• Nem Talált Eredményt

A fotopiroelektromos effektus (PPE) szinte még teljesen ismeretlen hazánkban, pedig a módszer alkalmazásával különböző élelmiszerek hőtani tulajdonságai közvetlenül meghatározhatók. Az élelmiszerek termikus tulajdonságainak megismerése fontos technológiai újításokat eredményezhet az élelmiszeripar területén. Mindezek mellett az élelmiszerhamisítások leleplezésében is fontos szerepet játszhat az elkövetkező időkben. A fotopiroelektromos vizsgálatok nagy előnye a hozzá hasonló mérési módszerekkel szemben a mérések viszonylagos egyszerűsége, gyorsasága és költséghatékonysága. A fotopiroelektromos módszernek többféle elrendezése ismert. Ilyenek a sztenderd és az inverz fotopiroelektromos módszer. A két elrendezést a minta és a szenzor elhelyezése különbözteti meg egymástól.

Mindkét konfiguráció esetében szaggatott fénynyalábot alkalmaznak.

Ez a szaggatott fény abszorbeálódik – inverz elrendezésnél a piroelektromos fólián, míg sztenderd elrendezésnél a mintán – és hőhullámokká alakul. A bekövetkező hőmérsékletváltozást a piroelektromos fólia detektálja. Ezáltal létrejön a fotopiroelektromos jel, amelyből relatív módszerrel a minta effuzivitás értéke közvetlenül kiszámítható.

Kísérleteinkben különböző élelmiszerek hőeffuzivitását határoztuk meg, amelyhez az inverz fotopiroelektromos elrendezést alkalmaztuk.

Ennek a módszernek előnye, hogy nem kell ismerni a mérendő minta vastagságát, ami megkönnyíti a mérés menetét. Első lépésként egy

laboratóriumi körülmények között működő rendszert kellett összeállítani, amivel a tervezett méréseket el tudtuk végezni.

A mérőrendszer összeállítását követően számos élelmiszer effuzivitás értékét mértük meg és a kapott értékeket összehasonlítottuk az irodalomban megtalálható értékekkel. Ezután az irodalomban eddig ismeretlen effuzivitású élelmiszerek effuzivitás értékét határoztuk meg.

Méréseink következő lépéseként különböző élelmiszerek effuzivitását határoztuk meg azok zsírtartalmának függvényében. A kapott eredmények jól mutatják, hogy az adott élelmiszer zsírtartalmának növelése lineárisan csökkenti az élelmiszer effuzivitás értékét és lehetőséget nyújt élelmiszerek zsírtartalmának meghatározására.

Méréseink kiterjedtek különböző élelmiszer manipulációk kimutatására is. Bor és méz minták esetében a leggyakrabban használt manipulációs technikákat (glicerin valamint izocukor hozzáadását) sikerült kimutatni. A kvalitatív eredmény mellett, analitikai összefüggéseket határoztunk meg a hamisítás mértékének kimutatására.

A különböző madárfajok tojásainak és tojás alkotóinak effuzivitás értékeit és meghatároztuk, valamint statisztikai módszerrel bebizonyítottuk ezek szignifikáns különbségét. Továbbá tojásporok rehidratálás mértékére tettünk javaslatokat a minták effuzivitás értékének egyezése alapján. A kapott eredményekből kiindulva az ipari alkalmazás megváltoztatása is javasolható. Mivel az effuzivitás értéke más módszerekkel közvetlenül nem mérhető ezért a PPE

módszer megjelenése előtt csak az adott fizikai paraméterek ismeretéből való számításos úton lehetett meghatározni. Alkalmazva az IPPE módszert, azaz közvetlenül határoztuk meg az effuzivitást, ami lehetőséget adott a számított eredményekkel való összehasonlításra. Az eredmények 10%-nál kisebb eltérést mutattak.

Irodalom

Abdel-Aal A.H. (2001): On the connection of thermal dilatation to protective layer formation in the fretting of metallic tribo-specimens.

Wear, 247 76–87.

Abdelalim A., Abdallah S., Easawi K., Negm S., Talaat H. (2010):

Thermal properties of hydrated cement pastes studied by the photoacoustic technique. Journal of Physics: Conference Series, 214 1–4.

