• Nem Talált Eredményt

89

90

5 TÉZISPONTOK

A következőkben összefoglalom az egyes fejezetekhez tartozó téziseket:

1. Tézis

Az artériás vérnyomásgörbe Fourier-transzformációja során kapott első harmonikushoz tartozó amplitúdó értéke hipovolémia esetén kisebb, mint normovolém esetben (p<0,001), ezért alkalmas paraméter a hipovolémia észlelésére.

A tézishez kapcsolódó publikációk [186], [187]:

Viktor Szabo; Gabor Halasz, CSc; Tibor Gondos, MD, CSc: Detecting hypovolemia in postoperative patients using a discrete Fourier transform. Computers in Biology and Medicine (IF: 1.475) (DOI:10.1016/j.compbiomed.2015.01.018)

Szabó Viktor; Gondos Tibor; Halász Gábor: Matematikai statisztikai módszerek alkalmazása vérnyomásgrafikonok elemzésére. OGÉT 2014-XXII. Nemzetközi Gépészeti Találkozó. 2014. pp. 347-350.

2. Tézis

Összefüggő artériás érhálózat esetén a testmozgás véráramlásra gyakorolt mechanikai hatásának modellezése az áramlási egyenletek egyes artériaszakaszokhoz kötött, relatív koordinátarendszerben történő felírásával lehetséges. A gravitáció hatása mellett a mozgásból (gyorsulásból) származó tömegerő is szerepel. Ekkor a mozgásegyenlet minden egyes artériaszakaszra az alábbi alakban írható fel:

𝜕𝑤

𝜕𝑡 + 𝑤𝜕𝑣

𝜕𝑥+1 𝜌

𝜕𝑝

𝜕𝑥+ 𝑔𝑑ℎ

𝑑𝑥+ 𝑓𝑥+32𝜈

𝐷2 𝑤 = 0 (20)

ahol 𝑤 a vérrészecske érszakaszhoz képest mért relatív sebessége (m/s), 𝑝 a transzmurális nyomás (Pa), 𝜌 a vérsűrűség (kg/m3), 𝑔 a gravitációs gyorsulás (m/s2), ℎ az emelkedés mértéke (m), 𝑓𝑥 a tömegerő (m/s2), 𝜈 a kinematikai viszkozitás (m2/s), 𝐷 pedig az érszakasz aktuális átmérője (m).

A fenti összefüggésben szereplő 𝑓𝑥 egy virtuális erőtér, amelynek az érhálózat pontjaiban felvett értéke a megfelelő érszakasz mozgásából számítható ki.

A tézishez kapcsolódó publikáció [139]:

91

V. Szabó and G. Halász: 1-D blood flow modelling in a running human body, Computer Methods in Biomechanics and Biomedical Engineering, pp. 1–8, Apr. 2017.

3. Tézis

A 2. tézisben bemutatott modell segítségével az alábbi megállapítások tehetők:

 2 fordulat/másodperc sebességű biciklizés, ill. párhuzamos karkörzés esetén a mozgás által okozott mechanikai hatás a vérnyomásértékek ingadozását a mozgó végtagokban több mint kétszeresére növeli.

 12 km/h sebességgel történő futás közben az alsó lábszárak mozgása által okozott mechanikai hatás a vérnyomás átlagos értékét a lábban kevesebb, mint 5%-kal, viszont nyomásértékek ingadozását több, mint háromszorosára növeli.

 A szív rugalmas felfüggesztése miatt kialakuló szívmozgás 150-es pulzus esetén elhanyagolható (<1%) mechanikai hatást gyakorol az átlagos vérsebesség- és vérnyomásértékekre, így a koszorúerek áramlási problémái mozgásmentes helyzetben vizsgálhatók.

A tézishez kapcsolódó publikációk: [137], [138], [188]:

V. Szabó, G. Halász: Effect of Arm Circumduction on Arterial Blood Flow. First European Biomedical Engineering Conference for Young Investigators (ENCY2015) (ISBN:978-981-287-572-3)

Viktor Szabó, Gábor Halász: Effect Of Cycling Motion On Human Arterial Blood Flow.

Conference on Modelling Fluid Flow (CMFF’15), (ISBN:978-963-313-190-9)

Szabó Viktor; Halász Gábor: Szívmozgás hatása szívkoszorúerekben keringő vér áramlására. OGÉT 2016-XXIV. Nemzetközi Gépészeti Találkozó. 2016. pp. 398-401.

4. Tézis

Szívkoszorúérben a perifériát ill. az érszűkületet jelölő 𝑅𝑡𝑒𝑟𝑚 ill. 𝑅𝑠𝑡𝑒𝑛 lineáris ellenállások betegspecifikus értéke az alábbi módon határozható meg az ér geometriája, az átlagos térfogatáram (𝑄), valamint a proximális (𝑝𝑝𝑟𝑜𝑥) és disztális (𝑝𝑑𝑖𝑠𝑡) vérnyomáslefutás ismeretében:

1. A koszorúér perifériáján uralkodó átlagos szívkamraizom-nyomás értéke (a kamrafal átlagos radiális feszültsége) a 𝑝𝐿𝑉(𝑡) balkamra nyomás 44%-ával közelíthető.

