• Nem Talált Eredményt

Moreover, we present a method to find the determinant of complex quaternion and complex split quaternion matrices

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Moreover, we present a method to find the determinant of complex quaternion and complex split quaternion matrices"

Copied!
14
0
0

Teljes szövegt

(1)

Miskolc Mathematical Notes HU e-ISSN 1787-2413 Vol. 20 (2019), No. 1, pp. 45–58 DOI: 10.18514/MMN.2019.2550

SOME PROPERTIES OF COMPLEX QUATERNION AND COMPLEX SPLIT QUATERNION MATRICES

Y. ALAG ¨OZ AND G. ¨OZYURT Received 05 March, 2018

Abstract. The aim of this study is to investigate some properties of complex quaternion and com- plex split quaternion matrices. To verify this, we use 2x2 complex matrix representation of these quaternions. Moreover, we present a method to find the determinant of complex quaternion and complex split quaternion matrices. Finally, we research some special matrices for quaternions above.

2010Mathematics Subject Classification: 15B33; 11R52

Keywords: complex quaternion matrix, complex split quaternion matrix

1. INTRODUCTION

The real quaternion algebra H is a four dimensional vector space over the real number field R and e0; e1; e2; e3 denote the basis of H and basis of R4. The set of real quaternions are a number system that extends the complex numbers fieldC.

Irish mathematician Sir William Rowan Hamilton introduced it in 1843, which is represented as

HD faDa0e0Ca1e1Ca2e2Ca3e3Wa0; a1; a2; a32Rg

where e0 acts an identity and e12 De22 De32 De1e2e3D 1. Since e2e3¤e3e2

it is obvious that the real quaternions are noncommutative and differ from complex numbers and real numbers. Furthermore any real quaternion can be respesented by a 22 complex matrix, [2]. A complex quaternion it is called also biquaternion qcan be written asqDa0e0Ca1e1Ca2e2Ca3e3wherea0; a1; a2; a32Cand its basis elementse0; e1; e2; e3satisfy the real quaternion multiplication rules. In [5] and [7] conjugates,22complex matrices corresponding to basis elements of complex quaternions are expressed.

In 1849, James Cockle introduced the set of real split quaternions which is repres- ented as

HSD fpDb0e0Cb1e1Cb2e2Cb3e3Wb0; b1; b2; b32Rg

c 2019 Miskolc University Press

(2)

wheree12D 1; e22De32D1ande1e2e3D1:Real split quaternions are noncommut- ative, too, [6]. Also, any real split quaternions can be represented by22complex matrix, [1]. While coefficients of a real split quaternion are complex numbers, then it is called complex split quaternion. The basis elements of a complex split quaternion have the same rules of a real split quaternion multiplication, [3].

In this study, firstly we associated the results we obtained from the conjugates of the complex quaternion with the real quaternions. Also, we give some properties of matrix representation of complex quaternions and complex split quaternions by expressing these quaternions as22complex matrices.M2.C//with using matrices corresponding to the basis of complex quaternions and complex split quaternions.

Moreover, we obtain a method to find the determinant for these form of quaternions.

Finally, we investigate some special matrices for complex quaternion and complex split quaternion matrices.

2. COMPLEX QUATERNION MATRICES

A real quaternionais a vector of the formaDa0e0Ca1e1Ca2e2Ca3e3

where a0; a1; a2; a3 are real numbers. Here fe0; e1; e2; e3gdenotes the set of real quaternion basis with the properties

e12De22De23De1e2e3D 1; (2.1) e1e2D e2e1De3; e2e3D e3e2De1; e3e1D e1e3De2: (2.2) A real quaternionacan be written asaDSaCVawhereSaDa0e0is the scalar part and Va Da1e1Ca2e2Ca3e3 is the vector part ofa. For any real quaternion aDa0e0Ca1e1Ca2e2Ca3e3;the conjugate ofaisaDa0e0 a1e1 a2e2 a3e3

and the norm ofais kak Dp

aaDp aaD

q

a20Ca21Ca22Ca23. For details, see [2].

