• Nem Talált Eredményt

A beavatkozók kiválasztásának szemléltetése

In document Gépjármű irányítás (Pldal 185-192)

4. Hibatűrő rendszer tervezése

5.3. A beavatkozók kiválasztásának szemléltetése

A kanyarodási manőver során a sebességkövetés és az oldalirányú elmozdulás minimalizálása nagy fékerőt igényel a kerekeken. A értéke csökken a nagyobb sebesség miatt. Ez azt jelenti, hogy a gyorsítás során a differenciális fékezést kell előnyben részesíteni, mivel az gyorsabb dinamikájú.

7.15. ábra - Beavatkozók megválasztásának hatása

Integrált irányítások tervezése

Irodalomjegyzék

[1] E. Abdellahi, D. Mehdi, and M. M'Saad. On the design of active suspension system by and mixed : An LMI approach. Proc. of the American Control Conference, 1:21--25, 1992.

[2] A. Alleyne and J.K. Hedrick. Nonlinear control of a quarter car active suspension. Proc. of the American Control Conference, 1:21--25, 1992.

[3] A. Alleyne and J.K. Hedrick. Nonlinear adaptive control of active suspensions. IEEE Transactions on Control Systems Technology, pages 94--101, 1995.

[4] A. Alleyne and R. Liu. A simplified approach to force control for electro-hydraulic systems. Control Engineering Practice, 8:1347--1356, 2000.

[5] A. A. Alonso, J. R. Banga, and I. Sanchez. Passive control design for distributed process systems: Theory and applications. AIChE Journal, 46:1593--1606, 2000.

[6] V. I. Arnold. Ordinary Differential Equations (in Russian). Nauka, Moscow, 1984.

[7] V.I. Arnold. Mathematical methods of classical mechanics. Springer-Verlag, 1988.

[8] Karl J. Aström and Björn Wittenmark. Computer Controlled Systems. Prentice Hall, New Jersey, 1990.

[9] G. Balas, J.C. Doyle, K. Glover, A. Packard, and R. Smith. -analysis and synthesis toolbox. The Mathworks Inc., 1993.

[10] G. Balas, I. Fialho, L. Lee, V. Nalbantoglu, A. Packard, W. Tan, G. Wolodkin, and F. Wu. Theory and application of linear parameter varying control techniques. Proc. of the American Control Conference, 1997.

[11] M. Basseville and I.V. Nikiforov. Detection of Abrupt Changes. Theory and Practice. Prentice Hall, London, 1993.

[12] G. Becker and A. Packard. Robust performance of linear parametrically varying systems using parametrically-dependent linear feedback. System Control Letters, 23:205--215, 1994.

Integrált irányítások tervezése

[14] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki. Diagnosis and fault-tolerant control. Springer, 2003.

[15] J. Bokor and G. Balas. Linear parameter varying systems: A geometric theory and applications. 16th IFAC World Congress, Prague, 2005.

[16] J. Bokor and P. Gáspár. Irányítástechnika járműdinamikai alkalmazásokkal. TypoTex Kiadó, 2008.

[17] C. Briat, O. Sename, and J.F. Lafay. Delay-scheduled state-feedback design for time-delay systems with time-varying delays: A LPV approach. Systems and Control Letters, 58:664--671, 2009.

[18] G.D. Buckner, K.T. Schuetze, and J.H. Beno. Active vehicle suspension control using intelligent feedback linearization. Proc. of the American Control Conference, pages 4014--4018, 2000.

[19] C. I. Byrnes and A. Isidori. A frequency domain philosophy for nonlinear systems. IEEE Conf. Dec.

Contr., 23:1569--1573, 1984.

[20] C. I. Byrnes and A. Isidori. Local stabilization of minimum-phase nonlinear systems. Syst. Contr. Lett., 11:9--17, 1988.

[21] C. I. Byrnes and A. Isidori. Asymptotic stabilization of minimum-phase nonlinear systems. IEEE Trans.

Aut. Contr., AC-36:1122--1137, 1991.

[22] C. I. Byrnes, A. Isidori, and J. C. Willems. Passivity, feedback equivalence and the global stabilization of minimum-phase nonlinear systems. IEEE Trans. Aut. Contr., AC-36:1228--1240, 1991.

[23] M. Canale, M. Milanese, C. Novara, and Z. Ahmad. Semi-active suspension control using fast model predictive techniques. IEEE, Control System Technology, 2006.

