• Nem Talált Eredményt

Additional data on finite bias transport simulation

My study focuses on a two-site model. One work in which the role of PHTs was elaborated on is Ref. [262], where Sznajd and Becker showed that the generalization of PHT (iii) in Table A.3 is a PHS of the usual non-superconducting Hubbard-model on a bipartite lattice.

A.9 Additional data on finite bias transport simula-tion

In Sec. 5.4.4 I discussed that in general the non-local coupling terms hybridize the Andreev states on the separate quantum dots, leading to the appearance of anticrossings in the transport spectrum. Here I will show the similarities and the differences of the anticrossings originating form different coupling terms. Generally two dominating anti-crossings open, one on diagonal, i.e. on the εR = εL line and one on the skew-diagonal, εR =−U−εL, their relative size and their evolution asεα is tuned differ for each coupling mechanisms.

Fig. A.9 shows the differential conductance of the two side, GL andGR, in the absence of non-local couplings on panel (a) (same as Fig. 5.19a) and with only one coupling being finite on panels (b-d) (ΓCAR = 0.1U on panel (b), γEC = 0.15 on panel (b), tLR = 0.1U on panel (d)) as the function of εL and µN for fixed εR = −1.2U. Fig. A.10 shows the conductance for the three latter case along the diagonal and the skew-diagonal, to illustrate the evolution of the size of the anticrossings.

In case of CAR coupling (ΓCAR = 0.1U) the more pronounced anticrossing is located on the skew-diagonal at εL = 0.2U, constituting of 3 conductance lines, appearing along the dashed line on Fig. A.9b. Another smaller anticrossing is present on the diagonal (εRL) at εL=−1.2U, marked with gray dotted line.

When εR is tuned, the size of the anticrossing positioned on the skew-diagonal re-mains the same, while for the one moving on the diagonal is maximal in the particle-hole symmetric point (εLR =−U/2) and decrease as the on-site energies are tuned away from this point. These two different evolution are shown on panel d) and a) of Fig. A.10, respectively. The gray dashed and dotted lines also mark the correspondence of Fig. A.9 and Fig. A.10. Note that due to the symmetries for the special cuts, presented on Fig. A.10 the conductance of the two sides are equal, GL =GR.

Explanation of the anticrossings: At εL = 0.2U, εR = −1.2U the ground state of the QD–SC–QD system is a Signlet, dominantly |gsi ∝ |0,↑↓i +... and the first two excited states are Doublets, |es1/2i ∝ |0, σi ± |σ,↑↓i+..., which are the bonding and antibonding combination of |0, σi and |σ,↑↓i states, hybridized by the CAR. The lower and upper excitation lines of the three in the anticrossing corresponds to the |gsi → |es1i and |gsi → |es2i transitions.

The third, middle line running parallel with the upper one corresponds to the excitation to the third, singlet excited state, from the first one, |es1i → |es3i = |S(1,1)i+.... The excitation energy for the transition is lower than the |gsi → |es2i transition’s. Note that this third excited state, |es3i cannot be accessed from the ground state since it has the same parity.

At εL = εR = −1.2U the ground state is dominantly |gsi = | ↑↓,↑↓i+... and the excited states are|es1i=|σ,↑↓i+...and|es2i=| ↑↓, σi+.... These two components cannot

A.9. Additional data on finite bias transport simulation

-0.2 0 0.2 0.4

-0.05 0 0.05 0.10

-0.2 0 0.2 0.4

-0.1 0 0.1 0.2

-0.2 0 0.2 0.4

-0.1 0 0.1 0.2

-0.2 -0.1 0 0.1 0.2 0.3

-0.10 -0.05 0 0.05 0.10 0.15 ΓCAR = 0U, γEC = 0, tLR = 0U, εR = -1.2U

GL (G0) GR (G0)

GL (G0)GL (G0)GL (G0) GR (G0)GR (G0)GR (G0)

ΓCAR = 0.1U, γEC = 0, tLR = 0U, εR = -1.2U

ΓCAR = 0U, γEC = 0.15, tLR = 0U, εR = -1.2U

ΓCAR = 0U, γEC = 0, tLR = 0.1U, εR = -1.2U a)

b)

c)

d)

+

εL/U εL/U

εL/U εL/U

εL/U εL/U

εL/U εL/U

μN/U

μN/UμN/U μN/UμN/U

μN/UμN/U μN/U

Figure A.9:Differential conductance of the QD–SC–QD system to the N leads as a function of εLandµN for fixedεR=−1.2U, with ΓLAR,L= ΓLAR,R = 0.25U a) without non-local couplings the usual single-QD ABS is formed on the dots, same as Fig. 5.19a in the main text., b) with ΓCAR= 0.1U, c) withγEC= 0.15, withtLR = 0.1U. The presence of the non-local couplings lead to the hybridization of the ABSs on the QDs, indicated by the appearance of anticrossings. The gray dashed and dotted lines mark the correspondence with Fig. A.10. The white circles mark the triplet blockade related NDC lines and the white + sign on panel b) marks a not triplet related NDC.

A.9. Additional data on finite bias transport simulation

-0.1 0 0.1 0.2 0.3 0.4 0.5

-0.1 0 0.1 0.2 0.3 0.4 0.5

a) ΓCAR = 0.1U b) γEC = 0.15 c) tLR = 0.1U

GL = GR (G0)GL = GR (G0)

d) e) f)

μN/U μN/U μN/UμN/U

μN/U μN/U

εL/U

εL/U εL/U

εL/U εL/U

εL/U

Figure A.10: Differential conductance of the QD–SC–QD system along the diagonal, εR = εL (panel a),b) and c)) and the skew-diagonal εR = −U −εL lines (panel d) e) and f)) for different non-local parameters: a),d) with ΓCAR = 0.1U, b),e) with γEC = 0.15 and c),f) with tLR = 0.1U. ΓLAR,L = ΓLAR,R = 0.25U as previously. The gray dashed and dotted lines mark the correspondence with Fig. S1. The size of anticrossing a), decrease b) increase, c),d) stays constant and e) decrease as εR is tuned away from the particle-hole symmetric point. f) the first two excitation are degenerate, there is no anticrossing present. Panel d-f) are the same as Fig. 5.20 in the main text.

A.9. Additional data on finite bias transport simulation directly by coupled by CAR, since they have the same number of electrons. However they can be coupled in second order, using the fact that LAR mix these state with |σ,0i and

|0, σirespectively. The CAR matrix element is finite between the|σ,0i(|0, σi) and| ↑↓, σi (|σ,↑↓i) states. The absence of the direct coupling between the excited states results in the suppression of the size of the anticrossing compared to the one on the skew-diagonal.

The splitting of further conductance lines is comparable to the line width, which is further broadened in an experiment due to the coupling to the normal leads – which is neglected in the present model –, therefore I neglect the detailed analysis of the fine structure here.

In case of EC the anticrossings are positioned similarly as for CAR (see Fig. A.9c withγEC = 0.15), a larger one constituting of 3 conductance line positioned on the skew-diagonal (dashed line) and a smaller one on the skew-diagonal (dotted line). The main difference between EC and CAR lies in behavior of the size of the anticrossing asεR is tuned. While the pronounced one have the same size for CAR (Fig. A.10d), for EC is maximal in the particle-hole symmetric point and it decreases (see Fig. A.10e) as εR is tuned away from this point. For the anticrossing positioned on the diagonal the behavior is strictly different from the case of CAR: On one hand the higher energy anticrossing line has a negative differential conductance (see the black lines on Fig. A.10b) for εL>0 (negative bias) and εL < −U (positive bias). Furthermore the two excitation lines move apart as εL increased from 0 (or decreased below −U) for EC, while the distance between the two lines decreases for CAR (Fig. A.10a). Note that second excitation is not visible for opposite bias directions as discussed previously on Fig. A.10b.

