• Nem Talált Eredményt

In this paper, the second regularized trace formula for the differential operator with antiperiodic boundary conditions is obtained

N/A
N/A
Protected

Academic year: 2022

Ossza meg "In this paper, the second regularized trace formula for the differential operator with antiperiodic boundary conditions is obtained"

Copied!
16
0
0

Teljes szövegt

(1)

Miskolc Mathematical Notes HU e-ISSN 1787-2413 Vol. 20 (2019), No. 1, pp. 17–32 DOI: 10.18514/MMN.2019.2621

THE SECOND REGULARIZED TRACE FORMULA FOR THE STURM-LIOUVILLE OPERATOR

F. AYDIN AKGUN, M. BAYRAMOGLU, AND A. BAYRAMOV Received 02 May, 2018

Abstract. In this paper, the second regularized trace formula for the differential operator with antiperiodic boundary conditions is obtained.

2010Mathematics Subject Classification: 34L20; 35R10 Keywords: eigenvalue, eigenfunction, resolvent, regularized trace

1. INTRODUCTION

In the Hilbert spaceH DL2Œ0; , we consider operator L generated by the dif- ferential expression

l.y/D y00Cq.x/y;

with the antiperiodic boundary conditions

y.0/D y./; y0.0/D y0./;

whereq.x/2C2Œ0; is real function and satisfies the condition

q.0/Dq./: (1.1)

It is well known from [13] that the eigenvalues of the operator L form double series n;jD

2n 1C c0

2n 1Co 1

n 2

; wherec0D21 R

0 q.x/dx; j D1; 2,o n1

includej andnD1; 2; ::::LetL0denote the operatorLwithq.x/0. The eigenvalues of operatorL0are

nD.2n 1/2; nD1; 2; ::::

The orthonormal eigenfunctions corresponding to the eigenvaluesnare

1 nD

r2

cos.2n 1/x; n2D r2

sin.2n 1/x; nD1; 2; :::: (1.2)

c 2019 Miskolc University Press

(2)

It is natural to define second regularized trace of operatorLas

1

X

nD1

0 2n;1C2n;2 2.2n 1/4

; (1.3)

where the symbol ”0” means that something in this sum is discarded to provide its convergence. The sum in (1.3) is the main interest of this article.

The regularized trace formula

1

X

nD0

n n2 1

Z 0

q.x/dx

Dq.0/Cq./

4

1 2

Z 0

q.x/dx;

of the Stum-Liouvile operator

y00Cq.x/yDy; y0.0/D0; y0./D0; (1.4) with q.x/2C1Œ0;  was first studied by Gelfand and Levitan ([6]), where the n

are the eigenvalues of the operator in (1.4). Afterwards, trace formulas for different differential operators are studied by several mathematicians(see [1–5,8,10–12,14,15]

and references therein).

Note that the first regularized trace formula

1

X

nD0

n;1Cn;2 2.2n 1/2 2c0

D0;

was obtained for operatorLwith a real potentialq.x/2L2.0; /, by [10] and with an arbitrary complexq.x/2L2.0; /, by [15].The similar formula was obtained by [12] for the operatorLwith operator functionq.x/.

Trace formulas are used in inverse problems of spectral analysis of differential equa- tions(see [14]) and for approximate calculation of the first eigenvalues of the related operator [1,4,5,7,9,14].

2. SOME FORMULAS ABOUT THE OPERATORqR0

LetR0andRbe the resolvents of the operatorL0andL, respectively. Then, for any2.L/and2.L0/where.:/is the resolvent set of an operator,RWH! H andR0WH!H are trace class operators, that is,RR021.H /. Therefore,

t r.R R0/D

1

X

nD1

1

n;1 C 1 n;2

2 .2n 1/2

:

Multiplying both sides of the above equality by 2=2 i then integrating over the circlejj Dbp D.2p 1/2C4p,

1 2 i

Z

jjDbp

2t r.R R0/d D

p

X

nD1

2.2n 1/4 2n;1 2n;2

(2.1)

(3)

is obtained. Taking in the account thatR R0D RqR0, from equation (2.1),

p

X

nD1

2n;1C2n;2 2.2n 1/4 D

N

X

jD1

MpjCMpN (2.2)

is obtained. Here

Mpj D. 1/jC1 2 i

Z

jjDbp

2t rh

R0.qR0/ji d ; and

MpN D . 1/N 2 i

Z

jjDbp

2t rh

R.qR0/NC1i

d ; (2.3)

whereqDq.x/andN is an integer.