A complex quaternionq is of the formqDA0e0CA1e1CA2e2CA3e3 where A0; A1; A2; A3are complex numbers and the elements offe0; e1; e2; e3gmultiply as in real quaternions. Also, a complex quaternionqcan be written asP

.akCi bk/ ek whereak; bk are real numbers for0k3. Herei denotes the complex unit and commutes withe0; e1; e2; e3:

For any complex quaternionqDA0e0CA1e1CA2e2CA3e3;the quaternion con- jugate ofqisqDA0e0 A1e1 A2e2 A3e3andqqDqqDA20CA21CA22CA23: The complex conjugate ofqisqcDA0e0CA1e1CA2e2CA3e3and the Hermitian conjugate ofqis.q/cDA0e0 A1e1 A2e2 A3e3:For more information of com- plex quaternions the reader is referred to [5] and [4]. For a complex quaternion q D.a0Ci b0/ e0C.a1Ci b1/ e1C.a2Ci b2/ e2C.a3Ci b3/ e3; we express the equalities below related to real quaternions and complex quaternions with using the complex conjugate and the Hermitian conjugate of a complex quaternion.

qcqDa2Cb2C2i .VaVb/ (2.3)

(3)

qqcDa2Cb2 2i .VaVb/ (2.4) .q/cqD kak2C kbk2C2i .SaVb SbVa VaVb/ (2.5) q .q/c D kak2C kbk2C2i .SaVb SbVaCVaVb/ (2.6) whereaDa0e0Ca1e1Ca2e2Ca3e3,bDb0e0Cb1e1Cb2e2Cb3e3anddenotes the vector product inR3:

A complex quaternion matrixQis of the form

QDQ0E0CQ1E1CQ2E2CQ3E3 (2.7) whereQ0; Q1; Q2; Q3are complex numbers. The complex quaternion matrix basis fE0; E1; E2; E3gsatisfying the equalities

E12DE22DE32D E0; (2.8) E1E2D E2E1DE3; E2E3D E3E2DE1; E3E1D E1E3DE2: (2.9) These basis elements are22matrices, [5]:

E0D

1 0 0 1

; E1D

i 0 0 i

; E2D

0 1 1 0

; E3D 0 i

i 0

: (2.10) The multiplication rules of the 22 complex matrices E0; E1; E2; E3 satisfy the multiplication rules of the complex quaternion basis elementse0; e1; e2; e3. Hence, there is an isomorphic relation between the vector form and the matrix form of a complex quaternion.

We denote the algebra of complex quaternion matrices byHCand define with the algebra of22complex matrices:

HCD (

Q0E0CQ1E1CQ2E2CQ3E3D Q0CiQ1 Q2CiQ3

Q2CiQ3 Q0 iQ1

!

WQ0;Q1;Q2;Q32C )

(2.11) For anyQDQ0E0CQ1E1CQ2E2CQ3E32HC;we defineSQDQ0E0, the scalar matrix part ofQ; ImQDQ1E1CQ2E2CQ3E3, the imaginary matrix part ofQ. The conjugate, the complex conjugate and the total conjugate of a complex quaternion matrix are denoted byQ; QC, QC

respectively these are

QDQ0E0 Q1E1 Q2E2 Q3E3; (2.12) QC DQ0E0CQ1E1CQ2E2CQ3E3 (2.13)

DQ0E0 Q1E1CQ2E2 Q3E3;

(4)

QC

D.QC/DQ0E0 Q1E1 Q2E2 Q3E3 (2.14) DQ0E0CQ1E1 Q2E2CQ3E3:

In addition, for anyQDQ0E0CQ1E1CQ2E2CQ3E32HC, we can define trans- pose and adjoint matrix ofQbyQt andAdjQrespectively write down as

Qt DQ0E0CQ1E1 Q2E2CQ3E3; (2.15) AdjQDQ0E0 Q1E1 Q2E2 Q3E3: (2.16) So we can get

AdjQDQ; (2.17)

QC D Qt

: (2.18)

The norm of a complex quaternion matrix

QDQ0E0CQ1E1CQ2E2CQ3E3D

q11 q12

q12 q11

(2.19) is defined as

kQk D rˇ

ˇˇjq11j2C jq12j2 ˇ ˇ

ˇ (2.20)

whereq11DQ0CiQ1andq12DQ2CiQ3.