Aguirre G., Arriola G., Gómez-Hernández J., López T., Picquart M., Aguilar D.H., Quintana P., Alvarado-Gil J.J. (2004): Thermal characterization during dehydration ofnitrifying and denitrifying microbiologicalmud encapsulated in silica gel. Thermochimica Acta, 421 211–215.

Akterian S.G., Fernandez P.S., Hendrickx M.E., Tobback P.P., Periago P.M., Martinez A. (1999): Risk analysis of the thermal sterilization process: Analysis of factors affecting the thermal resistance of microorganisms. International Journal of Food Microbiology, 47 51–57.

Al-asfoor F.K.M., Yunus W.M.M., Zakaria A. (2008): Thermal effusivity measurement of virgin coconut oil-methanol mixtures using photoacoustic technique. American Journal of Engineering and Applied Sciences, 1 200–203.

Aljaafari A.A., Ibrahim S.S., El-Brolossy T.A. (2011):

Thermophysical and electrical characterization of PVC–SWNT nanocomposites. Composites: Part A, 42 394–399.

Antczak E., Chauchois A., Defer D., Duthoit B. (2003):

Characterisation of the thermal effusivity of a partially saturated soil by the inverse method in the frequency domain. Applied Thermal Engineering, 23 1525–1536.

Antczak E., Defer D., Elaoami M., Chauchois A., Duthoit B. (2007):

Monitoring and thermal characterisation of cement matrix materials using non-destructive testing. NDT&E International, 40 428–438.

Arámbula-Villa G., Gutiérrez-Árias E., Moreno-Martínez E. (2007):

Thermal properties of maize masa and tortillas with different components from maize grains, and additives. Journal of Food Engineering, 80 55–60.

Ayachit H.N., Vasan S.T., Sannaningannavar F.M., Deshpande D.K.

(2007): Thermodynamic and acoustical parameters of some nematic liquid crystals. Journal of Molecular Liquids, 133 134–138.

Balderas-López J.A. (1999): Measurements of thermal effusivity of liquids using a conventional photoacoustic cell. Review of Scientific Instruments, 70 2069–2071.

Balderas-López J.A. (2003): Measurements of the thermal effusivity of transparent liquids by means of a photopyroelectric technique.

Revista Mexicana de Física, 49 353–357.

Barbano D.M., Clark J.L. (1990): Kjeldahl method for determination of total nitrogen content of milk: collaborative study. Association of Official Analytical Chemists, 73 849–859.

Bedek G., Salaün F., Martinkovska Z., Devaux E., Dupont D. (2011):

Evaluation of thermal and moisture management properties on knitted fabrics and comparison with a physiological model in warm conditions. Applied Ergonomics, 42 792–800.

Bicanic D., Chirtoc M., Dadarlat D., van Bovenkamp P., van Schayk H. (1992): Direct determination of thermophysical parameter Kρc in mayonnaise, shortening, and edible oil. Applied Spectroscopy, 46 602–605.

Bicanic D., Chirtoc M., Dadarlat D., Chirtoc I., Loon W., Bot G.

(1994): Measurement of the heat penetration coefficient (κρc)1/2 in margarine and cultured milk products by the inverse photopyroelectric technique. International Dairy Journal, 4 555–565.

Bicanic D., Dadarlat D., Gibkes J., Chirtoc M., Favier J.P., Gerkema E. (1995): The photopyroelectric approach to thermal characterization of foodstuffs and an optothermal accessory for obtaining their infrared spectra. Acta Chemiica Slovenica, 42 153–173.

Bolton D.J., McMahon C.M., Doherty A.M., Sheridan J.J., McDowell D.A., Blair I.S., Harrington D. (2000): Thermal inactivation of Listeria monocytogenes and Yersinia enterocolitica in minced beef under laboratory conditions and in sous-vide prepared minced and solid beef cooked in a commercial retort. Journal of Applied Microbiology, 88 626–632.

Buzágh A. (1951): Kolloidika: A kolloidkémia és kolloidfizika kézikönyve. I. kötet második kiadás. Akadémiai Kiadó Budapest.

Carpentier O., Defer D., Antczak E., Chauchois A., Duthoit B. (2008):

In situ thermal properties characterization using frequential methods.

Energy and Buildings, 40 300–307.

Chirtoc M., Bentefour E.H., Glorieux C., Thoen J. (2001):

Development of the front-detection photopyroelectric (FPPE) configuration for thermophysical study of glass-forming liquids.

Thermochimica Acta, 377 105–112.