The formula

Mpj D. 1/j 2 ij

Z

jjDbp

t r.qR0/jd ; (2.4) can be proved similarly as in Theorem2in [12].

From equations (1.2) and (2.4), we write Mp1D 1

i Z

jjDbp

(

1

X

nD1

Œ.qR0 n1; n1/C.qR0 n2; n2

) d

D2

1

X

nD1

Œ.q n1; n1/C.q n2; n2/ 1 2 i

Z

jjDbp

n

d

D 4

p

X

nD1

.2n 1/2 Z

0

q.x/Œcos2.2n 1/xCsin2.2n 1/xdx

D 4

p

X

nD1

.2n 1/2 Z

0

q.x/dx: (2.5)

Now, we shall computeMp2. From equation (2.4), Mp2D 1

2 i Z

jjDbp

( 1

X

nD1

.qR0/2 n1; n1

C .qR0/2 n2; n2 )

d

D 1 2 i

Z

jjDbp

( 1

X

nD1

1

n

qR0q n1; n1

C qR0q n2; n2 )

d

D 1 2 i

Z

jjDbp

( 1

X

nD1 1

X

rD1

1

.n /.r /

q n1; r1

q r1; n1 C q n1; r2

q r2; n1

C q n2; r1

q r1; n2

C q n2; r2

q r2; n2 d :

(4)

For convenience, let

qnrD j.q n1; r1/j2C j.q n1; r2/j2C j.q n2; r1/j2C j.q n2; r2/j2: (2.6) Then,

Mp2D

1

X

nD1 1

X

rD1

qnr

1 2 i

Z

jjDbp

. n/. r/d D

p

X

nD1 p

X

rD1

qnr

1 2 i

Z

jjDbp

. n/. r/d C

p

X

nD1 1

X

rDpC1

qnr

1 2 i

Z

jjDbp

. n/. r/d C

1

X

nDpC1 p

X

rD1

qnr

1 2 i

Z

jjDbp

. n/. r/d C

1

X

nDpC1 1

X

rDpC1

qnr

1 2 i

Z

jjDbp

. n/. r/d D

p

X

nD1 p

X

rD1

qnrC2

p

X

nD1 1

X

rDpC1

qnr

n

r n

D

p

X

nD1 1

X

rD1

qnr p

X

nD1 1

X

rDpC1

rCn

r n

qnr: Thus,

Mp2D

p

X

nD1 1

X

rD1

qnr ˛p; (2.7)

where

˛p D

p

X

nD1 1

X

rDpC1

rCn

r n

qnr: By using equations (1.2) and (2.6), we have

˛pp1p2p3; (2.8)

where

˛p1D2 2

p

X

nD1 1

X

rD1

.2r 1/2C.2n 1/2 .2r 1/2 .2n 1/2

(ˇ ˇ ˇ ˇ

Z 0

q.x/cos2.n r/xdx ˇ ˇ ˇ ˇ

2

C

(5)

C ˇ ˇ ˇ ˇ

Z 0

q.x/sin2.n r/xdx ˇ ˇ ˇ ˇ

2)

;

˛p2D2 2

p

X

nD1 1

X

rD1

.2r 1/2C.2n 1/2 .2r 1/2 .2n 1/2 ˇ ˇ ˇ ˇ

Z 0

q.x/cos2.nCr 1/xdx ˇ ˇ ˇ ˇ

2

;

˛p3D2 2

p

X

nD1 1

X

rD1

.2r 1/2C.2n 1/2 .2r 1/2 .2n 1/2 ˇ ˇ ˇ ˇ

Z 0

q.x/sin2.nCr 1/xdx ˇ ˇ ˇ ˇ

2

: The formula of˛p1can be written as

˛p1D2 2

1

X

iD1

X r nDi

np r > p

1C 2.2n 1/2 .2r 1/2 .2n 1/2

(2.9)

(ˇ ˇ ˇ ˇ

Z 0

q.x/cos2ixdx ˇ ˇ ˇ ˇ

2

C ˇ ˇ ˇ ˇ

Z 0

q.x/sin2ixdx ˇ ˇ ˇ ˇ

2)

: (2.10)

