• Nem Talált Eredményt

Appendix A Concerning the change of variables by Bellman et al

In this appendix we make a brief digression about the methods developed in [1,2]. The main idea is the following: in a system with fast varying coefficients it is possible to construct a change of variables which reveals a shift in the coefficients of the averaged system, which may result in a displacement of the bifurcation value. Such a phenomenon may be responsible of gain or loss of stability of the equilibria, see [1,2]. In [13], we have already discussed the case of a Van der Pol oscillator with rapidly varying coefficients, using the methods developed in [1,2]. In fact the discussion can be generalized so to embrace the general case of an AH bifurcation pattern. Again we just give the main ideas remanding the interested reader to [13, §3.4] for details, see also [2]. We consider an autonomous system which undergoes to an AH bifurcation pattern, and we assume that the coefficients of its linear part are subject to a rapidly varying non-autonomous perturbation. key observation is that, even if the functions Hi have 0 average, using Jensen’s inequality we

see that

¯

a= lim

τ→+

1 τ

Z τ

0 a(σ)dσ =1+Aµ¯ , b¯ = lim

τ→+

1 τ

Z τ

0 b(σ)dσ =1+Bµ¯ (A.4) where ¯A>0, ¯B>0.

Therefore, if we consider the averaged system where we replacea,bby ¯a, ¯band we pass to polar coordinates,we observe an increment in the rate of rotation of orderµ(A¯+B¯)/2even if the perturbationhi(t)of the coefficients have0average. Namely if we set ¯r = [ay¯ 21+by¯ 22]1/2, and ¯θ =arctan

by¯ 2

ay¯ 1

we get dr¯ dt =µ

n

r−r¯3(1+µC1(θ¯)) +r¯5C2(θ,¯ e)o, dθ¯

dt =µ pa¯b¯n

1+ω(e)r¯2C3(r, ¯¯ θ) +r¯4C4(r, ¯¯ θ,e)o

(A.5)

where the functionsCi are uniformly bounded in their respective variables.

From this computation we also see that the attracting invariant manifold, if exists, “tend to assume a more elliptic like shape”, i.e. it is a smallτdependent deformation of the ellipse

¯

ay21+by¯ 22 =e, that is ¯r =√ e.

Following [2] we point out that if we replace the functionshi(t

µ)in (A.1) by the large and fast varying functions µαhi(t/µ)(whereαis a constant) we obtain that ¯a=1+αA, ¯¯ b=1+αB¯ in (A.4), i.e. we have a macroscopic change in the speed of rotation close to the origin (of orderO(1)). However, ifαis not small enough, the whole structure of the bifurcation pattern might be washed away when the whole non-autonomous perturbation problem is considered (and not just its averaged system as in [1,2]): in fact we needα= o(e)to apply our techniques and to obtain the results in Sections3.1, 3.2. This might depend on the method of proof we used, but we believe that some smallness condition onαis most probably needed.

References

[1] R. Bellman, J. Bentsman, S. Meerkov, Vibrational control of systems with Arrhenius dy-namics,J. Math. Anal. Appl.91(1983), 152–191.https://doi.org/10.1016/0022-247X(83) 90099-9;MR0688539

[2] R. Bellman, J. Bentsman, S. Meerkov, Nonlinear systems with fast parametric oscilla-tions, J. Math. Anal. Appl. 97(1983), 572–589.https://doi.org/10.1016/0022-247X(83) 90212-3;MR0723248

[3] N. Bogoliubov, Y. Mitropolskii,Asymptotic methods in nonlinear oscillation theory(in Rus-sian), Moscow, Fitzmatgiz, 1963.MR0149036

[4] E. Coddington, N. Levinson,Theory of ordinary differential equations,McGraw-Hill, New York, 1955.MR0069338

[5] W. Coppel, Dichotomies in stability theory, Lecture Notes in Mathematics, Vol. 377, Springer-Verlag, Berlin, 1978.https://doi.org/10.1007/BFb0067780;MR0481196 [6] S. Diliberto, Perturbation theorems for periodic surfaces I, Rend. Circ. Mat. Palermo

9(1960), 265–299.https://doi.org/10.1007/BF02851248;MR0142852

[7] S. Diliberto, New results in periodic surfaces and the averaging principle, in:Proc. U.S.–

Japan Seminar on Differential and Functional Equations (Minneapolis, Minn., 1967), Benjamin, New York, 1967, pp. 49–87.MR0249725

[8] B. Fayad, Weak mixing for reparametrized linear flows on the torus, Ergodic The-ory Dynam. Systems 22(2002), 187–201. https://doi.org/10.1017/S0143385702000081;

MR1889570

[9] B. Fayad, Analytic mixing reparametrizations of irrational flows, Ergodic Theory Dynam.

Systems22(2002), 437–468.https://doi.org/10.1017/S0143385702000214;MR1898799 [10] A. Fink, Almost periodic differential equations, Lecture Notes in Mathematics, Vol. 377,

Springer-Verlag, Berlin, 1974.https://doi.org/10.1007/BFb0070324;MR0460799 [11] R. Fabbri, R. Johnson, K. Palmer, Another look at averaging and integral manifolds,J.