Cogné C., Andrieu J., Laurent P., Besson A., Nocquet J. (2003):

Experimental data and modelling of thermal properties of ice creams.

Journal of Food Engineering, 58 331–341.

Coimbra R.S.J., Gabas L.A., Minim A.L., Garcia Rojas E.E., Telis N.R.V., Telis-Romero J. (2006): Density, heat capacity and thermal conductivity of liquid egg products. Journal of Food Engineering, 74 186–190.

Coquard R., Baillis D., Quenard D. (2006): Experimental and theoretical study of the hot-wire method applied to low-density thermal insulators. International Journal of Heat and Mass Transfer, 49 4511–4524.

Cornillon P., Andrieu J. (1995): Use of nuclear magnetic resonance to model thermophysical properties of frozen and unfrozen model food gels. Journal of Food Engineering, 25 1–19.

Coufal H., Hefferle P. (1985): Thermal diffusivity measurements of thin films with a pyroelectric calorimeter. Applied Physics A, 38 213–219.

Crocker W.P., Jenkins D.I., Provan A.L., Macdonald F.J., Rowland S.J., White J.C.D. (1955): A comparison of the Gerber and Röse Gottlieb methods for the determination of fat in milk. Journal of Dairy Research, 22 336–339.

Csapó J., Csapóné Kiss Zs. (2003): Élelmiszer-kémia. Mezőgazda kiadó. Budapest, pp. 162–166.

Dadarlat D., Chirtoc M., Neamtu C., Condea R.M., Bicanic D. (1990):

Inverse photopyroelectric detection method. Physical Status Solidi (A), 121 231–238.

Dadarlat D., Frandas A. (1993): Inverse photopyroelectric detection of phase transitions. Applied Physics A: Materiels Science & Processing, 57 235–238.

Dadarlat D., Bicanic D., Visser H., Mercuri F. (1995a):

Photopyroelectric method for determination of thermophysical parameters and detection of phase transitions in fatty acids and triglycerides. Part I: Principles, theory, and instrumentational concepts. Journal of the American Oil Chemists' Society, 72 273–279.

Dadarlat D., Bicanic D., Visser H., Mercuri F., Frandas A. (1995b):

Photopyroelectric determination of thermophysical parameters and detection of phase transitions in fatty acids and triglycerides. Part II:

Temperature dependence of thermophysical parameters. Journal of the American Oil Chemists' Society, 72 281–287.

Dadarlat D., Visser H., Bicanic D. (1995c): An improved inverse photopyroelectric cell for measurement of thermal effusivity:

application to fatty acids and triglycerides. Measurements Science and Technology, 6 1215–1219.

Dadarlat D., Gibkes J., Bicanic D., Pasca A. (1996): Photopyroelectric (PPE) measurement of thermal parameters in food products. Journal of Food Engineering, 30 155–162.

Dadarlat D., Riezebos K.J., Bicanic D., Van den Berg C., Gerkema E., Surducan V. (1998): Photopyroelectric study of thermal properties of diluted and concentrated sugar systems. Application to aqueous solutions of maltose, glukose and maltodextrine, and to honey of varying moisture content. Advances in Food Sciences (CTML), 20 27–

33.

Dadarlat D., Neamt C. (2006): Detection of molecular associations in liquids by photopyroelectric measurements of thermal effusivity.

Measurement Science and Technology, 17 3250–3254.

Dadarlat D., Neamt C. (2009): High performance photopyroelectric calorimetry of liquids. Acta Chimica Slovenica, 56 225–236.

Dadarlat D., Pop M.N. (2012): Self-consistent photopyroelectric calorimetry for liquids. International Journal of Thermal Sciences, 56 19-22.

Delenclos S., Chirtoc M., Sahraoui A.H., Kolinsky C., Buisine J.M.

(2002): Assessment of calibration procedures for accurate determination of thermal parameters of liquids and their temperature dependence using the photopyroelectric method. Review of Scientific Instruments, 73 2773–2781.

Delgado G.F., Rincón F.Z., Vela A.O. (2008): Coffee certification criterionusing the photoacoustic technique. Mikroelectronics Journal, 39 1331–1332.

Delgado-Vasallo O., Valdés A.C., Marín E., Lima J.A.P. (2000):

Optical and thermal properties of liquids measured by means of an open photoacoustic cell. Measurement Science and Technology, 11 412–417.