[24] Y.Y. Cao and K. Fang. Parameter-dependent Lyapunov function approach to stability analysis and design for polytopic systems with input saturation. Asian Journal of Control, 9(1):1--10, 2007.

[25] D. Cebon. Interaction between heavy vehicles and roads. SAE-SP 951, 1993.

[26] D.J. Cole. Fundamental issues in suspension design for heavy road vehicles. Vehicle System Dynamics, 35:319--360, 2001.

[27] D.A. Crolla. Active suspension control algorithms for a four-wheel vehicle model. International Journal of Vehicle Design, 13(2):144--158, 1992.

[28] F. J. D'Amato and D.E. Viassolo. Fuzzy control for active suspensions. Mechatronics, 10:897--920, 2000.

[29] B. de Jager. Multiobjective suspension control problem. Proc. of the Conference on Decision and Control, New Orleans, 4:3652--3657, 1995.

[30] H. Nijmeijer A. J. Van der Schaft. Nonlinear dynamical control systems. Springer, New York, Berlin, 1990.

[31] C. A. Desoer and M. Vidyasagar. Feed-back systems: Input-output properties. Academic Press, New York, 1975.

[32] S. Diop, J. W. Grizzle, and F. Chaplais. On numerical differentiation algorithms for nonlinear estimation.

In Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, pages 1133--1138.

2000.

[33] H. Du and N. Zhang. control of active vehicle suspensions with actuator time delay. Journal of Sound and Vibration, 301:236--252, 2007.

[34] I.J. Fialho and G.J. Balas. Design of nonlinear controllers for active vehicle suspensions using parameter-varying control synthesis. Vehicle System Dynamics, 33:351--370, 2000.

Integrált irányítások tervezése

[35] I.J. Fialho and G.J. Balas. Road adaptive active suspension design using linear parameter-varying gain-scheduling. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY,, 10(1):43--54, 2002.

[36] T. Fukao, A. Yamawaki, and N. Adachi. Adaptive control of partially known systems and application to active suspensions. Asian Journal of Control, 4(2):199--205, 2002.

[37] P. Gahinet and P. Apkarian. A linear matrix inequality approach to control. International Journal of Robust and Nonlinear Control, 4:421--448, 1994.

[38] P. Gahinet and P. Apkarian. Explicit controller formulas for LMI-based synthesis. Automatica, 32:1007--1014, 1996.

[39] P. Gaspar, Z. Szabo, and J. Bokor. Estimation of the friction coefficient for road vehicles. American Control Conference, 2005.

[40] T.D. Gillespie. Fundamentals of vehicle dynamics. Society of Automotive Engineers Inc., 1992.

[41] T. Gordon. An integrated strategy for the control of a full vehicle active suspension system. Vehicle System Dynamics, 25:229--242, 1996.

[42] T. Gordon, M. Howell, and F. Brandao. Integrated control methodologies for road vehicles. Vehicle System Dynamics, 40:157--190, 2003.

[43] V.E. Gough and G.R. Shearer. Front suspension and tyre wear. The Institution of Mechanical Engineers, Proceedings of the Automobile Division, pages 171--216, 1955-1956.

[44] E. Guglielmino, T. Sireteanu, C. W. Stammers., G. Ghita, and M.Giuclea. Semi-active suspension control.

Springer, 2008.

[45] P. Gáspár, Z. Szabó, and J. Bokor. Design of reconfigurable and fault-tolerant suspension systems based on lpv methods. Conference on Decision and Control, Cancun, Mexico, 2008.

[46] P. Gáspár, Z. Szabó, and J. Bokor. LPV design of reconfigurable and integrated control for road vehicles.

Proc. of the Conference on Decision and Control, Orlando, Fl, 2011.

[47] P. Gáspár, Z. Szabó, and J. Bokor. LPV design of fault-tolerant control for road vehicles. International Journal of Applied Mathematics and Computer Science, 22(1), 2012.

[48] P. Gáspár, I. Szászi, and J. Bokor. Active suspension design using linear parameter varying control.

International Journal of Vehicle Autonomous Systems, 1(2):206--221, 2003.

[49] P. Gáspár, I. Szászi, and J. Bokor. Active suspension design using the mixed synthesis. Vehicle System Dynamics, 40(4):193--228, 2003.

[50] P. Gáspár, I. Szászi, and J. Bokor. Design of robust controllers for active vehicle suspension using the mixed synthesis. Vehicle System Dynamics, 40:193--228, 2003.