Forip X

cr nDi np r>p

.2n 1/2

.2r 1/2 .2n 1/2 D

i 1

X

jD0

.2.p j / 1/2

.2.p jCi / 1/2 .2.p j / 1/2

D

i 1

X

jD0

.2.p j / 1Ci /2 2.2.p j / 1Ci /iCi2 4i.2.p j / 1Ci /

D2p 1

4 C1 2i

4 C

i 1

X

jD0

i

4.2p 1 2jCi /:

(2.11)

For any integerspandi, let

ED f.r; n/Wr; n2NIr nDiInpIr > pg: Then using (2.11), we write

X

n;r2E

1C 2.2n 1/2 .2r 1/2 .2n 1/2

DiC2 X

cr nDi np r>p

.2n 1/2 .2r 1/2 .2n 1/2

DpCi 2

p

X

jDp iC1

1

2j 1Ci; .ip/:

(2.12)

(6)

It is easy to see that

i 2

p

X

jDp iC1

1

2j 1Ci <i2 p: Using this inequality and equation (2.12),

X

n;r2E

1C 2.2n 1/2 .2r 1/2 .2n 1/2

DpCi2O.p 1/; .ip/ (2.13) is obtained.

HereO.p 1/depends onpandi, and satisfies the inequality jO.p 1/j< const:p 1: In a similar form, forip, it can be shown that

X

n;r2E

1C 2.2n 1/2 .2r 1/2 .2n 1/2

DO.p/: (2.14)

HereO.p/depends onpandi, and satisfies the inequality jO.p/j< const:p:

From (2.9), (2.13) and (2.14), we obtain

˛p1D2 2p

1

X

iD1

(ˇ ˇ ˇ ˇ

Z 0

q.x/cos2ixdx ˇ ˇ ˇ ˇ

2

C ˇ ˇ ˇ ˇ

Z 0

q.x/sin2ixdx ˇ ˇ ˇ ˇ

2)

C

p

X

iD1

i2O.p 1/ (ˇ

ˇ ˇ ˇ

Z 0

q.x/cos2ixdx ˇ ˇ ˇ ˇ

2

C ˇ ˇ ˇ ˇ

Z 0

q.x/sin2ixdx ˇ ˇ ˇ ˇ

2)

C

1

X

iDpC1

O.p/

(ˇ ˇ ˇ ˇ

Z 0

q.x/cos2ixdx ˇ ˇ ˇ ˇ

2

C ˇ ˇ ˇ ˇ

Z 0

q.x/sin2ixdx ˇ ˇ ˇ ˇ

2)

Dp

Z

0 jq.x/j2dx p 2

ˇ ˇ ˇ ˇ

Z 0

q.x/dx ˇ ˇ ˇ ˇ

2

p1.1/p1.2/:

(2.15)

Here, sinceq.0/Dq./, j˛p1.1/j D

ˇ ˇ ˇ ˇ ˇ

p

X

iD1

i2O.p 1/ (ˇ

ˇ ˇ ˇ

Z 0

q.x/cos2ixdx ˇ ˇ ˇ ˇ

2

C ˇ ˇ ˇ ˇ

Z 0

q.x/sin2ixdx ˇ ˇ ˇ ˇ

2)ˇ ˇ ˇ ˇ ˇ const:p 1

Z

0 jq0.x/j2dx;

(2.16)

(7)

and j˛p1.2/j D

ˇ ˇ ˇ ˇ ˇ ˇ

1

X

iDpC1

O.p/

(ˇ ˇ ˇ ˇ

Z 0

q.x/cos2ixdx ˇ ˇ ˇ ˇ

2

C ˇ ˇ ˇ ˇ

Z 0

q.x/sin2ixdx ˇ ˇ ˇ ˇ

2)ˇ ˇ ˇ ˇ ˇ ˇ const:p 1

Z

0 jq0.x/j2dx

(2.17)

is obtained. From (2.15)-(2.17), we get

˛p1D p

Z 0

q2.x/dx p 2

ˇ ˇ ˇ ˇ

Z 0

q.x/dx ˇ ˇ ˇ ˇ

2

CO.p 1/: (2.18) Sinceq.x/satisfies the condition in equation (1.1), it can be shown that

pjj const:.p 1/; .j D2; 3/: (2.19) From equation (2.6), we have

p

X

nD1 1

X

rD1

qnrD

p

X

nD1

˚kq n1k2C kq n2k2 D2p

Z 0

q2.x/dx: (2.20) From equations (2.7), (2.8) and (2.18)-(2.20),

Mp2Dp

Z 0

q.x/2dxC p 2

Z 0

q.x/dx 2

CO.p 1/;

is obtained.

