetylation links metabolism and cell signalling.Nat Rev Mol Cell Biol. 2014;15(8):536-550.

71. Narita T, Weinert BT, Choudhary C. Functions and mecha-nisms of non-histone protein acetylation.Nat Rev Mol Cell Biol.

2019;20(3):156-174.

72. Grimes M, Hall B, Foltz L, et al. Integration of protein phospho-rylation, acetylation, and methylation data sets to outline lung cancer signaling networks.Sci Signal. 2018;11(531):eaaq1087.

73. Wang T-Y, Chai Y-R, Jia Y-L, Gao J-H, Peng X-J, Han H-F.

Crosstalk among the proteome, lysine phosphorylation, and acetylation in romidepsin-treated colon cancer cells. Oncotar-get. 2016;7(33):53471-53501.

74. Yang X-J, Seto E. Lysine acetylation: codified crosstalk with other posttranslational modifications.Mol Cell. 2008;31(4):449-461.

75. Viatour P, Merville M-P, Bours V, Chariot A. Phosphorylation of NF-κB and IκB proteins: implications in cancer and inflam-mation.Trends Biochem Sci. 2005;30(1):43-52.

76. Gil J, Ramírez-Torres A, Encarnación-Guevara S. Lysine acety-lation and cancer: a proteomics perspective. J Proteomics.

2017;150:297-309.

77. Yu J-S. From discovery of tyrosine phosphorylation to targeted cancer therapies: the 2018 Tang Prize in Biopharmaceutical Sci-ence.Biomed J. 2019;42(2):80-83.

78. Metz KS, Deoudes EM, Berginski ME, et al. Coral: clear and customizable visualization of Human Kinome Data.Cell Syst.

2018;7(3):347-350. e1.

79. Gil J, Betancourt LH, Pla I, et al. Clinical protein science in translational medicine targeting malignant melanoma.Cell Biol Toxicol. 2019;35(4):293-332.

80. Gil J, Ramírez-Torres A, Chiappe D, et al. Lysine acetylation sto-ichiometry and proteomics analyses reveal pathways regulated by sirtuin 1 in human cells.J Biol Chem. 2017;292(44):18129-18144.

81. Kuras M, Woldmar N, Kim Y, et al. Proteomic workflows for high-quality quantitative proteome and post-translational modification analysis of clinically relevant samples from formalin-fixed paraffin-embedded archives. J Proteome Res.

2021;20(1):1027-1039.

82. Hansen BK, Gupta R, Baldus L, et al. Analysis of human acety-lation stoichiometry defines mechanistic constraints on protein regulation.Nat Commun. 2019;10(1):1-11.

83. Zhao S, Xu W, Jiang W, et al. Regulation of cellular metabolism by protein lysine acetylation.Science (80-). 2010;327(5968):1000-1004.

84. Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation tar-gets protein complexes and co-regulates major cellular func-tions.Science (80-). 2009;325(5942):834-840.

85. Heusel M, Bludau I, Rosenberger G, et al. Complex-centric proteome profiling by SEC—SWATH—MS. Mol Syst Biol.

2019;15(1):e8438.

86. Harel M, Ortenberg R, Varanasi SK, et al. Proteomics of melanoma response to immunotherapy reveals mitochondrial dependence.Cell. 2019;179(1):236-250. e18.

87. Zila N, Bileck A, Muqaku B, et al. Proteomics-based insights into mitogen-activated protein kinase inhibitor resistance of cerebral melanoma metastases.Clin Proteomics. 2018;15(1):13.

88. Kim Y, Gil J, Pla I, et al. Protein expression in metastatic melanoma and the link to disease presentation in a range of tumor phenotypes.Cancers (Basel). 2020;12(3):767.

89. Institute for Systems Biology. PeptideAtlas. http://www.

peptideatlas.orgPublished 2019. Accessed March 1, 2021.

90. Edwards NJ, Oberti M, Thangudu RR, et al. The CPTAC data portal: a resource for cancer proteomics research.J Proteome Res. 2015;14(6):2707-2713.

91. Rieckmann JC, Geiger R, Hornburg D, et al. Social network architecture of human immune cells unveiled by quantitative proteomics.Nat Immunol. 2017;18(5):583-593.

92. Anderson NL. The clinical plasma proteome: a survey of clin-ical assays for proteins in plasma and serum. Clin Chem.

2010;56(2):177-185.

93. Keerthikumar S, Chisanga D, Ariyaratne D, et al. ExoCarta:

a web-based compendium of exosomal cargo. J Mol Biol.