92

2. A koszorúérben kialakuló teljes nyomásesés időátlaga az aortanyomás (proximális nyomás) és a szívizomnyomás átlagának különbségéből határozható meg:

Δ𝑝𝑡𝑜𝑡𝑎𝑙 = 𝑝̅̅̅̅̅̅̅ − 𝑝𝑝𝑟𝑜𝑥 ̅̅̅̅̅̅̅ = 𝑝𝑚𝑦𝑜 ̅̅̅̅̅̅̅ − 0,44 ⋅ 𝑝𝑝𝑟𝑜𝑥 ̅̅̅̅̅ 𝐿𝑉 (16) 3. A balkamra nyomása az időben változó elasztanciamodell segítségével számítható ki a szívkamra 𝐸𝐿𝑉 elasztanciájának és a bal kamra 𝑉0

“holttérfogattal” korrigált 𝑉𝐿𝑉 térfogatának szorzataként:

𝑝𝐿𝑉(𝑡) = 𝐸𝐿𝑉(𝑡) ⋅ (𝑉𝐿𝑉(𝑡) − 𝑉0) (17) 4. Az elasztancia értéke a Vandenberghe által publikált szinuszos közelítés

[185] segítségével számítható ki a proximális vérnyomásgörbe alapján.

5. A perifériás és az érszűkület ellenállásának összege a súrlódási nyomásveszteséggel csökkentett nyomásesés és az átlagos térfogatáram hányadosaként határozható meg:

𝑅𝑠𝑡𝑒𝑛+ 𝑅𝑡𝑒𝑟𝑚 = Δ𝑝𝑡𝑜𝑡𝑎𝑙− Δ𝑝𝑓𝑟𝑖𝑐

𝑄 , (18)

6. Az egyes ellenállások értéke egyszerű, néhány lépésben manuálisan is elvégezhető optimalizálás során választható meg úgy, hogy a szimuláció eredményeként kapott szűkület utáni vérnyomás és térfogatáram minél közelebb legyen a mért értékekhez.

A módszer segítségével olyan nyomáslefutások is számíthatók, amelyek vizsgálatára méréstechnikai vagy etikai korlátok miatt nincs lehetőség.

A tézishez kapcsolódó publikáció [189]:

V. Szabó, C. Jenei, and G. Halász, “Modelling Blood Pressure in Stenosed Coronary Arteries,” Period. Polytech. Mech. Eng., 2017.

93

6 IRODALOMJEGYZÉK

[1] A. Fonyó, Az orvosi élettan tankönyve. Medicina Könyvkiadó Zrt., 2011.

[2] J. Cseri, Élettani alapismeretek. Debreceni Egyetem, 2011.

[3] R. F. Rushmer, “Cardiovascular Dynamics.,” Acad. Med., vol. 36, no. 6, p. 742, 1961.

[4] C. K. Hofer and M. Cannesson, “Monitoring fluid responsiveness,” Acta Anaesthesiologica Taiwanica, vol. 49, no. 2. pp. 59–65, 2011.

[5] B. Folkow and E. Neil, Circulation. Oxford University Press, 1971.

[6] G. Surján, I. Borbás, S. Gődény, J. Juhász, P. Mihalicza, M. Pékli, G.

Kincses, and E. Varga, “Egészségtudományi Fogalomtár.” [Online].

Available: http://fogalomtar.eski.hu/. [Accessed: 15-Oct-2016].

[7] C. Pisitsak and K. R. Walley, “Does this patient have septic shock?,”

Intensive Care Medicine, Springer Berlin Heidelberg, pp. 1–4, 11-Jan-2016.

[8] Aneszteziológiai és Intenzív Terápiás Szakmai Kollégium, “Az Egészségügyi Minisztérium szakmai irányelve: Hipovolémia - A volumenstátusz diagnosztikája és a volumenterápia lehetőségei,”

Egészségügyi Közlöny, vol. LVI, no. 5, 2006.

[9] D. R. Spahn, V. Cerny, T. J. Coats, J. Duranteau, E. Fernández-Mondéjar, G. Gordini, P. F. Stahel, B. J. Hunt, R. Komadina, E.

Neugebauer, Y. Ozier, L. Riddez, A. Schultz, J.-L. Vincent, and R.

Rossaint, “Management of bleeding following major trauma: a European guideline.,” Crit. Care, vol. 11, no. 1, p. R17, 2007.

[10] R. Rossaint, B. Bouillon, V. Cerny, T. J. Coats, J. Duranteau, E.

Fernández-Mondéjar, B. J. Hunt, R. Komadina, G. Nardi, E. Neugebauer, Y. Ozier, L. Riddez, A. Schultz, P. F. Stahel, J.-L. Vincent, D. R. Spahn, and Task Force for Advanced Bleeding Care in Trauma, “Management of bleeding following major trauma: an updated European guideline.,” Crit.

Care, vol. 14, no. 2, p. R52, 2010.

[11] M. Cecconi, D. De Backer, M. Antonelli, R. Beale, J. Bakker, C. Hofer, R.