Definition 1. A determinant ofQ2HCis defined as

detQDQ20detE0CQ12detE1CQ22detE2CQ23detE3: (2.21) Using the determinant of a complex quaternion matrix basis the above determinant can be written as

detQDQ20CQ21CQ22CQ23: (2.22) Theorem 1. For anyQ; P 2HCand2Cthe following properties are satisfied:

.i /detQDdet.Q/Ddet.QC/Ddet Qt

; .i i /det.Q/D2detQ;

.i i i /det.QP /DdetQdetP:

Proof. .i /ForQDQ0E0CQ1E1CQ2E2CQ3E32HC, from (2.22) it can be found easily that

detQDdet.Q/Ddet.QC/Ddet Qt

DQ20CQ21CQ22CQ23:

.i i / For any2C;we have QD.Q0/ E0C.Q1/ E1C.Q2/ E2C.Q3/ E3. Thus,

det.Q/D2Q02C2Q12C2Q22C2Q32 D2 Q20CQ12CQ22CQ32

(5)

D2detQ:

.i i i /LetQDQ0E0CQ1E1CQ2E2CQ3E3andP DP0E0CP1E1CP2E2CP3E3

be complex quaternion matrices,QP is calculated as

QP D.Q0P0 Q1P1 Q2P2 Q3P3/ E0C.Q0P1CQ1P0CQ2P3 Q3P2/ E1

C.Q0P2CQ2P0 Q1P3CQ3P1/ E2C.Q0P3CQ3P0CQ1P2 Q2P1/ E3

and from (2.22) we have

det.QP /DQ20P02CQ20P12CQ02P22CQ02P32CQ12P02CQ21P12CQ21P22CQ21P32 CQ22P02CQ22P12CQ22P22CQ22P32CQ23P02CQ23P12CQ23P22CQ23P32: On the other hand, the determinants ofQandP areQ20CQ21CQ22CQ32andP02C P12CP22CP32, respectively, then

detQdetP

DQ20P02CQ02P12CQ02P22CQ02P32CQ12P02CQ21P12CQ21P22CQ21P32 CQ22P02CQ22P12CQ22P22CQ22P32CQ23P02CQ23P12CQ23P22CQ23P32: Therefore

det.QP /DdetQdetP:

Additionally, using the complex conjugate and the transpose of a complex qua- ternion matrix we obtain the determinant of a complex quaternion matrix.

QtQC DQCQtD Q20CQ12CQ22CQ23

E0 (2.23)

and from (2.22) the determinant ofQtQC is

det.QtQC/D Q20CQ12CQ22CQ232

(2.24) so,

.detQ/2Ddet.QtQC/: (2.25)

If detQ¤0;the inverse of a complex quaternion matrix is defined as Q 1D 1

detQQ: (2.26)

From (2.12), (2.22) and (2.26) the inverse of a complex quaternion matrix can be written as

Q 1D 1

Q20CQ21CQ22CQ23.Q0E0 Q1E1 Q2E2 Q3E3/ : (2.27)

(6)

Example 1. LetQDE0CiE2CE3 be a complex quaternion matrix. Then, the complex quaternion matrixQ can be written asQD

1 2i 0 1

:From (2.27), the inverse ofQis

Q 1DE0 iE2 E3

D

1 2i 0 1

:

Theorem 2. Complex quaternion matrices satisfy the following properties for Q2HCW

.i / E1cDcE1; E2cDcE2; E3cDcE3for any complex numberc;

.i i / Q2DSQ2 det.ImQ/ E0C2SQImQ;

.i i i /Every complex quaternion matrix Q is expressed asQDZ1CZ2E2 where Z1;Z22M2.C/:

Proof. Proofs of.i /and.i i i /can be easily shown. Now, we will prove.i i /:For QDQ0E0CQ1E1CQ2E2CQ3E32HC,

Q2D.Q02 Q21 Q22 Q23/E0C2Q0.Q1E1CQ2E2CQ3E3/ and using the following equalities

SQDQ0E0; ImQDQ1E1CQ2E2CQ3E3; det.ImQ/DQ21CQ22CQ32 we get

Q2DSQ2 det.ImQ/ E0C2SQImQ:

Theorem 3. For anyQ; P 2HCthe following properties are satisfied:

.i / QDh QtiC

; .i i / QtD QC

; .i i i / QC 1

D Q 1C

ifQis invertible, .iv/ Q 1

D Q 1

ifQis invertible, .v/ Qt 1

D Q 1t

ifQis invertible, .vi / .QP /C DQCPC;

.vi i / .QP / 1DP 1Q 1ifQandP are invertible.