Donsi G., Ferrari G., Nigro R. (1996): Experimental determination of thermal conductivity of apple and potato at different moisture contents. Journal of Food Engineering, 30 263–268.

Douzane O., Roucoult J-M., Langlet T. (1999): Thermophysical property measurements of building materials in a periodic state.

International Journal of Heat and Mass Transfer, 42 3947–3958.

Eickenbusch H., Brunn P.O., Schumpe A. (1995): Mass transfer into viscous pseudoplastic liquid in large-diameter bubble columns.

Chemical Engineering and Processing, 34 479–485.

El-Brolossy T.A., Ibrahim S.S. (2010): Photoacoustic measurement of thermal properties of polystyrene metal oxide composites.

Thermochimica Acta, 509 46–49.

Evers J.M., Crawford R.A., Wightman L.M., Beutick G.J., Contarini G., Farrington D.S. (1999): An accurate and rapid method for the direct determination of fat in butter, butter-margarine blends and milk fat spreads. International Dairy Journal, 9 675–682.

Fang C., Campbell G.M. (2000): Effect of measurement method and moisture content on wheat kernel density measurement. Institution of Chemical Engineers, 78 179–186.

Fernández-Martín F., Monstes F. (1977): Thermal conductivity of creams. Journal of Dairy Research, 44 103–109.

Forcato D.O., Carmine M.P., Echeverría G.E., Pécora R.P., Kivatinitz S.C. (2005): Milk fat content measurement by a simple UV spectrophotometric method: An alternative screening method. Journal of Dairy Science, 88 478–481.

Gavrilă L., Fînaru A., Istrati L., Simion A.I., Ciocan M.E. (2005):

Influence of temperature, fat and water content on the thermal conductivity of some dairy products. Agroalimentary Processes and Technologies, 11 205–210.

Guimarães A.O., Machado F.A.L., da Silva E.C., Mansanares A.M.

(2012): Investigating thermal properties of biodisel/diesel mixtures using photopyroelectric technique. Thermochimica Acta, 527 125–130.

Gultekin D.H., Gore J.C. (2010): Measurement of specific heat and specific absorption rate by nuclear magnetic resonance.

Thermochimica Acta, 503–504 100–107.

Gultekin D.H., Gore J.C. (2011): Simultaneous measurements of thermal conductivity, thermal diffusivity and specific heat by nuclear magnetic resonance imaging. Thermochimica Acta, 519 96–102.

Hernández-Guevara A., Cruz-Orea A., Vigil O., Villavicencio H., Sánchez-Sinencio F. (2000): Thermal and optical characterization of Znx Cd1-x S embedded in a zeolite host. Materials Letters, 44 330–335.

Hmina N., Scudeller Y. (1998): Thermal interface resistance and subsurface effusivity of submicron metallic films on dielectric substrates: an experimental method for simultaneous determination.

International Journal of Heat and Mass Transfer, 41 2781–2798.

Hornero-Méndez D., Pérez-Gálvez A., Mínguez-Mosquera M.I.

(2001): A rapid spectrophotometric method for the determination of peroxide value in food lipids with high carotenoid content. Journal of the American Oil Chemists’ Society, 78 1151–1155.

Hu J., Sari O., Eicher S., Rija Rakotozanakajy A. (2009):

Determination of specific heat of milk at different fat content between 1 C and 59 C using micro DSC. Journal of Food Engineering, 90 395–399.

Huang L., Liu L.S. (2009): Simultaneous determination of thermal conductivity and thermal diffusivity of food and agricultural materials using a transient plane-source method. Journal of Food Engineering, 95 179–185.

Hunt R.E., Rock N.B. (1989): Detection of changes in leaf water content using near- and middle-infrared reflectances. Remote sensing of environment, 30 43–54.

Jury V., Monteau J-Y., Comiti J., Le-Bail A. (2007): Determination and prediction of thermal conductivity of frozen part baked bread during thawing and baking. Food Research International, 40 874–882.

Kaewmanee T., Benjakul S., Visessanguan W. (2009): Changes in chemical composition, physical properties and microstructure of duck egg as influenced by salting. Food Chemistry, 112 560–569.

Kantrong H., Tansakul A., Mittal G.S. (2009): Determination of thermal conductivity of shiitake mushroom. Asian Journal of Food and Agro-Industry, 2 17–23.