Jaeschke, A. Mebazaa, M. R. Pinsky, J. L. Teboul, J. L. Vincent, and A.

Rhodes, “Consensus on circulatory shock and hemodynamic monitoring.

Task force of the European Society of Intensive Care Medicine.,” Intensive Care Med., vol. 40, no. 12, pp. 1795–815, Nov. 2014.

[12] O. Mimoz, A. Rauss, N. Rekik, C. Brun-Buisson, F. Lemaire, and L.

Brochard, “Pulmonary artery catheterization in critically ill patients: a prospective analysis of outcome changes associated with catheter-prompted changes in therapy.,” Crit. Care Med., vol. 22, no. 4, pp. 573–

579, 1994.

[13] A. L. Holder, G. Clermont, and M. R. Pinsky, “Early Identification of Occult Bleeding Through Hypovolemia Detection,” in Annual Update in

94

Intensive Care and Emergency Medicine, vol. 2014, J.-L. Vincent, Ed.

Springer International Publishing, 2014, pp. 555–567.

[14] N. L. A. Holme, E. B. Rein, and M. Elstad, “Cardiac stroke volume variability measured non-invasively by three methods for detection of central hypovolemia in healthy humans.,” Eur. J. Appl. Physiol., pp. 1–

10, Sep. 2016.

[15] M. Wilson, D. P. Davis, and R. Coimbra, “Diagnosis and monitoring of hemorrhagic shock during the initial resuscitation of multiple trauma patients: A review,” J. Emerg. Med., vol. 24, no. 4, pp. 413–422, 2003.

[16] S. Mcgee, W. B. A. Iii, D. L. Simel, and S. Mcgee, “Is This Patient Hypovolemic?,” JAMA: The Journal of the American Medical Association, vol. 281, no. 11. pp. 1022–1029, 1999.

[17] K. J. Brasel, C. Guse, L. M. Gentilello, and R. Nirula, “Heart rate: is it truly a vital sign?,” J. Trauma, vol. 62, no. 4, pp. 812–817, 2007.

[18] S. A. Deane, P. L. Gaudry, P. Woods, D. Cass, M. J. Hollands, R. J. Cook, and C. Read, “The management of injuries--a review of deaths in hospital.,” Aust. N. Z. J. Surg., vol. 58, no. 6, pp. 463–469, 1988.

[19] A. Sauaia, F. A. Moore, E. E. Moore, K. S. Moser, R. Brennan, R. A. Read, and P. T. Pons, “Epidemiology of trauma deaths: a reassessment.,” J.

Trauma, vol. 38, no. 2, pp. 185–93, Feb. 1995.

[20] D. S. Kauvar, R. Lefering, and C. E. Wade, “Impact of hemorrhage on trauma outcome: an overview of epidemiology, clinical presentations, and therapeutic considerations.,” J. Trauma, vol. 60, no. 6 Suppl, pp.

S3–S11, 2006.

[21] T. Gondos, “Volumetriás hemodinamikai monitorozás,” Aneszteziológia és Intenzív Terápia, vol. 30, no. S1, pp. 2–11, 2000.

[22] G. Marx and T. W. L. Scheeren, “Advanced hemodynamic monitoring in the critically ill patient: Nice to have or need to treat?,” Journal of Clinical Monitoring and Computing, vol. 30, no. 5, pp. 1–2, Oct-2016.

[23] R. C. Pacagnella, J. P. Souza, J. Durocher, P. Perel, J. Blum, B. Winikoff, and A. M. Gülmezoglu, “A Systematic Review of the Relationship between Blood Loss and Clinical Signs,” PLoS ONE, vol. 8, no. 3. 2013.

[24] R. H. Birkhahn, T. J. Gaeta, D. Terry, J. J. Bove, and J. Tloczkowski,

“Shock index in diagnosing early acute hypovolemia,” Am. J. Emerg.

Med., vol. 23, no. 3, pp. 323–326, 2005.

[25] G. Bárdossy, G. Halász, and T. Gondos, “The diagnosis of hypovolemia using advanced statistical methods,” Comput. Biol. Med., vol. 41, no. 11, pp. 1022–1032, 2011.

[26] T. Gondos, Z. Marjanek, Z. Ulakcsai, Z. Szabó, L. Bogár, M. Károlyi, B.

Gartner, K. Kiss, A. Havas, and J. Futó, “Short-term effectiveness of different volume replacement therapies in postoperative hypovolaemic patients.,” Eur. J. Anaesthesiol., vol. 27, no. 9, pp. 794–800, 2010.

95

[27] P. E. Marik, “Hemodynamic parameters to guide fluid therapy,” Transfus.

Altern. Transfus. Med., vol. 11, no. 3, pp. 102–112, 2010.

[28] P. E. Marik, M. Baram, and B. Vahid, “Does central venous pressure predict fluid responsiveness? a systematic review of the literature and the tale of seven mares.,” Chest, vol. 134, no. 1, pp. 172–178, 2008.

[29] F. Michard and J. Teboul, “Predicting Fluid Responsiveness in ICU Patients,” Chest, vol. 121, no. 6. pp. 2000–2008, 2002.

[30] G. Mitchell, T. Hucker, R. Venn, H. Wakeling, L. Forni, J. Sartain, K.