Proof. Proof of the theorem is easily shown. However, we will prove only.i i /, .i i i /and.vi i /:

.i i / For QDQ0E0CQ1E1CQ2E2CQ3E32HC; the complex conjugate of a

(7)

complex quaternion matrix isQC DQ0E0 Q1E1CQ2E2 Q3E3and from (2.12) it is obtained that

QC

DQ0E0CQ1E1 Q2E2CQ3E3: The equality (2.15) implies that the transpose ofQ2HCis

Qt DQ0E0CQ1E1 Q2E2CQ3E3: Thus,

Qt D QC :

.i i i /LetQDQ0E0CQ1E1CQ2E2CQ3E32HCandQbe an invertible complex quaternion matrix. We knowQC DQ0E0 Q1E1CQ2E2 Q3E3:From (2.27) we get

QC 1

D 1

Q20CQ12CQ22CQ23.Q0E0CQ1E1 Q2E2CQ3E3/ : From (2.27) and (2.13), we find

Q 1C

D 1

Q20CQ21CQ22CQ32.Q0E0CQ1E1 Q2E2CQ3E3/ : So,

QC 1

D Q 1C : .vi i /LetQDQ0E0CQ1E1CQ2E2CQ3E3and

P DP0E0CP1E1CP2E2CP3E3 be invertible complex quaternion matrices. We denoteQP as

QP DAE0CBE1CCE2CDE3; for simplicity, where

ADQ0P0 Q1P1 Q2P2 Q3P3; BDQ0P1CQ1P0CQ2P3 Q3P2; C DQ0P2 Q1P3CQ2P0CQ3P1; DDQ0P3CQ1P2 Q2P1CQ3P0: From (2.22) the determinant ofQP is written as

det.QP /DA2CB2CC2CD2; where

A2CB2CC2CD2

DQ20P02CQ02P12CQ02P22CQ02P32CQ21P02CQ21P12CQ21P22CQ21P32 CQ22P02CQ22P12CQ22P22CQ22P32CQ23P02CQ32P12CQ32P22CQ32P32

(8)

and from (2.27) can be found .QP / 1D .QP /

det.QP / DAE0 BE1 CE2 DE3

A2CB2CC2CD2 : On the other hand, from (2.27), the inverses ofP andQcan be written as

P 1DP0E0 P1E1 P2E2 P3E3

P02CP12CP22CP32 andQ 1DQ0E0 Q1E1 Q2E2 Q3E3

Q02CQ21CQ22CQ32 and their product is obtained as

P 1Q 1DAE0 BE1 CE2 DE3

A2CB2CC2CD2 : Therefore,

.QP / 1DP 1Q 1:

Example2. LetQDE0CE1; P DE0CE22HC. Then,

.i / .QP /C DE0 E1CE2 E3¤E0 E1CE2CE3DPCQC

.i i / .QP / 1D14.E0 E1 E2 E314.E0 E1 E2CE3/DQ 1P 1 Example3. LetQDE0CE1CE2. Then,

Q QC

DE0C2E1 2E3¤E0C2E1C2E3D QC

Q.

With these examples we get the following Corollary for complex quaternion matrices.

Corollary 1. LetQ,P 2HC.Then the followings are satisfied:

.i / .QP /C¤PCQC in general;

.i i / .QP / 1¤Q 1P 1in general;

.i i i / Q QC

¤ QC

Qin general.

Definition 2. For anyQDQ0E0CQ1E1CQ2E2CQ3E32HC,

.i /if off-diagonal entries ofQare0thenQ is calleda diagonal matrixandQis in form ofQDQ0E0CQ1E1,

.i i /ifQtDQthenQis calleda symmetric matrix andQis in form ofQDQ0E0C Q1E1CQ3E3,

.i i i /ifQt DQ 1thenQ is calleda orthogonal matrixandQis in form ofQD Q0E0CQ2E2and detQD1;

.iv/if Qt

DQ then Q is called a Hermitian matrixand Q is in form of QD Q0E0CQ2E2;

.v/ if Qt

DQ 1 then Q is called a unitary matrix and Q is in form of QD Q0E0CQ1E1CQ3E3and detQD1:

(9)

3. COMPLEX SPLIT QUATERNION MATRICES

A complex split quaternionpis a vector of the formpDb0e0Cb1e1Cb2e2C b3e3whereb0; b1; b2; b3are complex numbers. Herefe0; e1;e2; e3gdenotes the com- plex split quaternion basis with the below properties

e21D 1; e22De32De1e2e3D1; (3.1) e1e2D e2e1De3; e2e3D e3e2D e1; e3e1D e1e3De2: (3.2) For details of complex split quaternions, see [3].