The third conductance line in the anticrossing positioned on the skew-diagonal is originating from the excitation to the third excited state similarly to the case of CAR, but positioned at higher energy than the first two excitations for EC.

Interestingly for the anticrossing positioned on the diagonal the splitting disappears close toεLR≈ −U (see Fig. A.10b). At these parameters the hybridized excited states are dominantly formed from by the |σ,↑↓i and | ↑↓, σi states, which are coupled by the HeffEC

(σ,↑↓)−(↑↓,σ) matrix element, which vanishes at εLR=−U (see Eq. A.16).

Note that due to the different definition of ΓCAR andγEC one cannot directly compare the magnitude of the splittings (see Eq. (A.15)).

Finally Fig. A.9d shows the effect of the IT, withtLR = 0.1U. On contrary to the CAR and EC, in this case only one anticrossing can be found – along the diagonal (dotted line) – and there is no anticrossing on the skew-diagonal (dashed line). The size of the anticrossing does not depend on the value of εL, except the εL ≈ −U/2 region (see Fig. A.10c). On the skew diagonal the first two excitations are exactly degenerate, independently of εR (see Fig. A.10f).

As I have shown above the main, common signature of the non-local couplings is the appearance of anticrossings in the excitation spectrum of the QD–SC–QD system, and the main difference of the three couplings lie in the behavior of these anticrossings. For CAR and EC they are positioned similarly, but their size change differently when εR is changed, while for IT only one anticrossing is present. This difference in the anticrossings allows one to determine the dominant coupling term in an experiment.

A not triplet related NDC line is shown on Fig. A.9b at εL ≈ −0.2U, µN ≈ −0.3U (marked with a white + sign), where the blocking occurs when the|es1i → |es4itransition becomes available, where|es1i is a singlet, and|es4i is a doublet state.

Bibliography

[1] Thomas Sand Jespersen, Martin Aagesen, Claus Sørensen, Poul Erik Lindelof, and Jesper Nyg˚ard. Kondo physics in tunable semiconductor nanowire quantum dots.

Phys. Rev. B, 74:233304, Dec 2006. (Cited on page 7.)

[2] M. D. Schroer, K. D. Petersson, M. Jung, and J. R. Petta. Field tuning theg factor in inas nanowire double quantum dots. Phys. Rev. Lett., 107:176811, Oct 2011.

(Cited on pages 7, 82, 91, 122, 123, 129, 131, 132, and 175.)

[3] S. Csonka, L. Hofstetter, F. Freitag, S. Oberholzer, Sch¨onenberger C., T. S.

Jespersen, M. Aagesen, and J. Nygard. Giant fluctuations and gate control of the g-factor in inas nanowire quantum dots. Nano Lett., 8:3932, 2008. (Cited on pages 7, 123, and 131.)

[4] Samuel d’Hollosy, G´abor F´abi´an, Andreas Baumgartner, Jesper Nyg˚ard, and Christian Sch¨onenberger. g-factor anisotropy in nanowire-based inas quantum dots.

AIP Conference Proceedings, 1566(1):359–360, 2013. (Cited on page 7.)

[5] K. D. Petersson, L. W. McFaul, M. D. Schroer, M. Jung, J. M. Taylor, A. A. Houck, and J. R. Petta. Circuit quantum electrodynamics with a spin qubit. Nature, 490:380–383, 2012. (Cited on pages 7, 82, 91, and 143.)

[6] J. Stehlik, M. D. Schroer, M. Z. Maialle, M. H. Degani, and J. R. Petta. Extreme har-monic generation in electrically driven spin resonance. Phys. Rev. Lett., 112:227601, Jun 2014. (Cited on page 7.)

[7] S. Nadj-Perge, S. M. Frolov, E. P. A. M. Bakkers, and L. P. Kouwenhoven. Spin-orbit qubit in a semiconductor nanowire. Nature, 468:1084, Dec 2010. (Cited on pages 7, 82, 122, 123, 124, 128, and 131.)

[8] S. Nadj-Perge, V. S. Pribiag, J. W. G. van den Berg, K. Zuo, S. R. Plissard, E. P.

A. M. Bakkers, S. M. Frolov, and L. P. Kouwenhoven. Spectroscopy of spin-orbit quantum bits in indium antimonide nanowires. Phys. Rev. Lett., 108:166801, Apr 2012. (Cited on pages 7, 26, 67, and 82.)

Bibliography

[9] J. W. G. van den Berg, S. Perge, V. S. Pribiag, S. R. Plissard, E. P. A. M. Bakkers, S. M. Frolov, and L. P. Kouwenhoven. Fast spin-orbit qubit in an indium antimonide nanowire. Phys. Rev. Lett., 110:066806, Feb 2013. (Cited on page 7.)

[10] Liang Fu and C. L. Kane. Superconducting proximity effect and majorana fermions at the surface of a topological insulator. Phys. Rev. Lett., 100:096407, Mar 2008.

(Cited on pages 7 and 82.)

[11] Jay D. Sau, Roman M. Lutchyn, Sumanta Tewari, and S. Das Sarma. Generic new platform for topological quantum computation using semiconductor heterostruc-tures. Phys. Rev. Lett., 104:040502, Jan 2010. (Cited on pages 7, 82, and 95.) [12] Jason Alicea. Majorana fermions in a tunable semiconductor device. Phys. Rev. B,

81:125318, Mar 2010. (Cited on pages 7, 82, and 95.)

[13] Roman M. Lutchyn, Jay D. Sau, and S. Das Sarma. Majorana fermions and a topo-logical phase transition in semiconductor-superconductor heterostructures. Phys.

Rev. Lett., 105:077001, Aug 2010. (Cited on pages 7, 82, and 95.)

[14] Yuval Oreg, Gil Refael, and Felix von Oppen. Helical liquids and majorana bound states in quantum wires. Phys. Rev. Lett., 105:177002, Oct 2010. (Cited on pages 7, 82, and 95.)

[15] T.-P. Choy, J. M. Edge, A. R. Akhmerov, and C. W. J. Beenakker. Majorana fermions emerging from magnetic nanoparticles on a superconductor without spin-orbit coupling. Phys. Rev. B, 84:195442, Nov 2011. (Cited on pages 7 and 95.) [16] Martin Leijnse and Karsten Flensberg. Introduction to topological

superconductiv-ity and majorana fermions. Semiconductor Science and Technology, 27(12):124003, 2012. (Cited on pages 7 and 95.)

[17] Martin Leijnse and Karsten Flensberg. Parity qubits and poor man’s majorana bound states in double quantum dots. Phys. Rev. B, 86:134528, Oct 2012. (Cited on pages 7, 82, and 95.)

[18] Jason Alicea. New directions in the pursuit of majorana fermions in solid state systems. Reports on Progress in Physics, 75(7):076501, 2012. (Cited on pages 7 and 82.)