3. THE SECOND REGULARIZED TRACE FORMULA

In this section we obtain the second regularized trace formula for the operatorL.

To do this, we will first show that the formulas

plim!1Mpj D0; j3; (3.1)

plim!1MpN D0; N 6; (3.2)

are satisfied.

The inequalities

kqR0k1.H /< C;kR0k< Cp 1;kRk< Cp 1; .jj Dbp/ (3.3) are true(see [12]). HereC > 0is a constant. From (2.4) and (3.3), we have

jMpjj D 1 j

ˇ ˇ ˇ ˇ ˇ Z

jjDbp

t r.qR0/jd ˇ ˇ ˇ ˇ ˇ bp

j Z

jjDbp

.qR0/j

1.H /jd j

(8)

bp j

Z

jjDbp

.qR0/

1.H /

.qR0/j 1 jd j C bp

j Z

jjDbp

kqkj 1 .R0/

j 1jd j

< C1p5 j.C1> 0/:

This implies that

plim!1Mpj D0; .j 6/;

but we claim that it is also true forj D3; 4; 5:Now let we prove the formula (3.1) forj D3.

Mp3D 1 3 i

1

X

nD1 1

X

rD1 1

X

kD1

Z

jjDbp

d

.n /.r /.k / ˚

..q n1; r1/Œ.q r1; k1/ k1C.q r1; k2/ k2 C.q n1; r2/Œ.q r2; k1/ k1C.q r2; k2/ k2; n1/ C..q n2; r1/Œ.q r1; k1/ k1C.q r1; k2/ k2

C.q n2; r2/Œ.q r2; k1/ k1C.q r2; k2/ k2; n2/ D 1

3 i

1

X

nD1 1

X

rD1 1

X

kD1

Z

jjDbp

d

.n /.r /.k /F .n; r; k/;

(3.4)

where

F .n; r; k/D.q n1; r1/.q r1; k1/.q k1; n1/C.q n1; r1/.q r1; k2/.q k2; n1/ C.q n1; r2/.q r2; k1/.q k1; n1/C.q n1; r2/.q r2; k2/.q k2; n1/ C.q n2; r1/.q r1; k1/.q k1; n2/C.q n2; r1/.q r1; k2/.q k2; n2/ C.q n2; r2/.q r2; k1/.q k1; n2/C.q n2; r2/.q r2; k2/. k2; n2/:

(9)

SinceF .n; r; k/DF .r; n; k/DF .k; n; r/DF .k; r; n/DF .n; k; r/DF .r; k; n/, from equation (3.4)

Mp3D 1 i

p

X

nD1 1

X

rDpC1 1

X

kDpC1

Z

jjDbp

d

. n/. r/. k/F .n; r; k/

C 1 i

p

X

nD1 p

X

rD1 n¤r

1

X

kDpC1

Z

jjDbp

d

. n/. r/. k/F .n; r; k/

C 1 i

p

X

nD1 1

X

kDpC1

Z

jjDbp

d

. n/. k/F .n; n; k/

D2

p

X

nD1 1

X

rDpC1 1

X

kDpC1

n

.r n/.k n/F .n; r; k/

C4

p

X

nD1 p

X

crD1 n¤r

1

X

kDpC1

n

.n r/.n k/F .n; r; k/

2

p

X

nD1 1

X

kDpC1

k

.k n/2F .n; n; k/

(3.5)

is obtained. Let

F1.n; r; k/D 3 Z

0

q.x/cos2.n r/xdx Z

0

q.x/cos2.r k/xdx Z

0

q.x/cos2.k n/xdx;

(3.6)

F2.n; r; k/DF .n; r; k/ F1.n; r; k/; (3.7) Api D

p

X

nD1 1

X

rDpC1 1

X

kDpC1

n

.r n/.k n/Fi.n; r; k/; (3.8) BpiD

p

X

nD1 p

X rD1 n¤r

1

X

kDpC1

n

.n r/.n k/Fi.n; r; k/; (3.9)