Kažys R., Rekuvienė R. (2011): Viscosity and density measurement methods for polymer melts. Ultragarsas, 66 20–25.

Kemp R.M., North M.F., Leath S.R. (2009): Component heat capacities for lamb, beef and pork at elevated temperatures. Journal of Food Engineering, 92 280–284.

Kijowski J.M., Mast M.G. (1988): Thermal properties of proteins in chicken broiler tissues. Journal of Science, 53 363–366.

Kleyn D.H., Lynch J.M., Barbano D.M., Bloom M.J., Mitchell M.W.

(2001): Determination of fat in raw and processed milks by the Gerber method: collaborative study. Journal of AOAC International, 84 1499–1508.

Koca N., Metin M. (2004): Textural, melting and sensory properties of low-fat fresh kashar cheeses produced by using fat replacers.

International Dairy Journal, 14 365–373.

Kostaropoulos A.E., Saravacod G.D. (1997): Thermal diffusivity of granular and porous foods at low moisture content. Journal of Food Engineering, 33 101–109.

Lindsay D.T., Lovatt S.J. (1994): Further enthalpy values of foods measured by an adiabatic calorimeter Journal of Food Engineering, 23 609–620.

Lopez C., Briard-Bion V., Camier B., Gassi J.Y. (2006): Milk fat thermal properties and solid fat content in emmental cheese: A differential scanning calorimetry study. Journal of Dairy Science, 89 2894–2910.

Li X., Tabil L.G., Oguocha I.N., Panigrahi S. (2008): Thermal diffusivity, thermal conductivity, and specific heat of flax fiber–HDPE biocomposites at processing temperatures. Composites Science and Technology, 68 1753–1758.

Longuemart S., Garcia Quiroz A., Dadarlat D., Hadj Sahraoui A., Kolinsky C., Marc Buisine J., Correa da Silva E., Mansanares A.M., Filip X., Neamtu C. (2002): An application of the front photopyroelectric technique for measuring the thermal effusivity of some foods. Instrumentation Science & Technology, 30 157–165.

Magyar Élelmiszer Könyv (2001): 1-3-2001/110 számú előírás.

Mandelis A., Care F., Chan K.K., Miranda L.C.M. (1985):

Photopyroelectric detection of phase transitions in solids. Applied Physics A, 38 117–122.

Marín E. (2007a). Teaching thermal physics by touching. Latin-American Journal of Physics Education, 2 15–17.

Marín E. (2007b): The role of thermal properties in periodic time-varying phenomena. European Journal of Physic, 28 429–445.

Marinelli M., Zammit Z., Mercuri F., Pizzoferrato R. (1992): High-resolution simultaneous photothermal measurements of thermal parameters at a phase transition with the photopyroelectric technique.

Journal of Applied Physics, 72 1096–1100.

Martan J., Semmar N., Leborgne C., Le Men E., Mathis J. (2005):

Thermal properties characterization of conductive thin films and surfaces by pulsed laser. Applied Surface Science, 247 57–63.

Martinsons C., Heuret M. (1998): Recent progress in the measurement of the thermal properties of hard coatings. Thin Solid Films, 317 455–457.

McBee L.E., Cotterill O.J. (1979): Ion exchange chromatography and electrophoresis of egg yolk. Journal of Food Science, 44 656–660.

Minakov A.A., Adamovsky S.A., Schick C. (2003): Advanced two channel ac calorimeter for simultaneous measurements of complex heat capacity and complex thermal conductivity. Thermochimica Acta, 403 89–103.

Mohsenin N.N. (1980): Thermal properties of foods and agricultural materials. Gordon and Breach science publishers. New York London Paris. pp. 2.

Murakami E.G. (1996): Recommended design parameters for thermal conductivity probes for nonfrozen food materials. Journal of Food Engineering, 21 109–123.

Murakami E.G., Sweat V.E., Sashtry S.K., Kolbe E. (1996): Analysis of various design and operating parameters of the thermal conductivity probe. Journal of Food Engineering, 30 209–225.

Nibu A.G., Vallabhan C.P.G., Nampoori V.P.N., George A.K., Radhakrishnan P. (2001): Photoacoustic evaluation of the thermal effusivity in the isotropic phase of certain comb-shaped polymers.

Journal of Physics: Condensed Matter, 13 365–371.