[19] C.W.J. Beenakker. Search for majorana fermions in superconductors. Annual Review of Condensed Matter Physics, 4(1):113–136, 2013. (Cited on pages 7 and 82.) [20] S. Nadj-Perge, I. K. Drozdov, B. A. Bernevig, and Ali Yazdani. Proposal for realizing majorana fermions in chains of magnetic atoms on a superconductor. Phys. Rev. B, 88:020407, Jul 2013. (Cited on pages 7 and 95.)

[21] Bernd Braunecker and Pascal Simon. Interplay between classical magnetic mo-ments and superconductivity in quantum one-dimensional conductors: Toward a self-sustained topological majorana phase. Phys. Rev. Lett., 111:147202, Oct 2013.

(Cited on pages 7 and 95.)

Bibliography [22] Falko Pientka, Leonid I. Glazman, and Felix von Oppen. Topological superconduct-ing phase in helical shiba chains. Phys. Rev. B, 88:155420, Oct 2013. (Cited on pages 7 and 95.)

[23] Jelena Klinovaja, Peter Stano, Ali Yazdani, and Daniel Loss. Topological super-conductivity and majorana fermions in rkky systems. Phys. Rev. Lett., 111:186805, Nov 2013. (Cited on pages 7 and 95.)

[24] Sho Nakosai, Yukio Tanaka, and Naoto Nagaosa. Two-dimensional p-wave super-conducting states with magnetic moments on a conventionals-wave superconductor.

Phys. Rev. B, 88:180503, Nov 2013. (Cited on pages 7 and 95.)

[25] M. M. Vazifeh and M. Franz. Self-organized topological state with majorana fermions. Phys. Rev. Lett., 111:206802, Nov 2013. (Cited on pages 7 and 95.) [26] Younghyun Kim, Meng Cheng, Bela Bauer, Roman M. Lutchyn, and S. Das Sarma.

Helical order in one-dimensional magnetic atom chains and possible emergence of majorana bound states. Phys. Rev. B, 90:060401, Aug 2014. (Cited on pages 7 and 95.)

[27] R Aguado. Majorana quasiparticles in condensed matter. La Rivista del Nuovo Cimento, 40(11):523, 2017. (Cited on pages 7 and 95.)

[28] R. M. Lutchyn, E. P. A. M. Bakkers, L. P. Kouwenhoven, P. Krogstrup, C. M.

Marcus, and Y. Oreg. Majorana zero modes in superconductor-semiconductor het-erostructures. Nature Reviews Materials, 3(5):52–68, 2018. (Cited on pages 7 and 95.)

[29] David J. Clarke, Jason Alicea, and Kirill Shtengel. Exotic non-abelian anyons from conventional fractional quantum hall states. Nature Communications, 4:1348, 2013.

(Cited on pages 7 and 95.)

[30] Jelena Klinovaja, Amir Yacoby, and Daniel Loss. Kramers pairs of majorana fermions and parafermions in fractional topological insulators. Phys. Rev. B, 90:155447, Oct 2014. (Cited on pages 7 and 95.)

[31] Jason Alicea and Paul Fendley. Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics, 7(1):119–139, 2016. (Cited on pages 7 and 95.)

[32] T. Sand-Jespersen, J. Paaske, B. M. Andersen, K. Grove-Rasmussen, H. I.

Jørgensen, M. Aagesen, C. B. Sørensen, P. E. Lindelof, K. Flensberg, and J. Nyg˚ard.

Kondo-enhanced andreev tunneling in inas nanowire quantum dots.Phys. Rev. Lett., 99:126603, Sep 2007. (Cited on pages 7 and 135.)

[33] Michele Governale, Marco G. Pala, and J¨urgen K¨onig. Real-time diagrammatic approach to transport through interacting quantum dots with normal and super-conducting leads. Phys. Rev. B, 77:134513, Apr 2008. (Cited on pages 7 and 135.)

Bibliography

[34] Tobias Meng, Serge Florens, and Pascal Simon. Self-consistent description of an-dreev bound states in josephson quantum dot devices. Phys. Rev. B, 79:224521, Jun 2009. (Cited on pages 7, 135, 139, and 146.)

[35] R. S. Deacon, Y. Tanaka, A. Oiwa, R. Sakano, K. Yoshida, K. Shibata, K. Hirakawa, and S. Tarucha. Tunneling spectroscopy of andreev energy levels in a quantum dot coupled to a superconductor. Phys. Rev. Lett., 104:076805, Feb 2010. (Cited on pages 7 and 135.)

[36] R. S. Deacon, Y. Tanaka, A. Oiwa, R. Sakano, K. Yoshida, K. Shibata, K. Hirakawa, and S. Tarucha. Kondo-enhanced andreev transport in single self-assembled inas quantum dots contacted with normal and superconducting leads. Phys. Rev. B, 81:121308, Mar 2010. (Cited on pages 7 and 135.)

[37] J-D. Pillet, C. H. L. Quay, P. Morfin, C. Bena, A. Levy Yeyati, and P. Joyez. Andreev bound states in supercurrent-carrying carbon nanotubes revealed. Nature Physics, 6:965, 2010. (Cited on pages 7 and 135.)

[38] David Futterer, Jacek Swiebodzinski, Michele Governale, and J¨urgen K¨onig.

Renormalization effects in interacting quantum dots coupled to superconducting leads. Phys. Rev. B, 87:014509, Jan 2013. (Cited on pages 7 and 135.)

[39] Bum-Kyu Kim, Ye-Hwan Ahn, Ju-Jin Kim, Mahn-Soo Choi, Myung-Ho Bae, Kicheon Kang, Jong Soo Lim, Rosa L´opez, and Nam Kim. Transport measure-ment of andreev bound states in a kondo-correlated quantum dot. Phys. Rev. Lett., 110:076803, Feb 2013. (Cited on pages 7 and 135.)

[40] W. Chang, V. E. Manucharyan, T. S. Jespersen, J. Nyg˚ard, and C. M. Marcus.

Tunneling spectroscopy of quasiparticle bound states in a spinful josephson junction.

Phys. Rev. Lett., 110:217005, May 2013. (Cited on pages 7 and 135.)

[41] J.-D. Pillet, P. Joyez, Rok ˇZitko, and M. F. Goffman. Tunneling spectroscopy of a single quantum dot coupled to a superconductor: From kondo ridge to andreev bound states. Phys. Rev. B, 88:045101, Jul 2013. (Cited on pages 7 and 135.) [42] A. Kumar, M. Gaim, D. Steininger, A. Levy Yeyati, A. Mart´ın-Rodero, A. K. H¨uttel,

and C. Strunk. Temperature dependence of andreev spectra in a superconducting carbon nanotube quantum dot. Phys. Rev. B, 89:075428, Feb 2014. (Cited on pages 7 and 135.)

[43] J. Schindele, A. Baumgartner, R. Maurand, M. Weiss, and C. Sch¨onenberger.

Nonlocal spectroscopy of andreev bound states. Phys. Rev. B, 89:045422, Jan 2014.

(Cited on pages 7, 50, 109, and 135.)

[44] Eduardo J. H. Lee, Xiaocheng Jiang, Manuel Houzet, Ram´on Aguado, Charles M.

Lieber, and Silvano De Franceschi. Spin-resolved andreev levels and parity crossings in hybrid superconductor–semiconductor nanostructures. Nature Nanotechnology, 9:79, 2014. (Cited on pages 7, 102, and 135.)