Holte, N. E. Sharrock, and H. Kehlet, “Pathophysiology and clinical implications of perioperative fluid excess (multiple letters) [1],” Br. J.

Anaesth., vol. 90, no. 3, pp. 395–396, Oct. 2003.

[31] A. S. Androne, K. Hryniewicz, A. Hudaihed, D. Mancini, J. Lamanca, and S. D. Katz, “Relation of unrecognized hypervolemia in chronic heart failure to clinical status, hemodynamics, and patient outcomes,” Am. J.

Cardiol., vol. 93, no. 10, pp. 1254–1259, 2004.

[32] J. R. Prowle, C. J. Kirwan, and R. Bellomo, “Fluid management for the prevention and attenuation of acute kidney injury.,” Nat. Rev. Nephrol., vol. 10, no. 1, pp. 37–47, Nov. 2014.

[33] J. R. Prowle, J. E. Echeverri, E. V. Ligabo, C. Ronco, and R. Bellomo,

“Fluid balance and acute kidney injury.,” Nat. Rev. Nephrol., vol. 6, no.

2, pp. 107–115, Feb. 2010.

[34] Z. Tulassay, A belgyógyászat alapjai 1. Medicina Könyvkiadó Zrt., 2010.

[35] F. Michard, S. Alaya, V. Zarka, M. Bahloul, C. Richard, and J.-L. Teboul,

“Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock.,” Chest, vol. 124, no. 5, pp. 1900–1908, 2003.

[36] S. Wolf, A. Riess, J. F. Landscheidt, C. B. Lumenta, P. Friederich, and L.

Schürer, “Global end-diastolic volume acquired by transpulmonary thermodilution depends on age and gender in awake and spontaneously breathing patients.,” Crit. Care, vol. 13, no. 6, p. R202, 2009.

[37] S. G. Sakka, D. A. Reuter, and A. Perel, “The transpulmonary thermodilution technique,” Journal of Clinical Monitoring and Computing, vol. 26, no. 5. Springer Netherlands, pp. 347–353, 18-Oct-2012.

[38] M. Kastrup, A. Markewitz, C. Spies, M. Carl, J. Erb, J. Große, and U.

Schirmer, “Current practice of hemodynamic monitoring and vasopressor and inotropic therapy in post-operative cardiac surgery patients in Germany: Results from a postal survey,” Acta Anaesthesiol.

Scand., vol. 51, no. 3, pp. 347–358, Mar. 2007.

[39] L. a McIntyre, P. C. Hébert, D. Fergusson, D. J. Cook, and A. Aziz, “A survey of Canadian intensivists’ resuscitation practices in early septic shock.,” Crit. Care, vol. 11, no. 4, p. R74, 2007.

[40] P. E. Marik and R. Cavallazzi, “Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some

96

common sense.,” Crit. Care Med., vol. 41, no. 7, pp. 1774–81, 2013.

[41] A. Kumar, R. Anel, E. Bunnell, K. Habet, S. Zanotti, S. Marshall, A.

Neumann, A. Ali, M. Cheang, C. Kavinsky, and J. E. Parrillo, “Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects,” Crit. Care Med., vol. 32, no. 3, pp.

691–699, Mar. 2004.

[42] M. Gottlieb and B. Hunter, “Utility of Central Venous Pressure as a Predictor of Fluid Responsiveness,” Annals of Emergency Medicine, vol.

68, no. 1. pp. 114–116, 2016.

[43] E. P. Rivers, D. S. Ander, and D. Powell, “Central venous oxygen saturation monitoring in the critically ill patient.,” Curr. Opin. Crit. Care, vol. 7, no. 3, pp. 204–211, 2001.

[44] T. Tagami, S. Kushimoto, Y. Yamamoto, T. Atsumi, R. Tosa, K. Matsuda, R. Oyama, T. Kawaguchi, T. Masuno, H. Hirama, and H. Yokota,

“Validation of extravascular lung water measurement by single transpulmonary thermodilution: human autopsy study.,” Crit. Care, vol.

14, no. 5, p. R162, 2010.

[45] V. Eichhorn, M. S. Goepfert, C. Eulenburg, M. L. N. G. Malbrain, and D.

A. Reuter, “Comparison of values in critically ill patients for global end-diastolic volume and extravascular lung water measured by transcardiopulmonary thermodilution: A metaanalysis of the literature,”

Med. Intensiva, vol. 36, no. 7, pp. 467–474, 2012.

[46] J. Lemson, P. Merkus, and J. G. van der Hoeven, “Extravascular lung water index and global end-diastolic volume index should be corrected in children,” J. Crit. Care, vol. 26, no. 4, 2011.

[47] P. E. Marik, R. Cavallazzi, T. Vasu, and A. Hirani, “Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature.,”

Crit. Care Med., vol. 37, no. 9, pp. 2642–7, Sep. 2009.

[48] T. G. V. Cherpanath, B. F. Geerts, J. J. Maas, R. B. P. De Wilde, A. B.

Groeneveld, and J. R. Jansen, “Ventilatorinduced central venous pressure variation can predict fluid responsiveness in postoperative cardiac surgery patients,” Acta Anaesthesiol. Scand., Sep. 2016.