Noroozi M., Zakaria A., Moksin M.M., Wahab Z.A. (2012): An investigation on the thermal effusivity of nanofluids containing Al2O3

and CuO nanoparticles. International Journal of Molecular Sciences, 13 10350–10358.

Oakenfull D., Miyoshi E., Nishinari K., Scott A. (1999): Rheological and thermal properties of milk gels formed with κ-carrageen an. I.

Sodium caseinate Food Hydrocolloids, 13 525–533.

Obata Y., Takeuchi K., Furuta Y., Kanayama K. (2005): Research on better use of wood for sustainable development: Quantitative evaluation of good tactile warmth of wood. Energy, 30 1317–1328.

Pan Z., Singh P.R. (2001): Physical and thermal properties of ground beef during cooking. Food Science and Technology, 34 437–444.

Peralta-Rodríguez R.D., Rodrigo M.E., Kelly P. (1995): A calorimetric method to determine specific heats of prepared foods.

Journal of Food Engineering, 26 81–96.

Preethy Menon C., Philip J., Deepthy A., Bhat H.K. (2001): Thermal properties of glycine phosphite across ferroelectric phase transition: A photopyroelectric study. Materials Research Bulletin, 36 2407–2414.

Raykar S.V., Singh K.A. (2010a): Thermal and rheological behavior of acetylacetone stabilized ZnO nanofluids. Thermochimica Acta, 502 60–65.

Raykar V.S., Singh A.K. (2010b): Dispersibility dependence of thermal conductivity of carbon nanotube based nanofluids. Physics Letters A, 374 4618–4621.

Raykar S.V., Singh K.A. (2011): Photoacoustic method for measurement of thermal effusivity of Fe3O4 nanofluid. Journal of Thermodynamics, 2011 1–5.

Rémiens D. (Ed.), Pyroelectric materials and sensors, research Signpost, Kerala, India, 2007.

Rylatt D.B., Parish C.R. (1982): Protein determination on an automatic spectrophotometer. Analytical Biochemistry, 121 213–214.

Rodriguez P., Cruz G.G. (2003): Photoacoustic measurements of thermal diffusivity of amylase, amilopectin and starch. Journal of Food Engineering, 58 205–209.

Sablani S.S., Rahman S.M. (2003): Using neural networks to predict thermal conductivity of food as a function of moisture content, temperature and apparent porosity. Food Research International, 36 617–623.

Sajan D.G., George K.A., Radhakrishnan P., Nampoori V.P.N., Vallabhan C.P.G. (2007): Photoacoustic studies on thermal parameters of liquid crystal mixtures. Smart Materials and Structures, 16 1298–1301.

Schmilovitch Z., Hoffman A., Egozi H., Ben-Zvi R., Bernstein Z., Alchanatis V. (1999): Maturity determination of fresh dates by near infrared spectrometry. Journal of the Science of Food and Agriculture, 79 86–90.

Sankar N., Ramachandran K. (2003): On the thermal and optical properties of ZnSe and doped ZnSe crystals grown by PVT. Journal of Crystal Growth, 247 157–165.

Schwendel D., Hayashi T., Dahint R., Pertsin A., Grunze M., Steitz R., Schreiber F. (2003): Interaction of water with Self-assembled monolayers: Neutron reflectivity measurements of the water density in the interface region. Langmuir, 19 2284–2293.

Seiferlin K., Kömle N.I., Kargl G., Spohn T. (1996): Line heat-source measurements of the thermal conductivity of porous H20 ice, CO2 ice and mineral powders under space conditions. Planetary and Space Science, 44 691–704.

Soldner J., Stephan K. (1999): Measurement of thermal diffusivities with the photoacoustic effect. Chemical Engineering and Processing, 38 585–591.

Solórzano E., Reglero J.A., Rodríguez-Pérez M.A., Lehmhus D., Wichmann M., de Saja J.A. (2008): An experimental study on the thermal conductivity of aluminium foams by using the transient plane source method. International Journal of Heat and Mass Transfer, 51 6259–6267.

Szafner G., Dóka O. (2010): Különböző zsírtartalmú tejtermékek termikus effúzivitásának közvetlen meghatározása. Tejgazdaság, 1-2 31–37.

Szafner G., Dóka O. (2010b): Effect of fat content on thermal effusivity of food products. Review of Faculty of Engineering Analecta Technica Szegedinensia, 2-3 237–242.