Bibliography [45] Anders Jellinggaard, Kasper Grove-Rasmussen, Morten Hannibal Madsen, and Jesper Nyg˚ard. Tuning yu-shiba-rusinov states in a quantum dot. Phys. Rev. B, 94:064520, Aug 2016. (Cited on pages 7, 45, 113, and 135.)

[46] Eduardo J. H. Lee, Xiaocheng Jiang, Rok ˇZitko, Ram´on Aguado, Charles M. Lieber, and Silvano De Franceschi. Scaling of subgap excitations in a superconductor-semiconductor nanowire quantum dot. Phys. Rev. B, 95:180502, May 2017. (Cited on pages 7 and 135.)

[47] J. Gramich, A. Baumgartner, and C. Sch¨onenberger. Andreev bound states probed in three-terminal quantum dots. Phys. Rev. B, 96:195418, Nov 2017. (Cited on pages 7, 102, and 135.)

[48] Sen Li, N. Kang, P. Caroff, and H. Q. Xu. 0−π. Phys. Rev. B, 95:014515, Jan 2017.

(Cited on pages 7 and 135.)

[49] Rok ˇZitko, Jong Soo Lim, Rosa L´opez, and Ram´on Aguado. Shiba states and zero-bias anomalies in the hybrid normal-superconductor anderson model. Phys. Rev. B, 91:045441, Jan 2015. (Cited on pages 7 and 135.)

[50] Landry Bretheau, Joel I-Jan Wang, Riccardo Pisoni, Kenji Watanabe, Takashi Taniguchi, and Pablo Jarillo-Herrero. Tunnelling spectroscopy of andreev states in graphene. Nature Physics, 13:756, 2017. (Cited on pages 7 and 135.)

[51] D. Beckmann, H. B. Weber, and H. v. L¨ohneysen. Evidence for crossed an-dreev reflection in superconductor-ferromagnet hybrid structures. Phys. Rev. Lett., 93:197003, Nov 2004. (Cited on page 7.)

[52] S. Russo, M. Kroug, T. M. Klapwijk, and A. F. Morpurgo. Experimental observation of bias-dependent nonlocal andreev reflection. Phys. Rev. Lett., 95:027002, Jul 2005.

(Cited on page 7.)

[53] P. Cadden-Zimansky and V. Chandrasekhar. Nonlocal correlations in normal-metal superconducting systems. Phys. Rev. Lett., 97:237003, Dec 2006. (Cited on page 7.)

[54] D. Beckmann and H. v. L¨ohneysen. Negative four-terminal resistance as a probe of crossed andreev reflection. Applied Physics A, 89(3):603–607, Nov 2007. (Cited on page 7.)

[55] L. Hofstetter, S. Csonka, J. Nygard, and C. Sch¨onenberger. Cooper pair splitter realized in a two-quantum-dot y-junction. Nature, 461:960, Oct 2009. (Cited on pages 7, 96, 106, 117, 121, and 123.)

[56] L. G. Herrmann, F. Portier, P. Roche, A. Levy Yeyati, T. Kontos, and C. Strunk.

Carbon nanotubes as cooper-pair beam splitters. Phys. Rev. Lett., 104:026801, Jan 2010. (Cited on pages 7, 96, 106, 117, 121, and 123.)

[57] L. Hofstetter, S. Csonka, A. Baumgartner, G. F¨ul¨op, S. d’Hollosy, J. Nyg˚ard, and C. Sch¨onenberger. Finite-bias cooper pair splitting. Phys. Rev. Lett., 107:136801, Sep 2011. (Cited on pages 7, 96, 106, 117, and 121.)

Bibliography

[58] A. Das, Y. Ronen, M. Heiblum, D. Mahalu, A. V. Kretinin, and H. Shtrikman. High-efficiency cooper pair splitting demonstrated by two-particle conductance resonance and positive noise cross-correlation. Nat. Comm., 3:1165, Nov 2012. (Cited on pages 7, 96, 106, 117, and 121.)

[59] J. Wei and V. Chandrasekhar. Positive noise cross-correlation in hybrid supercon-ducting and normal-metal three-terminal devices. Nat. Phys., 6:494, May 2010.

(Cited on pages 7, 96, 117, and 121.)

[60] J. Schindele, A. Baumgartner, and C. Sch¨onenberger. Near-unity cooper pair split-ting efficiency. Phys. Rev. Lett., 109:157002, Oct 2012. (Cited on pages 7, 96, 106, 117, and 121.)

[61] N. J. Lambert, M. Edwards, A. A. Esmail, F. A. Pollock, S. D. Barrett, B. W. Lovett, and A. J. Ferguson. Experimental observation of the breaking and recombination of single cooper pairs. Phys. Rev. B, 90:140503, Oct 2014. (Cited on pages 7, 96, 117, and 121.)

[62] Z. B. Tan, D. Cox, T. Nieminen, P. L¨ahteenm¨aki, D. Golubev, G. B. Lesovik, and P. J. Hakonen. Cooper pair splitting by means of graphene quantum dots. Phys.

Rev. Lett., 114:096602, Mar 2015. (Cited on pages 7, 96, and 117.)

[63] Jay D. Sau and S. Das Sarma. Realizing a robust practical majorana chain in a quantum-dot-superconductor linear array. Nature Communications, 3:964, 2012.

(Cited on pages 7, 95, and 97.)

[64] YU LUH. Bound state in superconductors with paramagnetic impurities. Acta Physica Sinica, 21(1):75, 1965. (Cited on pages 7 and 40.)

[65] Hiroyuki Shiba. Classical spins in superconductors. Progress of Theoretical Physics, 40(3):435–451, 1968. (Cited on pages 7 and 40.)

[66] A. I. Rusinov. On the Theory of Gapless Superconductivity in Alloys Containing Paramagnetic Impurities. Soviet Journal of Experimental and Theoretical Physics, 29:1101, 1969. (Cited on pages 7 and 40.)

[67] A. V. Balatsky, I. Vekhter, and Jian-Xin Zhu. Impurity-induced states in conven-tional and unconvenconven-tional superconductors.Rev. Mod. Phys., 78:373–433, May 2006.

(Cited on pages 7, 40, and 41.)

[68] Ali Yazdani, B. A. Jones, C. P. Lutz, M. F. Crommie, and D. M. Eigler. Probing the local effects of magnetic impurities on superconductivity. Science, 275(5307):1767–

1770, 1997. (Cited on page 7.)

[69] Shuai-Hua Ji, Tong Zhang, Ying-Shuang Fu, Xi Chen, Xu-Cun Ma, Jia Li, Wen-Hui Duan, Jin-Feng Jia, and Qi-Kun Xue. High-resolution scanning tunneling spec-troscopy of magnetic impurity induced bound states in the superconducting gap of pb thin films. Phys. Rev. Lett., 100:226801, Jun 2008. (Cited on pages 7, 42, 96, 97, and 105.)

Bibliography [70] Nino Hatter, Benjamin W. Heinrich, Michael Ruby, Jose I. Pascual, and Katharina J.

Franke. Magnetic anisotropy in shiba bound states across a quantum phase transi-tion. Nature Communications, 6:8988, Nov 2015. Article. (Cited on page 7.) [71] Gerbold C. M´enard, S´ebastien Guissart, Christophe Brun, St´ephane Pons, Vasily S.