[49] J. Renner, O. Broch, P. Duetschke, J. Scheewe, J. Höcker, M. Moseby, O. Jung, and B. Bein, “Prediction of fluid responsiveness in infants and neonates undergoing congenital heart surgery,” Br. J. Anaesth., vol. 108, no. 1, pp. 108–115, Jan. 2012.

[50] X. Monnet, P. E. Marik, J.-L. Teboul, E. Rivers, B. Nguyen, S. Havstad, J. Ressler, A. Muzzin, B. Knoblich, J. Boyd, J. Forbes, T. Nakada, K.

Walley, J. Russell, J. Vincent, Y. Sakr, C. Sprung, V. Ranieri, K.

Reinhart, H. Gerlach, S. Micek, C. McEvoy, M. McKenzie, N. Hampton, J. Doherty, M. Kollef, C. Murphy, G. Schramm, J. Doherty, R. Reichley, O. Gajic, B. Afessa, A. Rosenberg, R. Dechert, P. Park, R. Bartlett, N.

97

Network, M. Jozwiak, S. Silva, R. Persichini, N. Anguel, D. Osman, C.

Richard, A. Kirkpatrick, D. Roberts, J. Waele, R. Jaeschke, M. Malbrain, B. Keulenaer, J. Bouchard, S. Soroko, G. Chertow, J. Himmelfarb, T.

Ikizler, E. Paganini, D. Payen, A. Pont, Y. Sakr, C. Spies, K. Reinhart, J.

Vincent, J. Benes, M. Kirov, V. Kuzkov, M. Lainscak, Z. Molnar, G. Voga, X. Monnet, M. Pinsky, F. Michard, J. Teboul, P. Bentzer, D. Griesdale, J.

Boyd, K. MacLean, D. Sirounis, N. Ayas, P. Marik, X. Monnet, J. Teboul, P. Marik, R. Cavallazzi, M. Cecconi, C. Hofer, J. Teboul, V. Pettila, E.

Wilkman, Z. Molnar, M. Cannesson, G. Pestel, C. Ricks, A. Hoeft, A.

Perel, T. Eskesen, M. Wetterslev, A. Perner, M. Legrand, C. Dupuis, C.

Simon, E. Gayat, J. Mateo, A. Lukaszewicz, P. Marik, F. Michard, S.

Boussat, D. Chemla, N. Anguel, A. Mercat, Y. Lecarpentier, X. Yang, B.

Du, P. Marik, R. Cavallazzi, T. Vasu, A. Hirani, M. Cannesson, Y.

Manach, C. Hofer, J. Goarin, J. Lehot, B. Vallet, X. Monnet, M. Dres, A.

Ferre, G. Teuff, M. Jozwiak, A. Bleibtreu, X. Monnet, M. Rienzo, D.

Osman, N. Anguel, C. Richard, M. Pinsky, C. Sandroni, F. Cavallaro, C.

Marano, C. Falcone, P. Santis, M. Antonelli, F. Compton, C. Hoffmann, W. Zidek, S. Schmidt, J. Schaefer, H. Chu, Y. Wang, Y. Sun, G. Wang, M. Biais, V. Cottenceau, L. Petit, F. Masson, J. Cochard, F. Sztark, X.

Monnet, L. Guerin, M. Jozwiak, A. Bataille, F. Julien, C. Richard, Y.

Song, Y. Kwak, J. Song, Y. Kim, J. Shim, M. M. Garcia, A. G. Cano, J. D.

Monrove, X. Monnet, A. Bleibtreu, A. Ferré, M. Dres, R. Gharbi, C.

Richard, Y. Liu, L. Wei, G. Li, X. Yu, G. Li, Y. Li, F. Diaz, B. Erranz, A.

Donoso, T. Salomon, P. Cruces, S. Duperret, F. Lhuillier, V. Piriou, E.

Vivier, O. Metton, P. Branche, D. Jacques, K. Bendjelid, S. Duperret, J.

Colling, V. Piriou, J. Viale, Y. Mahjoub, C. Pila, A. Friggeri, E. Zogheib, E. Lobjoie, F. Tinturier, S. Preau, F. Dewavrin, V. Demaeght, A. Chiche, B. Voisin, F. Minacori, M. Fischer, F. Dechanet, D. Cheyron, J. Gerard, J. Hanouz, J. Fellahi, M. Feissel, F. Michard, J. Faller, J. Teboul, E.

Machare-Delgado, M. Decaro, P. Marik, Z. Zhang, X. Xu, S. Ye, L. Xu, H.

Charbonneau, B. Riu, M. Faron, A. Mari, M. Kurrek, J. Ruiz, P. Juhl-Olsen, S. Vistisen, L. Christiansen, L. Rasmussen, C. Frederiksen, E.

Sloth, K. Corl, A. Napoli, F. Gardiner, M. Lanspa, C. Grissom, E.

Hirshberg, J. Jones, S. Brown, N. Airapetian, J. Maizel, O. Alyamani, Y.

Mahjoub, E. Lorne, M. Levrard, F. Guarracino, B. Ferro, F. Forfori, P.