[51] P. Gáspár, I. Szászi, and J. Bokor. Active suspension design using linear parameter varying control. IFAC Symposium on Advances in Automotive Control, Salerno, 2004.

[52] A. Hac. Adaptive control of vehicle suspension. Vehicle System Dynamics, 16:57--74, 1987.

[53] J.K. Hedrick and T. Butsuen. Invariant properties of automotive suspensions. Proc. of the Institution of Mechanical Engineers, 204:21--27, 1990.

[54] R. Hermann and A. J. Krener. Nonlinear controllability and observability. IEEE Trans. Aut. Cont., 22:728--740, 1977.

[55] D. Hill and P. Moylan. Connections between finite gain and asymptotic stability. IEEE Tr. Aut. Cont.,

AC-Integrált irányítások tervezése

[56] D. J. Hill and P. J. Moylan. Stability results for nonlinear feedback-systems. Automatica, 13:377--382, 1977.

[57] D. J. Hill and P. J. Moylan. Connections between finite-gain and asymptotic stability. IEEE Transactions On Automatic Control, 25:931--936, 1980.

[58] D. J. Hill and P. J. Moylan. General instability results for interconnected systems. Siam Journal On Control And Optimization, 21:256--279, 1983.

[59] D. Hrovat. A class of active LQG optimal actuators. Automatica, 18(1):117--119, 1982.

[60] D. Hrovat. Optimal active suspension structures for quarter car vehicle models. Automatica, 26(5):845--860, 1990.

[61] D. Hrovat. Survey of advanced suspension developments and related optimal control applications.

Automatica, 33:1781--1817, 1997.

[62] Rolf Isermann. Process Fault Diagnosis Based On Dynamic Models and Parameter Estimation Methods.

Prentice Hall, 1989.

[63] A. Isidori. Nonlinear Control Systems. Springer, Berlin, 1995.

[64] A. Isidori. Nonlinear control systems II. Springer, 1999.

[65] A. Isidori, A. J. Krener, C. Gori Giorgi, and S. Monaco. Nonlinear decoupling via feedback: a differential geometric approach. IEEE Trans. Aut. Contr., AC-26:331--345, 1981.

[66] T. Iwasaki and R.E. Skelton. All controllers for the general control problem: LMI existence conditions and state space formulas. Automatica, 30:1307--1317, 1994.

[67] T. Iwasaki and R.E. Skelton. Parametrization of all stabilizing controllers via quadratic Lyapunov functions. Journal of Optimization Theory and Applications, 85:291--307, 1995.

[68] Z. P. Jiang and D. J. Hill. Passivity and disturbance attenuation via output feedback for uncertain nonlinear systems. IEEE Transactions On Automatic Control, 43:992--997, 1998.

[69] Z. P. Jiang, D. J. Hill, and A. L. Fradkov. A passification approach to adaptive nonlinear stabilization.

Systems & Control Letters, 28:73--84, 1996.

[70] S.M. Joshi. Control of flexible space structures. Lecture Notes in Control and Information Sciences, Springer-Verlag, 1990.

[71] V. Jurdjevic and J. P. Quinn. Controllability and stability. J. Diff. Eqs., 28:381--389, 1978.

[72] V. Jurdjevic and G. Sallet. Controllability properties of affine systems. SIAM Journal On Control And Optimization, 22:501--508, 1984.

[73] T. Kailath. Linear Systems. Prentice Hall, Englewood Cliffs, 1980.

[74] N. Karlsson, M. Ricci, D. Hrovat, and M. Dahleh. A suboptimal nonlinear active suspension. Proc. of the American Control Conference, 3:4036--4040, 2000.

[75] L. Keviczky, R. Bars, J. Hetthéssy, and Cs. Bányász. Szabályozástechnika. Műegyetemi Kiadó, Budapest, 2006.

[76] U. Kiencke. A view of automotive control systems. IEEE Control Systems, 8, 1988.

[77] U. Kiencke and L. Nielsen. Automotive control systems. For engine, driveline and vehicle. Springer, 2000.

[78] A. J. Krener. Decomposition theory for differentiable systems. SIAM J. Control Optim., 15:813--829, 1977.

Integrált irányítások tervezése

[79] C. Langbort, R. S. Chandra, and R. D'Andrea. Distributed control design for systems interconnected over an arbitrary graph. IEEE Transactions on Automatic Control, 49(9):1502--1519, 2004.