Stolyarov, Fran¸cois Debontridder, Matthieu V. Leclerc, Etienne Janod, Laurent Cario, Dimitri Roditchev, Pascal Simon, and Tristan Cren. Coherent long-range magnetic bound states in a superconductor. Nature Physics, 11:1013, Oct 2015.

(Cited on pages 7, 41, 42, 96, 97, 105, and 106.)

[72] Michael Ruby, Yang Peng, Felix von Oppen, Benjamin W. Heinrich, and Katharina J. Franke. Orbital picture of yu-shiba-rusinov multiplets. Phys. Rev.

Lett., 117:186801, Oct 2016. (Cited on page 7.)

[73] Deung-Jang Choi, Carmen Rubio-Verd´u, Joeri de Bruijckere, Miguel M. Ugeda, Nicol´as Lorente, and Jose Ignacio Pascual. Mapping the orbital structure of impurity bound states in a superconductor. Nature Communications, 8:15175 EP –, May 2017. Article. (Cited on pages 7, 42, 96, 97, and 105.)

[74] Shawulienu Kezilebieke, Marc Dvorak, Teemu Ojanen, and Liljeroth Peter. Coupled yu-shiba-rusinov states in molecular dimers on nbse2. arXiv:1701.03288v1. (Cited on page 7.)

[75] L. Cornils, A. Kamlapure, L. Zhou, S. Pradhan, A. A. Khajetoorians, J. Fransson, J. Wiebe, and R. Wiesendanger. Spin-resolved spectroscopy of the yu-shiba-rusinov states of individual atoms. Phys. Rev. Lett., 119:197002, Nov 2017. (Cited on page 7.)

[76] Gerbold C. M´enard, S´ebastien Guissart, Christophe Brun, Rapha¨el T. Leriche, Mircea Trif, Fran¸cois Debontridder, Dominique Demaille, Dimitri Roditchev, Pascal Simon, and Tristan Cren. Two-dimensional topological superconductivity in pb/-co/si(111). Nature Communications, 8(1):2040, 2017. (Cited on pages 7, 42, 96, 97, and 105.)

[77] La¨etitia Farinacci, Gelavizh Ahmadi, Ga¨el Reecht, Michael Ruby, Nils Bogdanoff, Olof Peters, Benjamin W. Heinrich, Felix von Oppen, and Katharina J. Franke.

Tuning the coupling of an individual magnetic impurity to a superconductor:

Quantum phase transition and transport. Phys. Rev. Lett., 121:196803, Nov 2018.

(Cited on page 7.)

[78] Benjamin W. Heinrich, Jose I. Pascual, and Katharina J. Franke. Single magnetic adsorbates on s-wave superconductors. Progress in Surface Science, 93(1):1 – 19, 2018. (Cited on pages 7 and 41.)

[79] Lucas Schneider, Manuel Steinbrecher, Levente R´ozsa, Juba Bouaziz, Kriszti´an Palot´as, Manuel dos Santos Dias, Samir Lounis, Jens Wiebe, and Wiesendanger Roland. Magnetism and in-gap states of 3d transition metal atoms on supercon-ducting re. arXiv:1903.10278. (Cited on page 7.)

Bibliography

[80] Stevan Nadj-Perge, Ilya K. Drozdov, Jian Li, Hua Chen, Sangjun Jeon, Jungpil Seo, Allan H. MacDonald, B. Andrei Bernevig, and Ali Yazdani. Observation of majorana fermions in ferromagnetic atomic chains on a superconductor. Science, 346(6209):602–607, 2014. (Cited on pages 7, 82, and 95.)

[81] Howon Kim, Alexandra Palacio-Morales, Thore Posske, Levente R´ozsa, Kriszti´an Palot´as, L´aszl´o Szunyogh, Michael Thorwart, and Roland Wiesendanger. Toward tailoring majorana bound states in artificially constructed magnetic atom chains on elemental superconductors. Science Advances, 4(5), 2018. (Cited on pages 7 and 95.)

[82] Manuel Steinbrecher, Roman Rausch, Khai Ton That, Jan Hermenau, Alexander A.

Khajetoorians, Michael Potthoff, Roland Wiesendanger, and Jens Wiebe.

Non-collinear spin states in bottom-up fabricated atomic chains. Nature Communications, 9(1):2853, 2018. (Cited on page 7.)

[83] A. Kamlapure, L. Cornils, J. Wiebe, and R. Wiesendanger. Engineering the spin couplings in atomically crafted spin chains on an elemental superconductor. Nature Communications, 9(1):3253, 2018. (Cited on page 7.)

[84] Zolt´an Scher¨ubl, Andr´as P´alyi, Gy¨orgy Frank, Istv´an Endre Luk´acs, Gergo F¨ul¨op, B´alint F¨ul¨op, Jesper Nyg˚ard, Kenji Watanabe, Takashi Taniguchi, Gergely Zar´and, and Szabolcs Csonka. Observation of spin-orbit coupling induced weyl points in a two-electron double quantum dot. Communications Physics, 2(1):108, 2019. (Cited on pages 8 and 63.)

[85] Zolt´an Scher¨ubl, Gerg ˝o F¨ul¨op, Morten H. Madsen, Jesper Nyg˚ard, and Szabolcs Csonka. Electrical tuning of rashba spin-orbit interaction in multigated inas nanowires. Phys. Rev. B, 94:035444, Jul 2016. (Cited on page 8.)

[86] Zolt´an Scher¨ubl, Gerg˝o F¨ul¨op, C˘at˘alin Pa¸scu Moca, J¨org Gramich, Andreas Baumgartner, P´eter Makk, Tosson Elalaily, Christian Sch¨onenberger, Jesper Nyg˚ard, Gergely Zar´and, and Szabolcs Csonka. Large spatial extension of the zero-energy yu-shiba-rusinov state in magnetic field, 2019. (Cited on pages 8, 104, and 106.)

[87] Zolt´an Scher¨ubl, Andr´as P´alyi, and Szabolcs Csonka. Probing individual split cooper pairs using the spin qubit toolkit. Phys. Rev. B, 89:205439, May 2014. (Cited on page 8.)

[88] Zolt´an Scher¨bl, Andr´as P´alyi, and Szabolcs Csonka. Transport signatures of an andreev molecule in a quantum dot–superconductor–quantum dot setup. Beilstein J. Nanotechnology, 10:363–378, Febr 2019. (Cited on page 8.)

[89] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen.

Spins in few-electron quantum dots. Rev. Mod. Phys., 79:1217–1265, Oct 2007.

(Cited on pages 11, 13, 20, 121, and 128.)

Bibliography [90] Gerg˝o F¨ul¨op. Cooper pair splitting in indium arsenide nanowires. PhD thesis, Budapest University of Technology and Economics, 2016. (Cited on pages 12, 54, and 55.)

[91] D. Goldhaber-Gordon, Hadas Shtrikman, D. Mahalu, David Abusch-Magder, U. Meirav, and M. A. Kastner. Kondo effect in a single-electron transistor. Nature, 391(6663):156–159, 1998. (Cited on page 16.)

[92] W. G. van der Wiel, S. De Franceschi, T. Fujisawa, J. M. Elzerman, S. Tarucha, and L. P. Kouwenhoven. The kondo effect in the unitary limit. Science, 289(5487):2105–

2108, 2000. (Cited on pages 16, 17, and 18.)

[93] Leo Kouwenhoven and Leonid Glazman. Revival of the kondo effect. Physics World, 14(1):33, 2001. (Cited on page 16.)