Bertini, L. Magliacano, M. Pinsky, T. Boulain, J. Achard, J. Teboul, C.

Richard, D. Perrotin, G. Ginies, X. Monnet, M. Rienzo, D. Osman, N.

Anguel, C. Richard, M. Pinsky, J. Jabot, J. Teboul, C. Richard, X.

Monnet, L. Guerin, J. Teboul, R. Persichini, M. Dres, C. Richard, X.

Monnet, T. Cherpanath, A. Hirsch, B. Geerts, W. Lagrand, M. Leeflang, M. Schultz, M. Cecconi, D. Backer, M. Antonelli, R. Beale, J. Bakker, C.

Hofer, X. Monnet, J. Teboul, X. Monnet, J. Teboul, P. Marik, A. Levitov, A. Young, L. Andrews, S. Preau, F. Saulnier, F. Dewavrin, A. Durocher, J. Chagnon, E. Kupersztych-Hagege, J. Teboul, A. Artigas, A. Talbot, C.

Sabatier, C. Richard, J. Fellahi, M. Fischer, A. Dalbera, M. Massetti, J.

Gerard, J. Hanouz, G. Keller, E. Cassar, O. Desebbe, J. Lehot, M.

Cannesson, A. Young, P. Marik, S. Sibole, D. Grooms, A. Levitov, X.

Monnet, A. Bataille, E. Magalhaes, J. Barrois, M. Corre, C. Gosset, M. M.

Garcia, A. G. Cano, M. G. Romero, R. M. Pintado, V. P. Madueno, J. D.

98

Monrove, W. Xiao-Ting, Z. Hua, L. Da-Wei, Z. Hong-Min, H. Huai-Wu, L.

Yun, Y. Mahjoub, J. Touzeau, N. Airapetian, E. Lorne, M. Hijazi, E.

Zogheib, M. Malbrain, D. Reuter, X. Monnet, D. Osman, C. Ridel, B.

Lamia, C. Richard, J. Teboul, S. Silva, M. Jozwiak, J. Teboul, R.

Persichini, C. Richard, X. Monnet, G. Tusman, I. Groisman, G. Maidana, A. Scandurra, J. Arca, S. Bohm, S. Preisman, S. Kogan, H. Berkenstadt, A. Perel, C. Trepte, V. Eichhorn, S. Haas, K. Stahl, F. Schmid, R.

Nitzschke, J. Vincent, M. Weil, X. Monnet, A. Letierce, O. Hamzaoui, D.

Chemla, N. Anguel, D. Osman, C. Pierrakos, D. Velissaris, S. Scolletta, S. Heenen, D. Backer, J. Vincent, L. Muller, M. Toumi, P. Bousquet, B.

Riu-Poulenc, G. Louart, D. Candela, Y. Wu, S. Zhou, Z. Zhou, B. Liu, A.

Lira, M. Pinsky, M. Jozwiak, J. Teboul, X. Monnet, J. Teboul, X. Monnet, X. Monnet, F. Cipriani, L. Camous, P. Sentenac, M. Dres, and E.

Krastinova, “Prediction of fluid responsiveness: an update,” Ann.

Intensive Care, vol. 6, no. 1, p. 111, Dec. 2016.

[51] P. Vignon, X. Repessé, E. Bégot, J. Léger, C. Jacob, K. Bouferrache, M.

Slama, G. Prat, and A. Vieillard-Baron, “Comparison of echocardiographic indices used to predict fluid responsiveness in ventilated patients,” AJRCCM Artic. Press, pp. 201604–844, Sep. 2016.

[52] F. Cavallaro, C. Sandroni, C. Marano, G. La Torre, A. Mannocci, C. De Waure, G. Bello, R. Maviglia, and M. Antonelli, “Diagnostic accuracy of passive leg raising for prediction of fluid responsiveness in adults:

Systematic review and meta-analysis of clinical studies,” in Applied Physiology in Intensive Care Medicine 1: Physiological Notes - Technical Notes - Seminal Studies in Intensive Care, Third Edition, vol. 36, no. 9, 2012, pp. 225–233.

[53] X. Monnet, F. Cipriani, L. Camous, P. Sentenac, M. Dres, E. Krastinova, N. Anguel, C. Richard, and J.-L. Teboul, “The passive leg raising test to guide fluid removal in critically ill patients.,” Ann. Intensive Care, vol. 6, no. 1, p. 46, Dec. 2016.

[54] T. G. V Cherpanath, B. F. Geerts, W. K. Lagrand, M. J. Schultz, and A.

B. J. Groeneveld, “Basic concepts of fluid responsiveness.,” Neth. Heart J., vol. 21, no. 12, pp. 530–6, Dec. 2013.

[55] A. A. Alian, N. J. Galante, N. S. Stachenfeld, D. G. Silverman, and K. H.

Shelley, “Impact of central hypovolemia on photoplethysmographic waveform parameters in healthy volunteers part 2: Frequency domain analysis,” J. Clin. Monit. Comput., vol. 25, no. 6, pp. 387–396, 2011.