[80] D.J. Leith and W.E. Leithead. Survey of gain-scheduling analysis and design. International Journal of Control, 73:1001--1025, 2000.

[81] A. Levant. Higher-order sliding modes, differentiation and output feedback control. International Journal of Control, 76(9/10):924--941, 2003.

[82] J.S. Lin and T. Kanellakopoulos. Nonlinear design of active suspensions. Proc. of the Conference on Decision and Control, New Orleans, 3:3567--3569, 1995.

[83] Y. Lin and W. Kortüm. Identification of system physical parameters for vehicle systems with nonlinear components. Vehicle System Dynamics, 20:354--365, 1991.

[84] L. Ljung. System identification: Theory for the user. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1987.

[85] L. Ljung and T. Söderström. Theory and Practice of Recursive Identification. The MIT Press, Massachusetts, 1983.

[86] X.Y. Lu and J.K. Hedrick. Impact of combined longitudinal, lateral and vertical control of autonomous road vehicle design. Int. J. Vehicle Autonomous Systems, 2(1/2):40--70, 2004.

[87] R. G. L. Luus. Application of iterative dynamic-programming to state constrained optimal-control problems. Hungarian Journal Of Industrial Chemistry, 19:245--254, 1991.

[88] Mohammad-Ali Massoumnia, George C. Verghese, and Alan S. Willsky. Failure detection and identification. IEEE Transactions on Automatic Control, 34:316--321, 1989.

[89] H.E. Merritt. Hydraulic control systems. Wiley and Sons, 1967.

[90] P. Michelberger, J. Bokor, A. Keresztes, and P. Várlaki. Design of active suspension system for road vehicles: An eigenstructure assignment approach. Proc. of the 23th Fisita Congress, pages 213--218, 1990.

[91] P. Michelberger, J. Bokor, and L. Palkovics. Robust design of active suspension system. International Journal of Vehicle Design, 14:145--165, 1994.

[92] R.H. Middleton and G.C. Goodwin. Digital Control and Estimation. A Unified Approach. Prentice Hall, London, 1990.

[93] M. Mitschke. Dynamik der kraftfahrzeuge. Springer Verlag, Berlin, 1995.

[94] A. Moran and M. Nagai. Performance analysis of vehicle active suspension with robust control. Proc.

of the International Conference on Motion and Vibration Control, Yokohama, pages 756--761, 1992.

[95] P. J. Moylan and D. J. Hill. Tests for stability and instability of interconnected systems. IEEE Transactions On Automatic Control, 24:574--575, 1979.

[96] P. J. Moylan, A. J. Vannelli, and M. J. Vidyasagar. On the stability and well-posedness of interconnected non- linear dynamical-systems. IEEE Transactions On Circuits And Systems, 27:1097--1101, 1980.

[97] Alan V. Oppenheim and Ronald W. Schafer. Digital Signal Processing. Prentice Hall, New Jersey, 1975.

[98] R. Ortega and M. W. Spong. Adaptive motion control of rigid robots: A tutorial. Automatica, 25:877--888, 1989.

[99] L. Palkovics and Fries. Intelligent electronic systems in commercial vehicles for enhanced traffic safety.

Vehicle System Dynamics, 35:227--289, 2001.

Integrált irányítások tervezése

[101] R. Rajamani. Vehicle dynamics and control. Springer, 2005.

[102] R. Rajamani and J.K. Hedrick. Adaptive observer for active automotive suspensons: theory and experiment. IEEE Trans. on Control Systems Technology, 3(1):86--93, 1995.

[103] W.J. Rough and J.S. Shamma. Research on gain scheduling. Automatica, 36:1401--1425, 2000.

[104] J. La Salle and S. Lefschetz. Stability by Liapunov's direct method. Academic Press, New York, London, 1961.

[105] Y.M. Sam and J.H. Shah. Modeling and control of the active suspension system using proportional integral sliding mode approach. Asian Journal of Control, 7(2):91--98, 2005.

[106] C. Scherer and S. Weiland. Linear Matrix Inequalities in Control. Lecture notes on DISC course, 2000.

[107] László Schnell. Jelek ées rendszerek Méréstechnikája. Tankönyvkiadó, Budapest, 1991.

[108] R. Sepulchre, M. Jankovic, and P. Kokotovic. Constructive Nonlinear Control. Springer-Verlag, 1997.

[109] R.S. Sharp and D.A. Crolla. Road vehicle suspension system design: A review. Vehicle System Dynamics, 16:167--192, 1987.