[94] Jun Kondo. Resistance Minimum in Dilute Magnetic Alloys. Progress of Theoretical Physics, 32(1):37–49, 07 1964. (Cited on page 16.)

[95] Kosaku Yamada. Perturbation Expansion for the Anderson Hamiltonian. II.

Progress of Theoretical Physics, 53(4):970–986, 04 1975. (Cited on page 18.) [96] W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha,

and L. P. Kouwenhoven. Electron transport through double quantum dots. Rev.

Mod. Phys., 75:1–22, Dec 2002. (Cited on pages 19 and 143.)

[97] S. Sasaki, S. De Franceschi, J. M. Elzerman, W. G. van der Wiel, M. Eto, S. Tarucha, and L. P. Kouwenhoven. Kondo effect in an integer-spin quantum dot. Nature, 405:764, Jun 2000. (Cited on pages 24 and 70.)

[98] Jesper Nyg˚ard, David Henry Cobden, and Poul Erik Lindelof. Kondo physics in carbon nanotubes. Nature, 408(6810):342–346, 2000. (Cited on pages 24 and 70.) [99] H. Jeong, A. M. Chang, and M. R. Melloch. The kondo effect in an artificial quantum

dot molecule. Science, 293(5538):2221–2223, 2001. (Cited on pages 24, 70, and 73.) [100] S. J. Chorley, M. R. Galpin, F. W. Jayatilaka, C. G. Smith, D. E. Logan, and M. R.

Buitelaar. Tunable kondo physics in a carbon nanotube double quantum dot. Phys.

Rev. Lett., 109:156804, Oct 2012. (Cited on pages 24, 70, and 73.)

[101] A. Spinelli, M. Gerrits, R. Toskovic, B. Bryant, M. Ternes, and A. F. Otte. Exploring the phase diagram of the two-impurity kondo problem. Nature Communications, 6:10046, Nov 2015. Article. (Cited on pages 24, 70, and 73.)

[102] Herbert Kroemer. The thomas precession factor in spin–orbit interaction.American Journal of Physics, 72(1):51–52, 2004. (Cited on page 25.)

[103] L.H. Thomas B.A. I. the kinematics of an electron with an axis. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 3(13):1–22, 1927. (Cited on page 25.)

Bibliography

[104] G. Dresselhaus. Spin-orbit coupling effects in zinc blende structures. Phys. Rev., 100:580–586, Oct 1955. (Cited on page 25.)

[105] Yu A Bychkov and E I Rashba. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. Journal of Physics C: Solid State Physics, 17(33):6039, 1984. (Cited on pages 25 and 90.)

[106] I. van Weperen, B. Tarasinski, D. Eeltink, V. S. Pribiag, S. R. Plissard, E. P.

A. M. Bakkers, L. P. Kouwenhoven, and M. Wimmer. Spin-orbit interaction in insb nanowires. Phys. Rev. B, 91:201413, May 2015. (Cited on pages 26, 82, 88, and 91.)

[107] K. Smit, L. Koenders, and W. M¨onch. Adsorption of chlorine and oxygen on cleaved inas(110) surfaces: Raman spectroscopy, photoemission spectroscopy, and kelvin probe measurements. Journal of Vacuum Science & Technology B, 7(4):888–893, 1989. (Cited on pages 26 and 89.)

[108] H. L¨uth. Solid Surfaces, Interfaces and Thin Films. Springer, Berlin Heidelberg, 1989. (Cited on pages 26 and 89.)

[109] S. Est´evez Hern´andez, M. Akabori, K. Sladek, Ch. Volk, S. Alagha, H. Hardtdegen, M. G. Pala, N. Demarina, D. Gr¨utzmacher, and Th. Sch¨apers. Spin-orbit coupling and phase coherence in inas nanowires. Phys. Rev. B, 82:235303, Dec 2010. (Cited on pages 26, 82, 88, and 89.)

[110] Igor ˇZuti´c, Jaroslav Fabian, and S. Das Sarma. Spintronics: Fundamentals and applications. Rev. Mod. Phys., 76:323–410, Apr 2004. (Cited on pages 26, 27, 82, and 90.)

[111] M.W. Wu, J.H. Jiang, and M.Q. Weng. Spin dynamics in semiconductors. Physics Reports, 493(2):61 – 236, 2010. (Cited on page 26.)

[112] L´en´ard Szolnoki, Bal´azs D´ora, Annam´aria Kiss, Jaroslav Fabian, and Ferenc Simon.

Intuitive approach to the unified theory of spin relaxation. Phys. Rev. B, 96:245123, Dec 2017. (Cited on pages 26 and 27.)

[113] R. J. Elliott. Theory of the effect of spin-orbit coupling on magnetic resonance in some semiconductors. Phys. Rev., 96:266–279, Oct 1954. (Cited on page 26.) [114] Y. Yafet. g factors and spin-lattice relaxation of conduction electrons**part of

the work connected with the preparation of this article, in particular the work on spin-lattice relaxation, was done while the author was at the westinghouse research laboratories, pittsburgh, pennsylvania. volume 14 of Solid State Physics, pages 1 – 98. Academic Press, 1963. (Cited on page 26.)

[115] M. I. D’yakonov and V. I. Perel. Spin relaxation of conduction electrons in noncen-trosymmetric semiconductors. Soviet Physics, 13(12):3023–3026, 1972. (Cited on page 26.)

Bibliography [116] P´eter Boross, Bal´azs D´ora, Annam´aria Kiss, and Ferenc Simon. A unified theory of spin-relaxation due to spin-orbit coupling in metals and semiconductors. Scientific Reports, 3:3233, Nov 2013. Article. (Cited on page 27.)

[117] Gernot Akemann, Jinho Baik, and Philippe Di Francesco. The Oxford Handbook of Random Matrix Theory (Oxford Handbooks). Oxford University Press, 2011. (Cited on page 28.)

[118] Sean Washburn and Richard A. Webb. Aharonov-bohm effect in normal metal quan-tum coherence and transport. Advances in Physics, 35(4):375–422, 1986. (Cited on page 28.)

[119] Zolt´an Scher¨ubl. Gyenge lokaliz´aci´o inas nano´aramk¨or¨okben. Master’s thesis, Budapest University of Technology and Economics, 2012. (Cited on pages 28 and 58.)

[120] G. Bergmann. Weak anti-localization—an experimental proof for the destructive interference of rotated spin 12. Solid State Communications, 42(11):815 – 817, 1982. (Cited on pages 28, 29, and 82.)

[121] Aronov A. G. Al’tshuler B. L. Magnetoresistance of thin films and of wires in a longitudinal magnetic field. JETP Lett., 33:499, 1981. (Cited on pages 29, 30, 82, and 84.)

[122] Sudip Chakravarty and Albert Schmid. Weak localization: The quasiclassical theory of electrons in a random potential. Physics Reports, 140(4):193 – 236, 1986. (Cited on pages 29, 82, and 84.)

[123] C. W. J. Beenakker and H. van Houten. Boundary scattering and weak localization of electrons in a magnetic field. Phys. Rev. B, 38:3232–3240, Aug 1988. (Cited on pages 29, 30, 82, and 84.)

[124] C. Kurdak, A. M. Chang, A. Chin, and T. Y. Chang. Quantum interference effects¸ and spin-orbit interaction in quasi-one-dimensional wires and rings. Phys. Rev. B, 46:6846–6856, Sep 1992. (Cited on pages 29, 30, 82, and 84.)