[56] D. H. Brooks, J. Mandel, I. Calalang, and J. H. Philip, “Detection of hypovolemia using short-time Fourier transform analysis of S1 heart sounds,” in Proceedings of the IEEE 21st Annual Northeast Bioengineering Conference, 1995, pp. 116–117.

[57] I. N. Bronstejn, K. A. Szemengyajev, G. Musiol, and H. Mühlig, Matematikai kézikönyv, 8th ed. Budapest: Typotex, 2006.

[58] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality (complete samples),” Biometrika, vol. 52, no. 3–4, pp. 591–611, Dec.

99 1965.

[59] J. Fidy and G. Makara, Biostatisztika. InforMed 2002 Kft., 2005.

[60] K. Hajian-Tilaki, “Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation.,” Casp. J. Intern. Med., vol. 4, no. 2, pp. 627–35, Jan. 2013.

[61] M. Willemet and J. Alastruey, “Arterial pressure and flow wave analysis using time-domain 1-D hemodynamics.,” Ann. Biomed. Eng., vol. 43, no.

1, pp. 190–206, Jan. 2015.

[62] N. Xiao, J. D. Humphrey, and C. A. Figueroa, “Multi-scale computational model of three-dimensional hemodynamics within a deformable full-body arterial network,” J. Comput. Phys., vol. 244, pp. 22–40, 2013.

[63] L. Grinberg, E. Cheever, T. Anor, J. R. Madsen, and G. E. Karniadakis,

“Modeling blood flow circulation in intracranial arterial networks: a comparative 3D/1D simulation study.,” Ann. Biomed. Eng., vol. 39, no.

1, pp. 297–309, Jan. 2011.

[64] J. G. Bradley and K. A. Davis, “Orthostatic Hypotension,” American Family Physician, vol. 68, no. 12. pp. 2393–2398, 15-Dec-2003.

[65] T. K. Deepa, L. S. Binu, and A. K. Sukesh, “Modelling Blood Flow and Analysis of Atherosclerotic Plaque Rupture under G-Force,” 2009 3rd Int.

Conf. Bioinforma. Biomed. Eng., pp. 1–4, Jun. 2009.

[66] J. Griffin, Handbook of Human Vibration. Elsevier Science, 2012.

[67] K. C. Ro and H. S. Ryou, “Numerical study on turbulent blood flow in a stenosed artery bifurcation under periodic body acceleration using a modified k-ε model,” Korea Aust. Rheol. J., vol. 22, no. 2, pp. 129–139, 2010.

[68] J. P. Mynard and P. Nithiarasu, “A 1D arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (LCG) method,” Commun.

Numer. Methods Eng., vol. 24, no. 5, pp. 367–417, Mar. 2008.

[69] D. G. Edwards, R. S. Schofield, P. M. Magyari, W. W. Nichols, and R. W.

Braith, “Effect of exercise training on central aortic pressure wave reflection in coronary artery disease.,” Am. J. Hypertens., vol. 17, no. 6, pp. 540–3, Jun. 2004.

[70] R. Hambrecht, A. Wolf, S. Gielen, A. Linke, J. Hofer, S. Erbs, N. Schoene, and G. Schuler, “Effect of exercise on coronary endothelial function in patients with coronary artery disease.,” N. Engl. J. Med., vol. 342, no. 7, pp. 454–60, Feb. 2000.

[71] T. Lyngeraa, L. Pedersen, B. Belhage, L. Rasmussenn, J. van Lieshout, and F. Pott, “Middle cerebral artery blood velocity during running,”

Scand. J. Med. Sci. Sports, vol. 23, no. 1, pp. e32-7, Feb. 2013.

[72] K. S. Burrowes, P. J. Hunter, and M. H. Tawhai, “Investigation of the

100

relative effects of vascular branching structure and gravity on pulmonary arterial blood flow heterogeneity via an image-based computational model,” Acad. Radiol., vol. 12, no. 11, pp. 1464–1474, Nov. 2005.

[73] K. S. Burrowes and M. H. Tawhai, “Computational predictions of pulmonary blood flow gradients: Gravity versus structure,” Respir.

Physiol. Neurobiol., vol. 154, no. 3, pp. 515–523, 2006.

[74] K. van Heusden, J. Gisolf, W. J. Stok, S. Dijkstra, and J. M. Karemaker,

“Mathematical modeling of gravitational effects on the circulation:

importance of the time course of venous pooling and blood volume changes in the lungs.,” Am. J. Physiol. Heart Circ. Physiol., vol. 291, no.

5, pp. H2152–H2165, Nov. 2006.

[75] M. S. Olufsen, B. Smith, J. Mehlsen, and J. Ottesen, “The impact of gravity during head-up tilt,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol.

Soc. EMBS, vol. 2011, pp. 2399–2402, 2011.

[76] C. S. Kim, C. Kiris, D. Kwak, and T. David, “Numerical simulation of local blood flow in the carotid and cerebral arteries under altered gravity.,” J.

Biomech. Eng., vol. 128, no. 2, pp. 194–202, Apr. 2006.

[77] P. C. Johnson, “Review of previous studies and current theories of autoregulation.,” Circ. Res., vol. 15, p. SUPPL:2-9, Aug. 1964.