2016;428(4):688-692.

94. ExoCarta.http://www.exocarta.org/Published 2021. Accessed March 1, 2021.

95. Tucci M, Mannavola F, Passarelli A, Stucci LS, Cives M, Sil-vestris F. Exosomes in melanoma: a role in tumor progression, metastasis and impaired immune system activity.Oncotarget.

2018;9(29):20826-20837.

96. Li J, Chen J, Wang S, et al. Blockage of transferred exosome-shuttled miR-494 inhibits melanoma growth and metastasis.J Cell Physiol. 2019;234(9):15763-15774.

97. Bardi GT, Smith MA, Hood JL. Melanoma exosomes pro-mote mixed M1 and M2 macrophage polarization. Cytokine.

2018;105:63-72.

98. Barbi de Moura M, Vincent G, Fayewicz SL, et al. Mitochondrial respiration—an important therapeutic target in melanoma.

PLoS One. 2012;7(8):e40690.

BETANCOURT et al. 25 of 25

99. Aminzadeh-Gohari S, Weber DD, Catalano L, Feichtinger RG, Kofler B, Lang R. Targeting mitochondria in melanoma.

Biomolecules. 2020;10(10):1395.

100. Ferraz LS, da Costa RT, da Costa CA, et al. Targeting mito-chondria in melanoma: interplay between MAPK signaling pathway and mitochondrial dynamics. Biochem Pharmacol.

2020;178:114104.

101. Biobanking and Biomolecular Resources Research Infrastructure—European Research Infrastructure Consor-tium (BBMRI-ERIC). Quality Management Services for Basic and Applied Research. https://www.bbmri-eric.eu/services/

quality-management. Published 2021. Accessed March 1, 2021.

102. Research Electronic Data Capture.https://www.project-redcap.

org/Published 2021. Accessed March 1, 2021.

103. Malm J, Végvári Á, Rezeli M, et al. Large scale biobanking of blood—the importance of high density sample processing pro-cedures.J Proteomics. 2012;76:116-124.

104. Malm J, Lindberg H, Erlinge D, et al. Semi-automated biobank sample processing with a 384 high density sample tube robot used in cancer and cardiovascular studies.Clin Transl Med.

2015;4(1):67.

105. Yakovleva ME, Welinder C, Sugihara Y, et al. Workflow for large-scale analysis of melanoma tissue samples.EuPA Open Proteomics. 2015;8:78-84.

106. Welinder C, Pawłowski K, Sugihara Y, et al. A protein deep sequencing evaluation of metastatic melanoma tissues.PLoS One. 2015;10(4):e0123661.

107. Betancourt LH, Sanchez A, Pla I, et al. Quantitative assessment of urea in-solution Lys-C/Trypsin digestions reveals superior performance at room temperature over traditional proteolysis at 37C.J Proteome Res. 2018;17(7):2556-2561.

108. Kuras M, Betancourt LH, Rezeli M, et al. Assessing auto-mated sample preparation technologies for high-throughput proteomics of frozen well characterized tissues from Swedish Biobanks.J Proteome Res. 2018;18:548-556.

109. Wiśniewski JR. Filter aided sample preparation—a tutorial.

Anal Chim Acta. 2019;1090:23-30.

110. Murillo JR, Kuras M, Rezeli M, Milliotis T, Betancourt L, Marko-Varga G. Automated phosphopeptide enrichment from minute quantities of frozen malignant melanoma tissue.PLoS One. 2018;13(12):e0208562.

111. neXtProt. Peptide uniqueness checker.https://www.nextprot.

org/tools/peptide-uniqueness-checker. Published 2021.

Accessed March 1, 2021.

112. Wang S, Cai Y, Cheng J, Li W, Liu Y, Yang H. motifeR: an integrated web software for identification and visualization of protein posttranslational modification motifs. Proteomics.

2019;19(23):1900245.

113. Tyanova S, Temu T, Sinitcyn P, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data.Nat Methods. 2016;13(9):731-740.

114. Universal Protein Resource (UniProt). Protein existence.

https://www.uniprot.org/help/protein_existence Published 2018. Accessed March 1, 2021.

S U P P O R T I N G I N F O R M A T I O N

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Betancourt LH, Gil J, Sanchez A, et al. The Human Melanoma Proteome Atlas—Complementing the melanoma

transcriptome.Clin Transl Med. 2021;11:e451.

https://doi.org/10.1002/ctm2.451