Cpi D

p

X

nD1 1

X

kDpC1

k

.k n/2Fi.n; n; k/; .i D1; 2/: (3.10) From equation (3.6), we obtain

F1.n; r; k/DF1.n; k; r/; F1.n; n; k/DF1.n; k; k/:

(10)

Using these equalities and equation (3.8), we have Ap1D

p

X

nD1 1

X

crDpC1 r>k

1

X

kDpC1

n

.r n/.k n/F1.n; r; k/

C

p

X

nD1 1

X

kDpC1

n

.k n/2F1.n; n; k/:

(3.11)

In similar way, it can be shown that, Bp1D

p

X

nD1 p

X

crD1 n<r

1

X

kDpC1

k

.r n/.k n/F1.n; r; k/: (3.12) Let

Ap1D

p

X

nD1 1

X

crDpC1 r>k

1

X

kDpC1

n

.r n/.k n/F1.n; r; k/; (3.13)

Bp1D Bp1; (3.14)

Cp1D

p

X

nD1 1

X

kDpC1

1 k n

F1.n; n; k/: (3.15) Hence, by using equations (3.5)-(3.15), we obtain

Mp3D4Ap1 4Bp1 2Cp1C2Ap2C4Bp2 2Cp2: (3.16) Let us find a formula forAp1.

Let

E1D f.n; r; k/Wn; r; k2NIr nDiIk nDjInpIr; k > pg; wherep; i andj are integers such thatpj,i j, then

Ap1D

p

X

nD1 1

X

rDpC1 r>k

1

X

kDpC1 k np

n

.r n/.k n/F1.n; r; k/

C

p

X

nD1 1

X

rDpC1 r>k

1

X

kDpC1 k n>p

n

.r n/.k n/F1.n; r; k/

D 3

1

X

iD2 i >j

p

X

jD1

2 4

X

n;r;k2E1

n

.r n/.k n/ Z

0

q.x/cos2ixdx

(11)

Z

0

q.x/cos2.i j /xdx Z

0

q.x/cos2jxdx

C

p

X

nD1 1

X

rDpC1 r>k

1

X

kDpC1 k n>p

n

.r n/.k n/F1.n; r; k/:

Let

ˇij D 3 Z

0

q.x/cos2ixdx Z

0

q.x/cos2.i j /xdx Z

0

q.x/cos2jxdx;

(3.17) and

Ap11D

1

X

iD2 p

X

jD1 i >j

2 4

0

@ X

n;r;k2E1

n

.r n/.k n/ 1 Aˇij

3 5;

Ap12D

p

X

nD1 1

X

rDpC1 r>k

1

X

kDpC1 k n>p

n

.r n/.k n/F1.n; r; k/; (3.18) then we write

Ap1DAp11CAp12: (3.19)

By similar proof of (2.14), it can be shown that X

n;r;k2E1

n

.r n/.k n/D D X

n;r;k2E1

.2n 1/2 .2r 1/2 .2n 1/2

.2k 1/2 .2n 1/2 D 1

16iCj pO.1/;

(3.20)

whereO.1/satisfies the condition

jO.1/j< const:

and depends onp; i andj. Moreover, ifq.x/has a continuous derivative of second order atŒ0; and satisfies the condition in (1.1), then it can be shown that

ˇij Dconst:

i2j2 : (3.21)

From (3.18), (3.20) and (3.21), Ap11D

1

X

iD2 p

X

jD1 i >j

ˇij

16i CO.1/

pi2j

;

(12)

is obtained.

Since ˇ ˇ ˇ ˇ ˇ ˇ

1

X

iD2 p

X

jD1

O.1/

pi2j ˇ ˇ ˇ ˇ ˇ ˇ

const:p 1

1

X

iD1

i 2

! p X

jD1

j 1< const:p 1lnp;

we find

Ap11D

1

X

iD2 p

X

jD1 i >j

ˇij

16i Co.1/: (3.22)

Hereo.1/is an expression which satisfies the condition

plim!1o.1/D0;

and depends onp. From3.19and3.22, we obtain Ap1D

1

X

iD2 p

X

jD1 i >j

ˇij

16i CAp12Co.1/: (3.23)

Now, to find the formula forBp1, let Bp11D

p

X

nD1 p

X

rD1 1

X

kDpC1 n<r;k np

k

.k n/.k r/F1.n; r; k/;

and

Bp12D

p

X

nD1 p

X

rD1 1

X

kDpC1 n<r;k n>p

k

.k n/.k r/F1.n; r; k/;

then from (3.12) and (3.14), we have

Bp1DBp11CBp12: (3.24)