[78] B. P. McGrath, “Ambulatory blood pressure monitoring.,” Med. J. Aust., vol. 176, no. 12, pp. 588–92, Jun. 2002.

[79] D. Horiguchi, H. Naito, and K. Sasaki, “Motion artifact compensation for wristwatch type photoplethysmography sensor,” in Key Engineering Materials, 2012, vol. 523–524, pp. 639–644.

[80] S. Galichet, S. Charbonnier, G. Manris, and J.-P. Siche, “A fuzzy linguistic model for ambulatory systolic blood pressure variation prediction,” Fuzzy Syst. 2000. FUZZ IEEE 2000. Ninth IEEE Int. Conf., vol.

1, pp. 522–527, 2002.

[81] P. Palatini, L. Mos, P. Mormino, A. Di Marco, L. Munari, G. Fazio, G.

Giuliano, A. C. Pessina, and C. Dal Palu, “Blood pressure changes during running in humans: the ‘beat’ phenomenon.,” J. Appl. Physiol., vol. 67, no. 1, pp. 52–9, 1989.

[82] L. B. Rowell, G. L. Brengelmann, J. R. Blackmon, R. a Bruce, and J. a Murray, “Disparities between aortic and peripheral pulse pressures induced by upright exercise and vasomotor changes in man.,”

Circulation, vol. 37, no. 6, pp. 954–964, 1968.

[83] E. Belardinelli, M. Ursino, G. Fabbri, A. Cevese, and F. Schena, “Pressure changes induced by whole body acceleration shocks.,” J. Biomech. Eng., vol. 113, no. 1, pp. 27–9, 1991.

[84] V. K. Sud, H. E. von Gierke, I. Kaleps, and H. L. Oestreicher, “Blood flow under the influence of externally applied periodic accelerations in large and small arteries.,” Med. Biol. Eng. Comput., vol. 21, no. 4, pp. 446–52,

101 Jul. 1983.

[85] V. K. Sud and G. S. Sekhon, “Blood flow subject to a single cycle of body acceleration,” Bull. Math. Biol., vol. 46, no. 5–6, pp. 937–949, Sep. 1984.

[86] V. K. Sud and G. S. Sekhon, “Arterial flow under periodic body acceleration,” Bull. Math. Biol., vol. 47, no. 1, pp. 35–52, 1985.

[87] V. K. Sud, H. E. von Gierke, I. Kaleps, and H. L. Oestreicher, “Analysis of blood flow under time-dependent acceleration,” Med. Biol. Eng.

Comput., vol. 23, no. 1, pp. 69–73, Jan. 1985.

[88] V. K. Sud and G. S. Sekhon, “Analysis of blood flow through a model of the human arterial system under periodic body acceleration.,” J.

Biomech., vol. 19, no. 11, pp. 929–41, Jan. 1986.

[89] A. P. Avolio, “Multi-branched model of the human arterial system.,” Med.

Biol. Eng. Comput., vol. 18, no. 6, pp. 709–718, 1980.

[90] V. K. Sud and G. S. Sekhon, “Flow through a stenosed artery subject to periodic body acceleration,” Med. Biol. Eng. Comput., vol. 25, no. 6, pp.

638–644, Nov. 1987.

[91] J. C. Misra and B. K. Sahu, “Flow through blood vessels under the action of a periodic acceleration field,” Comput. Math. with Appl., vol. 16, no. 12, pp. 993–1016, Jan. 1988.

[92] P. Chaturani and V. Palanisamy, “Pulsatile flow of power-law fluid model for blood flow under periodic body acceleration.,” Biorheology, vol. 27, no. 5, pp. 747–58, Jan. 1990.

[93] P. Chaturani and V. Palanisamy, “Pulsatile flow of blood with periodic body acceleration,” Int. J. Eng. Sci., vol. 29, no. 1, pp. 113–121, Jan.

1991.

[94] S. N. Majhi and V. R. Nair, “Pulsatile flow of third grade fluids under body acceleration-Modelling blood flow,” Int. J. Eng. Sci., vol. 32, no. 5, pp. 839–846, 1994.

[95] M. O’Rourke and A. Avolio, “Improved cardiovascular performance with optimal entrainment between heart rate and step rate during running in humans,” Coron. Artery Dis., vol. 1, no. 3, pp. 863–869, 1992.

[96] L. M. Srivastava, U. E. Edemeka, and V. P. Srivastava, “Particulate suspension model for blood flow under external body acceleration,” Int.

J. Biomed. Comput., vol. 37, no. 2, pp. 113–129, 1994.

[97] L. M. Srivastava, U. E. Edemeka, and V. P. Srivastava, “Effects of External Body Accelerations on Blood Flow,” Jpn. J. Appl. Phys., vol. 33, no. 6R, pp. 3648–3655, Jun. 1994.

[98] P. Chaturani and A. S. A. Wassf Isaac, “Blood flow with body acceleration forces,” Int. J. Eng. Sci., vol. 33, no. 12, pp. 1807–1820, Oct. 1995.

[99] S. Chakravarty and P. K. Mandal, “A nonlinear two-dimensional model of blood flow in an overlapping arterial stenosis subjected to body