A complex split quaternion matrixP is of the form

P DP0E0CP1E1CP2E2CP3E3 (3.3) whereP0; P1; P2; P3are complex numbers. The split quaternion matrix basis fE0; E1; E2; E3gsatisfy the equalities

E12D E0; E22DE32DE0; (3.4) E1E2D E2E1DE3; E2E3D E3E2D E1; E3E1D E1E3DE2: (3.5) These basis elements are22matrices, [6]:

E0D

1 0 0 1

; E1D

i 0 0 i

; E2D

0 1 1 0

; E3D

0 i i 0

: (3.6) The multiplication rules of the complex22matricesE0; E1; E2; E3coincide with the multiplication rules of the complex split quaternion basis elementse0; e1;e2; e3. Hence, there is an isomorphic relation between the vector form and the matrix form of a complex split quaternion.

Let us denote the algebra of complex split quaternion matrices byHCS:HCS can be defined with the algebra of22complex matrices:

HCSD

P0E0CP1E1CP2E2CP3E3D

P0CiP1 P2CiP3 P2 iP3 P0 iP1

WP0; P1; P2; P32C

(3.7) For any P DP0E0CP1E1CP2E2CP3E32HCS, we define SP DP0E0, the scalar matrix part ofP; ImP DP1E1CP2E2CP3E3, the imaginary matrix part of P. The conjugate, the complex conjugate and the total conjugate of a complex split quaternion matrix are denoted byP ; PC, PC

respectively these are

P DP0E0 P1E1 P2E2 P3E3; (3.8) PC DP0E0CP1E1CP2E2CP3E3 (3.9)

DP0E0 P1E1CP2E2 P3E3; PC

D.PC/DP0E0 P1E1 P2E2 P3E3 (3.10)

(10)

DP0E0CP1E1 P2E2CP3E3:

Moreover, for anyP DP0E0CP1E1CP2E2CP3E32HCS, we can define transpose and adjoint matrix ofP byPt andAdjP and these are

Pt DP0E0CP1E1CP2E2 P3E3; (3.11) AdjP DP0E0 P1E1 P2E2 P3E3; (3.12)

AdjP DP : (3.13)

The norm of a complex split quaternion matrix P DP0E0CP1E1CP2E2CP3E3D

p11 p12

p12 p11

(3.14) is defined as

kPk D rˇ

ˇˇjp11j2 jp12j2 ˇ ˇ

ˇ (3.15)

wherep11DP0CiP1andp12DP2CiP3.

Definition 3. A determinant ofP 2HCS is defined as

detP DP02detE0CP12detE1CP22detE2CP32detE3: (3.16) From the determinant of a complex split quaternion basis can be written as

detP DP02CP12 P22 P32: (3.17) Theorem 4. For anyP; Q2HCS and 2Cthe following properties are satisfied:

.i /detP Ddet.P /Ddet.PC/Ddet Pt

; .i i /det. P /D 2detP;

.i i i /det.PQ/DdetPdetQ:

Proof. .i /ForP DP0E0CP1E1CP2E2CP3E32HCS, from (3.17) we get detP Ddet.P /Ddet.PC/Ddet Pt

DP02CP12 P22 P32: .i i / For any 2CandP DP0E0CP1E1CP2E2CP3E32HCS;

P D. P0/ E0C. P1/ E1C. P2/ E2C. P3/ E3: Thus,

det. P /D 2P02C 2P12 2P22 2P32 D 2 P02CP12 P22 P32 D 2detP:

.i i i /LetP DP0E0CP1E1CP2E2CP3E3and

QDQ0E0CQ1E1CQ2E2CQ3E3be complex split quaternion matrices, then PQ

(11)