By using equations in (3.6) and (3.7),Bp11can be written as Bp11D

p

X

jD2 p 1

X

iD1 j >i

0

@ X

n;r;k2E2

k

.k n/.k r/ 1

ij; (3.25)

whereE2is a set defined by

E2D f.n; r; k/Wn; r; k2NIr nDiIk nDjIn; rpIk > pg

(13)

fori < j p. Moreover it can be shown that X

n;r;k2E2

k

.k n/.k r/D 1 16j C i

pO.1/: (3.26)

From (3.21), (3.25) and (3.26), we obtain Bp11D

p

X

jD2 p 1

X

iD1 j >i

ˇij

16j CO.1/

pj2i

:

and, sinceˇij Dˇj i, we write Bp11D

p

X

jD2 p 1

X

iD1 j >i

ˇij

16j CO.1/:

By using above equation and3.24, we have Bp1D

p

X

iD2 p 1

X

jD1 i >j

ˇij

16i CBp12Co.1/: (3.27) From (3.24), we get

ˇ ˇ ˇ ˇ ˇ

p

X

iD2

ˇip

i ˇ ˇ ˇ ˇ ˇ

p

X

iD2

1

i3p2 Do.1/;

ˇ ˇ ˇ ˇ ˇ ˇ

1

X

iDpC1 p

X

jD2

ˇij i

ˇ ˇ ˇ ˇ ˇ ˇ

1

X

iDpC1 p

X

jD2

1 i3j2 D

0

@

1

X

iDpC1

1 i3

1 A

0

@

p

X

jD1

1 j2

1

ADo.1/:

Therefore, by (3.27), we have Bp1D

1

X

iD2 p

X

jD1 i >j

ˇij

16iCBp12Co.1/: (3.28) From (3.16), (3.23) and (3.28), we obtain

Mp3D4Ap12 4Bp12 2Cp1C2Ap2C4Bp2 2Cp2Co.1/: (3.29) Here, it can be easily seen that,

plim!1Ap12D lim

p!1Bp12D lim

p!1Cp1D lim

p!1Ap2D lim

p!1Bp2D lim

p!1Cp2D0:

(3.30)

(14)

From (3.29) and (3.30), we obtain

plim!1Mp3D0:

In a similar way, it can be proved that

plim!1Mp4D lim

p!1Mp5D0:

Now, let us prove the expression given in (3.2). By employing (2.2) and (3.3), we obtain

jMpNj D 1 2

ˇ ˇ ˇ ˇ ˇ ˇ ˇ

Z

jjDbp

2t rh

R.qR0/NC1i d

ˇ ˇ ˇ ˇ ˇ ˇ ˇ bp2

2 Z

jjDbp

R.qR0/NC1

1.H /jd j bp2

Z

jjDbp

kRk

.qR0/NC1

1.H /jd j C bp2p 1

Z

jjDbp

qR0

N .qR0/

1.H /jd j const:p5 N:

This shows that

plim!1MpN D0; N 6:

By using the equations (2.2), (2.5), (3.1) and (3.2), we find

p

X

nD1

2n;1C2n;2 2.2n 1/4 D 4

p

X

nD1

.2n 1/2 Z

0

q.x/dx Cp

Z

0

q2.x/dxC p 2

Z 0

q.x/dx 2

Co.1/:

As a result, we get

p

X

nD1

2n;1C2n;2 2.2n 1/4 4

.2n 1/2 Z

0

q.x/dx 1

Z

0

q2.x/dx 1 2

Z 0

q.x/dx 2#

D0:

(3.31)

(15)

The left hand-side of this equality is called the second regularized trace of the oper- ator L. Thus we have proven the main result of this article given by the following theorem.

Theorem 1. If q.x/2 C2Œ0;  is a real function which satisfies the condition (1.1), then the equality obtained in (3.31) holds for the second regularized trace of the operatorL.

REFERENCES

[1] N. M. Aslanova, “n-th regularized trace of differential operator equation.”Trans. Natl. Acad. Sci.

Azerb., Ser. Phys.-Tech. Math. Sci., vol. 26, no. 7, Math. Mech., pp. 27–32, 2006.