Szafner G., Bicanic D., Dóka O. (2010): Élelmiszeripari termékek hőeffúzivitásának fotopiroelektromos meghatározása. Acta Agronomica Óváriensis, 52 11–20.

Szafner G., Bicanic D., Dóka O. (2011): Effect of fat content on the thermal effusivity of foods: An inverse photopyroelectric study.

International Journal of Food Properties, 14 666–674.

Szafner G., Bicanic D., Kovácsné Gaál K., Dóka O. (2012): Direct measurement of thermal effusivity of avian eggs and their constituents: A photopyroelectric study. Food technology and Biotechnology, 50 350–354.

Szakály S. (2001): Tejgazdaságtan. Dinasztia kiadó, Budapest pp. 68.

Sukhija P.S., Palmquist D.L. (1988): Rapid method for determination of total fatty acid content and composition of feedstuffs and feces.

Journal of Agricultural and Food Chemistry, 36 1202–1206.

Sweeney R.A., Rexroad P.R. (1987): Comparison of LECO FP-228

"nitrogen determinator" with AOAC copper catalyst Kjeldahl method for crude protein. Association of Official Analytical Chemists, 70 1028–1030.

Tabil L.G., Eliason M.V., Qi H. (2003): Thermal properties of sugarbeet roots. Journal of Sugarbeet Research, 40 209–228.

Tarko T., Tuszyński T. (2005): Evaluation of methods for determination of alcohol content in emulsion creams. Acta Scientiarum Polonorum Technologia Alimentaria, 4 73–81.

Tilly de A., Sousa J.M.M. (2009): On the role of the fluid effusivity in unsteady heat transfer between a boundary layer and a solid wall.

International Journal of Heat and Mass Transfer, 52 3869–3872.

Teunou E., Fitzpatrick J.J. (2000): Effect of storage time and consolidation on food powder flowability. Journal of Food Engineering, 43 97–101.

Thompson M., Owen L., Wilkinson K., Wood R., Damant A. (2002):

A comparison of the Kjeldahl and Dumas methods for the determination of protein in foods, using data from a proficiency testing scheme. Analyst, 127 1666–1668.

Topp C.G., Davis L.J., Annan P.A. (1980): Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resources Research, 16 574–582.

Wadsö L., Galindo F.G. (2009): Isothermal calorimetry for biological applications in food science and technology. Food Control, 20 956–961.

Walstra P., Wouters J.T.M., Geurts T.J. (2005): Physical properties of milk and milk products. Dairy Science and Technology Second Edition, pp. 756–759.

Wastiels L., Schifferstein H.N.J., Heylighen A., Wouters I. (2012):

Relating material experience to technical parameters: A case study on visual and tactile warmth perception of indoor wall materials. Building and Enviroment, 49 359–367.

Webb P. (2001): Volume and density determination for particle technologists. URL:

www.micromeritics.com/pdf/app_articles/density_determinations.pdf, pp. 2–16.

White J.W., Jr. Riethof M.L., Subers M.H., Kushnir I. (1962):

Composition of american honeys. Tech, Bull 1261, Agricultural Research Service, U.S. Department of Agriculture, Washington, DC.

Wiles P.G., Gray I.K., Kissling R.C. (1998): Routine analysis of proteins by Kjeldahl and Dumas methods: Review and inter laboratory study using dairy products. Journal of AOAC International, 81 620–632.

Willix J., Lovatt S.J., Amos N.D. (1998): Additional thermal conductivity values of foods measured by a guarded hot plate. Journal of Food Engineering, 37 159–174.

Yamasue E., Susa M., Fukuyama H., Nagata K. (2002): Thermal conductivities of silicon and germanium in solid and liquid states measured by non-stationary hot wire method with silica coated probe.

Journal of Crystal Growth, 234 121–131.

Zaidi H., Senouci A. (1999): Thermal tribological behaviour of composite carbon metal/steel brake. Applied Surface Science, 144–145 265–271.

Táblázatok és ábrák jegyzéke

Táblázatok

1. táblázat (29. oldal): Vízre, etilén-glikolra és glicerin mért fajlagos hőkapacitás értékek.

2. táblázat (47. oldal): Tojássárgája-, tojásfehérje és teljes tojáspor főbb beltartalmi paraméterei. (Capriovus Kft.

Specifikációja alapján)

3. táblázat (54. oldal): A különböző vízmennyiséggel készített

3. táblázat (54. oldal): A különböző vízmennyiséggel készített