[125] Gerd Bergmann. Weak localization in thin films: a time-of-flight experiment with conduction electrons. Physics Reports, 107(1):1 – 58, 1984. (Cited on pages 29 and 82.)

[126] Dong Liang, Juan Du, and Xuan P. A. Gao. Anisotropic magnetoconductance of a inas nanowire: Angle-dependent suppression of one-dimensional weak localization.

Phys. Rev. B, 81:153304, Apr 2010. (Cited on pages 30, 82, 84, and 88.)

[127] J. Danon and Yu. V. Nazarov. Pauli spin blockade in the presence of strong spin-orbit coupling. Phys. Rev. B, 80:041301, Jul 2009. (Cited on pages 31 and 67.) [128] Alessandro Crippa, Romain Maurand, L´eo Bourdet, Dharmraj Kotekar-Patil,

Anthony Amisse, Xavier Jehl, Marc Sanquer, Romain Lavi´eville, Heorhii Bohuslavskyi, Louis Hutin, Sylvain Barraud, Maud Vinet, Yann-Michel Niquet, and

Bibliography

Silvano De Franceschi. Electrical spin driving byg-matrix modulation in spin-orbit qubits. Phys. Rev. Lett., 120:137702, Mar 2018. (Cited on page 31.)

[129] C. Gradl, R. Winkler, M. Kempf, J. Holler, D. Schuh, D. Bougeard, A. Hern´ andez-M´ınguez, K. Biermann, P. V. Santos, C. Sch¨uller, and T. Korn. Asymmetricgtensor in low-symmetry two-dimensional hole systems. Phys. Rev. X, 8:021068, Jun 2018.

(Cited on page 31.)

[130] Ivar Giaever and Karl Megerle. Study of superconductors by electron tunneling.

Phys. Rev., 122:1101–1111, May 1961. (Cited on pages 32 and 33.)

[131] D. H. Douglass. Direct experimental measurement of the magnetic field dependence of the superconducting energy gap of aluminum. Phys. Rev. Lett., 7:14–16, Jul 1961.

(Cited on pages 33 and 34.)

[132] D. H. Douglass. Magnetic field dependence of the superconducting energy gap.

Phys. Rev. Lett., 6:346–348, Apr 1961. (Cited on pages 33 and 34.)

[133] M. Hays, G. de Lange, K. Serniak, D. J. van Woerkom, D. Bouman, P. Krogstrup, J. Nyg˚ard, A. Geresdi, and M. H. Devoret. Direct microwave measurement of andreev-bound-state dynamics in a semiconductor-nanowire josephson junction.

Phys. Rev. Lett., 121:047001, Jul 2018. (Cited on page 39.)

[134] Yuli V. Nazarov and Yaroslav M. Blanter. Quantum Transport: Introduction to Nanoscience. Cambridge University Press, 2009. (Cited on page 40.)

[135] Gediminas Kirˇsanskas, Moshe Goldstein, Karsten Flensberg, Leonid I. Glazman, and Jens Paaske. Yu-shiba-rusinov states in phase-biased superconductor–quantum dot–superconductor junctions. Phys. Rev. B, 92:235422, Dec 2015. (Cited on page 42.)

[136] Ian Affleck, Jean-S´ebastien Caux, and Alexandre M. Zagoskin. Andreev scattering and josephson current in a one-dimensional electron liquid. Phys. Rev. B, 62:1433–

1445, Jul 2000. (Cited on pages 45 and 113.)

[137] B. Probst, F. Dom´ınguez, A. Schroer, A. Levy Yeyati, and P. Recher. Signatures of nonlocal cooper-pair transport and of a singlet-triplet transition in the critical current of a double-quantum-dot josephson junction. Phys. Rev. B, 94:155445, Oct 2016. (Cited on pages 45, 50, 113, and 135.)

[138] James Eldridge, Marco G. Pala, Michele Governale, and J¨urgen K¨onig.

Superconducting proximity effect in interacting double-dot systems. Phys. Rev.

B, 82:184507, Nov 2010. (Cited on pages 49, 121, 135, 138, 145, 149, and 151.) [139] Martin Leijnse and Karsten Flensberg. Coupling spin qubits via superconductors.

Phys. Rev. Lett., 111:060501, Aug 2013. (Cited on pages 50, 121, and 138.)

[140] Olivier Sauret, Denis Feinberg, and Thierry Martin. Quantum master equations for the superconductor–quantum dot entangler. Phys. Rev. B, 70:245313, Dec 2004.

(Cited on pages 50 and 135.)

Bibliography [141] Alexander Schroer and Patrik Recher. Detection of nonlocal spin entanglement by light emission from a superconductingp−n junction. Phys. Rev. B, 92:054514, Aug 2015. (Cited on pages 50 and 135.)

[142] Simon E. Nigg, Rakesh P. Tiwari, Stefan Walter, and Thomas L. Schmidt. Detecting nonlocal cooper pair entanglement by optical bell inequality violation. Phys. Rev.

B, 91:094516, Mar 2015. (Cited on pages 50 and 135.)

[143] Ehud Amitai, Rakesh P. Tiwari, Stefan Walter, Thomas L. Schmidt, and Simon E.

Nigg. Nonlocal quantum state engineering with the cooper pair splitter beyond the coulomb blockade regime. Phys. Rev. B, 93:075421, Feb 2016. (Cited on pages 50 and 135.)

[144] Nicklas Walldorf, Ciprian Padurariu, Antti-Pekka Jauho, and Christian Flindt.

Electron waiting times of a cooper pair splitter. Phys. Rev. Lett., 120:087701, Feb 2018. (Cited on pages 50 and 135.)

[145] Martin Aagesen, Erik Johnson, Claus B. Sorensen, Simon O. Mariager, Robert Feidenhans, Erdmann Spiecker, Jesper Nyg˚ard, and Paul Erik Lindelof. Molecular beam epitaxy growth of free-standing plane-parallel inas nanoplates. Nature Nanotechnology, 2:761–764, 2007. (Cited on page 51.)

[146] Morten Hannibal Madsen, Peter Krogstrup, Erik Johnson, Sriram Venkatesan, Erika M¨uhlbauer, Christina Scheu, Claus B. Sørensen, and Jesper Nyg˚ard. Experimental determination of adatom diffusion lengths for growth of inas nanowires. Journal of Crystal Growth, 364:16 – 22, 2013. (Cited on page 51.)

[147] Hadas Shtrikman, Ronit Popovitz-Biro, Andrey Kretinin, Lothar Houben, Moty Heiblum, Ma lgorzata Buka la, Marta Galicka, Ryszard Buczko, and Per la Kacman.

Method for suppression of stacking faults in wurtzite iiiv nanowires. Nano Letters, 9(4):1506–1510, 2009. PMID: 19253998. (Cited on page 51.)

[148] Landolt-B¨ornstein. Physics of group IV elements and III-V compounds, vol. 17.

Springer-Verlag, 1982. (Cited on page 51.)

[149] M. T. Bj¨ork, A. Fuhrer, A. E. Hansen, M. W. Larsson, L. E. Fr¨oberg, and L. Samuelson. Tunable effective g factor in inas nanowire quantum dots. Phys.

Rev. B, 72:201307, Nov 2005. (Cited on page 51.)