Difference Equ. Appl. 13(2007), 723–739. https://doi.org/10.1080/10236190701479002;

MR2343028

[12] M. Franca, R. Johnson, V. Muñoz-Villarragut, On the nonautonomous Hopf bi-furcation problem, Discrete Contin. Dyn. Syst. Ser. S 9(2016), No. 4, 1119–1148. https:

//doi.org/10.3934/dcdss.2016045;MR3543649

[13] M. Franca, R. Johnson, Remarks on nonautonomous bifurcation theory, Rend. Is-tit. Mat. Univ. Trieste 49(2017), 215–243. https://doi.org/10.13137/2464-8728/16214;

MR3748512

[14] H. Furstenberg, Strict ergodicity and transformations of the torus, Amer. J. Math.

83(1961), 573–601.https://doi.org/10.2307/2372899;MR0133429

[15] A. González-Enríquez, A non-perturbative theorem on conjugation of torus diffeo-morphisms to rigid rotations, preprint, 2005.https://pdfs.semanticscholar.org/9071/

053327fe6c2fa6f06d633a89f56c97137836.pdf

[16] A. González-Enríquez, J. Vano, Estimate of smoothing and composition with ap-plications to conjugation problems, J. Dynam. Differential Equations 20(2008), 239–270.

https://doi.org/10.1007/s10884-006-9060-z;MR2385728

[17] J. Hale,Ordinary differential equations, Wiley-Interscience, New York, 1969.MR0419901 [18] J. Hale, H. Koçak, Dynamics and bifurcations, Texts in Applied Mathematics,

Vol. 3, Springer-Verlag, New York, 1991.https://doi.org/10.1007/978-1-4612-4426-4;

MR1138981

[19] W. Huang, Y. Yi, Almost periodically forced circle flows,J. Funct. Anal. 257(2009), 832–

902.https://doi.org/10.1016/j.jfa.2008.12.005;MR2530846

[20] R. Johnson, Concerning a theorem of Sell, J. Differential Equations 30(1978), 324–339.

https://doi.org/10.1016/0022-0396(78)90004-9;MR0521857

[21] R. Johnson, F. Mantellini, A nonautonomous transcritical bifurcation problem with an application to quasi-periodic bubbles,Discrete Contin. Dyn. Syst.9(2003), 209–224.https:

//doi.org/10.3934/dcds.2003.9.209;MR1951319

[22] R. Johnson, Y. Yi, Hopf bifurcation from non-periodic solutions of differential equa-tions II, J. Differential Equations 107(1994), 310–340. https://doi.org/10.1006/jdeq.

1994.1015;MR1264525

[23] P. Kloeden, M. Rasmussen,Nonautonomous dynamical systems, Mathematical Surveys and Monographs, Vol. 176, American Mathematical Society, Providence, RI, 2011. https://

doi.org/10.1090/surv/176;MR2808288

[24] N. Krylov, N. Bogoliubov, La théorie generale de la mesure dans son application à l’étude des systèmes dynamiques de la mécanique non linéare (in French),Ann. of Math.

(2)38(1937), 65–113.https://doi.org/10.2307/1968511;MR1503326

[25] Y. Kuznetsov, Elements of applied bifurcation theory, Springer-Verlag, Berlin, 1995.https:

//doi.org/10.1007/978-1-4757-2421-9;MR1344214

[26] M. Hirsch, C. Pugh, M. Shub,Invariant manifolds, Lecture Notes in Mathematics, Vol. 583 Springer-Verlag, New York, 1977.MR0501173

[27] C. Núñez, R. Obaya, A non-autonomous bifurcation theory for deterministic scalar dif-ferential equations,Discrete Contin. Dyn. Syst. Ser. B9(2008), 701–730. https://doi.org/

10.3934/dcdsb.2008.9.701;MR2379433

[28] C. Pötzsche, Nonautonomous bifurcation of bounded solutions II: a shovel bifurcation pattern, Discrete Contin. Dyn. Syst. 31(2011), 941–973. https://doi.org/10.3934/dcds.

2011.31.941;MR2825645

[29] D. Papini, F. Zanolin, Periodic points and chaotic-like dynamics of planar maps as-sociated to nonlinear Hill’s equations with indefinite weight, Georgian Math J. 9(2002), 339–366.https://doi.org/10.1515/GMJ.2002.339;MR1916073

[30] M. Rasmussen, Attractivity and bifurcation for nonautonomous dynamical systems, Lecture Notes in Mathematics, Vol. 1907, Springer, Berlin, 2007. https://doi.org/10.1007/

978-3-540-71225-1;MR2327977

[31] W. Shen, Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows, Mem. Amer. Math. Soc. 137(1998), No. 647, 1–93. https://doi.org/10.1090/

memo/0647;MR1445493

[32] Y. Yi, A generalized integral manifold theorem,J. Differential Equations102(1993), 153–187.

https://doi.org/10.1006/jdeq.1993.1026;MR1209981