[110] S. L. Shishkin, R. L. Ortega, D. L. Hill, and A. L. Loria. On output feedback stabilization of Euler-Lagrange systems with nondissipative forces. Systems & Control Letters, 27:315--324, 1996.

[111] S. Skogestad and I. Postlethwaite. Multivariable Feedback Control. John Wiley & Sons, Chichester, New York, Toronto, Singapore, 1996.

[112] G. Stépán. Chaotic motion of wheels. Vehicle System Dynamics, 20:341--351, 1991.

[113] D.J. Stilwell and W.J. Rugh. Stability and l2 gain properties of LPV systems. Automatica, 38:1601--1606, 2002.

[114] M.R. Stone and A. Demetriou. Modeling and simulation of vehicle ride and handling performance. Proc.

of the 15th IEEE Int. Symposium on Intelligent Control, 2000.

[115] H. Sussmann and V. Jurdjevic. Controllability of nonlinear systems. J. Diff. Eqs., 12:95--116, 1972.

[116] I. Szászi, P. Gáspár, and J. Bokor. Nonlinear active suspension modelling using linear parameter varying approach. Proc. of the 10th Mediterranean Conference on Control and Automation, Lisbon, Portugal, 2002.

[117] A.G. Thompson and B.R. Davis. Optimal linear active suspensions with derivative constraints and output feedback control. Vehicle System Dynamics, 17:179--192, 1988.

[118] R. Tuschák. Szabályozástechnika. Műegyetemi KiadŰ, Budapest, 1994.

[119] A. J. van der Schaft. L2-Gain and Passivity Techniques in Nonlinear Control. Springer-Verlag, Berlin, 2000.

[120] L. K. Vasiljevic and H.K. Khalil. Differentiation with high-gain oservers the presence of measurement noise. In Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, CA, USA, pages 4717--4722. 2006.

[121] M. A. Vidyasagar. New directions of research in nonlinear-system theory. Proceedings Of The IEEE, 74:1060--1091, 1986.

[122] M. A. Vidyasagar, H. A. Schneider, and B. A. Francis. Algebraic and topological aspects of feedback stabilization. IEEE Transactions On Automatic Control, 27:880--894, 1982.

[123] M. A. Vidyasagar and A. A. Vannelli. New relationships between input-output and Lyapunov stability.

IEEE Transactions On Automatic Control, 27:481--483, 1982.

Integrált irányítások tervezése

[124] H. Wang, M. Krstic, and G. Bastin. Optimizing bioreactors by extremum seeking. International Journal of Adaptive Control and Signal Processing, 13:651--669, 1999.

[125] J. Wang, N. Chen, and G. Yin. Multi-agent based vehicle integrated control framework for coordination of active steering, driveline and braking systems. International Conference on Computer Science and Software Engineering, 2008.

[126] J. Wang and M. Xin. Multi-agent consensus algorithm with obstacle avoidance via optimal control approach. International Journal of Control, 83:2606--2621, 2010.

[127] A.S. Willsky. A survey of design methods for failure detection in dynamic systems. Automatica, 12:601--611, 1976.

[128] F. Wu. A generalized LPV system analysis and control synthesis framework. International Journal of Control, 74:745--759, 2001.

[129] F. Wu, X. H. Yang, A. Packard, and G. Becker. Induced -norm control for LPV systems with bounded parameter variation rates. International Journal of Nonlinear and Robust Control, 6:983--998, 1996.

[130] F. Wu, X.H. Yang, A. Packard, and G. Becker. Induced norm controller for LPV systems with bounded parameter variation rates. International Journal of Robust and Nonlinear Control, 6:983--988, 1996.

[131] M. Yamashita, K. Fujimori, K. Hayakawa, and H. Kimura. Application of control to active suspension system. Automatica, 30:1717--1729, 1994.

[132] MATLAB (V4.2c1) User's Guide, 1994.

[133] SIMULINK (V1.3c) User's Guide, 1994.

[134] Documentation for The Fault Detection and Isolation Matlab Toolbox, EU-Copernicus Project CT94-0237, 1998.

[135] Y. Zhang and A. Alleyne. A practical and effective approach to active suspension control. Proc. of the International Symposium on Advanced Vehicle Control, Hiroshima, 2002.

[136] K. Zhou, J.C. Doyle, and K. Glover. Robust and Optimal Control. Prentice Hall, 1996.

In document Gépjármű irányítás (Pldal 185-192)