[150] A. E. Hansen, M. T. Bj¨ork, C. Fasth, C. Thelander, and L. Samuelson. Spin re-laxation in inas nanowires studied by tunable weak antilocalization. Phys. Rev. B, 71:205328, May 2005. (Cited on pages 51, 82, 86, 88, and 91.)

[151] Frank Pobell. Matter and Methods at Low Temperatures. Springer, 1996. (Cited on page 58.)

[152] M´at´e S¨ut˝o. Elektron-h˝om´ers´eklet m´er´ese szuprvezet˝o/szigetel˝o/norm´al h˝om´er˝ovel -bsc thesis, 2017. (Cited on page 58.)

[153] Conyers Herring. Accidental degeneracy in the energy bands of crystals.Phys. Rev., 52:365–373, Aug 1937. (Cited on page 60.)

Bibliography

[154] A. Turner and A. Vishwanath. Beyond band insulators: topology of semimetals and interacting phases. In M. Franz and L. Molenkamp, editors, Topological Insulators, chapter 11, pages 294–324. Elsevier, Oxford, 2013. (Cited on page 60.)

[155] N. P. Armitage, E. J. Mele, and Ashvin Vishwanath. Weyl and dirac semimetals in three-dimensional solids. Rev. Mod. Phys., 90:015001, Jan 2018. (Cited on page 60.)

[156] J. K. Asb´oth, L. Oroszl´any, and A. P´alyi. A Short Course on Topological Insulators.

Spinger, 2016. (Cited on pages 61 and 62.)

[157] J. Paaske, A. Rosch, and P. W¨olfle. Nonequilibrium transport through a kondo dot in a magnetic field: Perturbation theory.Phys. Rev. B, 69:155330, Apr 2004. (Cited on page 68.)

[158] D. Goldhaber-Gordon, J. G¨ores, M. A. Kastner, Hadas Shtrikman, D. Mahalu, and U. Meirav. From the kondo regime to the mixed-valence regime in a single-electron transistor. Phys. Rev. Lett., 81:5225–5228, Dec 1998. (Cited on pages 70 and 71.) [159] M. Grobis, I. G. Rau, R. M. Potok, H. Shtrikman, and D. Goldhaber-Gordon.

Universal scaling in nonequilibrium transport through a single channel kondo dot.

Phys. Rev. Lett., 100:246601, Jun 2008. (Cited on pages 70 and 71.)

[160] Gy¨orgy Frank. Topologikusan v´edett alap´allapoti degener´aci´ok egyszer˝u spinrendsz-erekben. Master’s thesis, Budapest University of Technology and Economics, 2019.

(Cited on page 72.)

[161] Gy¨orgy Frank, Zolt´an Scher¨ubl, Szabolcs Csonka, Gergely Zar´and, and Andr´as P´alyi. Magnetic degeneracy points in interacting two-spin systems: geometrical patterns, topological charge distributions, and their stability, 2019. (Cited on page 72.)

[162] Jakob Bork, Yong-hui Zhang, Lars Diekh¨oner, L´aszl´o Borda, Pascal Simon, Johann Kroha, Peter Wahl, and Klaus Kern. A tunable two-impurity kondo system in an atomic point contact. Nature Physics, 7(11):901–906, 2011. (Cited on page 73.) [163] Hagen M. Aurich. Carbon Nanotube Spin-Valve with Optimized Ferromagnetic

Contacts. PhD thesis, University of Basel, 2011. (Cited on page 79.)

[164] Simon Zihlmann. Spin and charge relaxation in graphene. PhD thesis, University of Basel, 2018. (Cited on page 79.)

[165] Marcell Baranyi. Argon plazm´aval ´atv´agott nanop´alc´an alapul´o nano´aramk¨or¨ok k´esz´ıt´ese ´es karakteriz´aci´oja - bsc thesis, 2018. (Cited on page 79.)

[166] K. Hamaya, M. Kitabatake, K. Shibata, M. Jung, M. Kawamura, K. Hirakawa, T. Machida, T. Taniyama, S. Ishida, and Y. Arakawa. Kondo effect in a semicon-ductor quantum dot coupled to ferromagnetic electrodes. Applied Physics Letters, 91(23):232105, 2007. (Cited on page 79.)

Bibliography [167] J. R. Hauptmann, J. Paaske, and P. E. Lindelof. Electric-field-controlled spin re-versal in a quantum dot with ferromagnetic contacts. Nature Physics, 4(5):373–376, 2008. (Cited on page 80.)

[168] L. Hofstetter, A. Geresdi, M. Aagesen, J. Nyg˚ard, C. Sch¨onenberger, and S. Csonka.

Ferromagnetic proximity effect in a ferromagnet–quantum-dot–superconductor de-vice. Phys. Rev. Lett., 104:246804, Jun 2010. (Cited on page 80.)

[169] J. Martinek, M. Sindel, L. Borda, J. Barna´s, R. Bulla, J. K¨onig, G. Sch¨on, S. Maekawa, and J. von Delft. Gate-controlled spin splitting in quantum dots with ferromagnetic leads in the kondo regime. Phys. Rev. B, 72:121302, Sep 2005. (Cited on page 81.)

[170] M. Sindel, L. Borda, J. Martinek, R. Bulla, J. K¨onig, G. Sch¨on, S. Maekawa, and J. von Delft. Kondo quantum dot coupled to ferromagnetic leads: Numerical renor-malization group study. Phys. Rev. B, 76:045321, Jul 2007. (Cited on page 81.) [171] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and

L. P. Kouwenhoven. Signatures of majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science, 336(6084):1003–1007, 2012. (Cited on pages 82 and 95.)

[172] Anindya Das, Yuval Ronen, Yonatan Most, Yuval Oreg, Moty Heiblum, and Hadas Shtrikman. Zero-bias peaks ans splitting in an al-inas nanowire topological super-conductor as a signature of majorana fermions. Nature Physics, 8:887–895, 2012.

(Cited on page 82.)

[173] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and H. Q. Xu. Anomalous zero-bias conductance peak in a nb–insb nanowire–nb hybrid device. Nano Letters, 12(12):6414–6419, 2012. PMID: 23181691. (Cited on page 82.)

[174] A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K. Jung, and X. Li. Anomalous modulation of a zero-bias peak in a hybrid nanowire-superconductor device. Phys.

Rev. Lett., 110:126406, Mar 2013. (Cited on page 82.)

[175] H. O. H. Churchill, V. Fatemi, K. Grove-Rasmussen, M. T. Deng, P. Caroff, H. Q.

Xu, and C. M. Marcus. Superconductor-nanowire devices from tunneling to the mul-tichannel regime: Zero-bias oscillations and magnetoconductance crossover. Phys.

Rev. B, 87:241401, Jun 2013. (Cited on page 82.)

[176] M. T. Deng, S. Vaitiekenas, E. B. Hansen, J. Danon, M. Leijnse, K. Flensberg, J. Nyg˚ard, P. Krogstrup, and C. M. Marcus. Majorana bound state in a coupled quantum-dot hybrid-nanowire system. Science, 354(6319):1557–1562, 2016. (Cited on pages 82 and 95.)

[177] Sajal Dhara, Hari S. Solanki, Vibhor Singh, Arjun Narayanan, Prajakta Chaudhari, Mahesh Gokhale, Arnab Bhattacharya, and Mandar M. Deshmukh.

Magnetotransport properties of individual inas nanowires. Phys. Rev. B, 79:121311, Mar 2009. (Cited on pages 82, 86, and 88.)