[2] M. Bayramoglu, A. Bayramov, and E. S¸en, “A regularized trace formula for a discontinuous Sturm-Liouville operator with delayed argument.”Electron. J. Differ. Equ., vol. 2017, p. 12, 2017.

[3] A. Bayramov, Z. Oer, and O. Baykal, “On identity for eigenvalues of second order differential operator equation.”Math. Comput. Modelling, vol. 49, no. 3-4, pp. 403–412, 2009.

[4] L. A. Dikii, “A new method for calculation of eigenvalues of sturm–liouville problem,”Doklady Akademii nauk SSSR, vol. 156, pp. 12–14, 1957.

[5] L. A. Dikii, “Trace formulas for sturm–liouville differential operators,”Uspekhi Matematicheskikh Nauk, vol. 13, no. 3, pp. 111–143, 1958.

[6] I. Gel’fand and B. Levitan, “On a simple identity for the characteristic values of a differential operator of the second order differential equations,”Dokl Akad. Nauk SSSR, vol. 88, pp. 593–596, 1953.

[7] M. L. Gorbachuk,,Boundary value problems for operator differential equations. Springer Sci- ence & Business Media, 2012, vol. 48.

[8] N. J. Guliyev, “The regularized trace formula for the Sturm-Liouville equation with spectral para- meter in the boundary conditions.”Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb., vol. 22, pp.

99–102, 2005.

[9] F. Hıra and N. Altınıs¸ık, “The regularized trace of Sturm-Liouville problem with discontinuities at two points.”Inverse Probl. Sci. Eng., vol. 25, no. 6, pp. 785–794, 2017.

[10] P. D. Lax, “Trace formulas for the Schr¨odinger operator.”Commun. Pure Appl. Math., vol. 47, no. 4, pp. 503–512, 1994.

[11] A. Makin, “Regularized trace of the Sturm-Liouville operator with irregular boundary conditions.”

Electron. J. Differ. Equ., vol. 2009, p. 8, 2009.

[12] F. Maksudov, M. Bayramoglu, and E. Adıg¨uzelov, “On the regularized trace of the Sturm- Liouville operator with an unbounded operator coefficient on a finite interval.”Sov. Math., Dokl., vol. 30, pp. 169–173, 1984.

[13] V. Marchenko, Sturm-Liouville operators and applications, Revised ed. of the 1986 ed. ed.

Providence, RI: AMS Chelsea Publishing, 2011.

[14] V. A. Sadovnichi˘ı and V. E. Podol’ski˘ı, “Traces of operators.”Russ. Math. Surv., vol. 61, no. 5, pp. 885–953, 2006.

[15] J.-J. Sansuc and V. Tkachenko, “Characterization of the periodic and anti-periodic spectra of non- selfadjoint Hill’s operators.” inNew results in operator theory and its applications: the Israel M.

Glazman memorial volume. Basel: Birkh¨auser, 1997, pp. 216–224.

(16)

Authors’ addresses

F. Aydin Akgun

Yildiz Technical University, Department of Mathematical Engineering, Istanbul, Turkey E-mail address:fakgun@yildiz.edu.tr

M. Bayramoglu

Institute of Academy of Sciences of Azerbaijan, Baku, Azerbaijan E-mail address:mamed.bayramoglu@yahoo.com

A. Bayramov

Institute of Academy of Sciences of Azerbaijan, Baku, Azerbaijan E-mail address:azadbay@gmail.com

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Abstract In this paper, we study a class of integral boundary value problems for nonlin- ear differential equations of fractional order with p-Laplacian operator.. Under some

We study the existence of solutions of a boundary second order differential inclusion under conditions that are strictly weaker than the usual assumption of convexity on the values

E liason , Lyapunov type inequalities for certain second order functional differential equations, SIAM J... K ong , On the oscillation of differential equations with oscillatory

Z emánek , Limit point criteria for second order Sturm–Liouville equations on time scales, in: Differential and Difference Equations with Applications (Proceedings of the

In this work, we are concerned with the existence and the multi- plicity of nontrivial positive solutions for a boundary value problem of a system of second-order differential

We investigate the existence and nonexistence of positive solutions of a system of second- order nonlinear ordinary differential equations, subject to integral boundary

Yu, Multiplicity results for periodic solutions to delay differential equations via critical point theory.. Torres, On periodic solutions of second-order differential equations

In this paper, the existence of mild solutions for the fractional differential equations of neutral type with infinite delay is obtained under the conditions in respect of