D.P0Q0 P1Q1CP2Q2CP3Q3/ E0C.P0Q1CP1Q0 P2Q3CP3Q2/ E1

C.P0Q2CP2Q0 P1Q3CP3Q1/ E2C.P0Q3CP3Q0CP1Q2 P2Q1/ E3

and from (3.17) the determinant ofPQcan be found as in the form of det.PQ/

DP02Q20CP02Q21CP12Q20CP12Q21CP22Q22CP22Q32CP32Q22CP32Q32 P02Q22 P02Q23 P12Q22 P12Q32 P22Q20 P22Q21 P32Q20 P32Q12: On the other hand, the determinants ofP andQareP02CP12 P22 P32andQ20C Q12 Q22 Q23respectively

detPdetQ

DP02Q20CP02Q21CP12Q20CP12Q21CP22Q22CP22Q32CP32Q22CP32Q32 P02Q22 P02Q23 P12Q22 P12Q32 P22Q20 P22Q21 P32Q20 P32Q12: Thus,

det.PQ/DdetPdetQ:

Moreover, the determinant of a complex split quaternion matrix can also be found by the complex conjugate and the total conjugate of a complex split quaternion mat- rix.

PC PC

D PC

PC D.P02CP12 P22 P32/E0 (3.18) and from (3.17) the determinant ofPC PC

is found as det.PC PC

/D.P02CP12 P22 P32/2: (3.19) Hence, the determinant of a complex split quaternion matrix can be written as

.detP /2Ddet.PC PC

/: (3.20)

If detP ¤0;the inverse of a complex split quaternion matrix is defined as P 1D 1

detPP : (3.21)

From (3.8), (3.17) and (3.21) can be written

Q 1D 1

P02CP12 P22 P32.P0E0 P1E1 P2E2 P3E3/ : (3.22)

(12)

Example4. LetP D

1 i 2

E0C

1 i 2

E1 1

2E2C2iE3be a complex split qua- ternion matrix. Then, P can be written as P D

1 1 0 i

and from(3.22), the inverse ofP is calculated as

P 1D 1Ci

2

E0C

1 i 2

E1Ci

2E2C1 2E3

D 1 i

0 i

:

Theorem 5. Complex split quaternion matrices satisfy the following properties forP 2HCS.

.i / E1cDcE1,E2cDcE2,E3cDcE3for any complex numberc, .i i / P2DSP2 det.ImP / E0C2SPImP;

.i i i /Every complex split quaternion matrix P can be uniquely expressed as P D Z1CZ2E2;whereZ1,Z22M2.C/:

Theorem 6. For anyP; Q2HCS the following properties are satisfied:

.i /detP D kPk2; .i i / P 1

D P 1

ifP is invertible, .i i i / PC 1

D P 1C

ifP is invertible, .iv/

h

Pti 1

Dh

P 1it

ifP is invertible, .v/ .PQ/C DPCQC;

.vi / .PQ/ 1DQ 1P 1ifP andQare invertible.

The proof is analogous to the proof of Theorem3.

Example5. LetP DE0CE2CE3andQDE0CE1.Then, .i / .PQ/C DE0 E1C2E2¤E0 E1 2E3DQCPC, .i i / P .P /C DE0 2E1C2E3¤E0C2E1C2E3D.P /CP.

With these examples we get the following Corollary for complex split quaternion matrices.

Corollary 2. LetP; Q2HCS:Then the followings are satisfied:

.i / .PQ/C ¤QCPC in general;

.i i / P .P /C ¤.P /CP in general.

Definition 4. For anyP DP0E0CP1E1CP2E2CP3E32HCS,

.i /if off-diagonal entries ofP are0thenP is calleda diagonal matrixandP is in

(13)

form ofP0E0CP1E1,

.i i / if Pt DP then P is called a symmetric matrix and P is in form of P D P0E0CP1E1CP2E2,

.i i i / if Pt DP 1 then P is called an orthogonal matrix and P is in form of P DP0E0CP3E3and detP D1,

.iv/ if Pt

DP then P is called a Hermitian matrix and P is in form of P D P0E0CP3E3,

.v/ if Pt

DP 1 then P is called an unitary matrix andP is in form of P D P0E0CP1E1CP2E2and detP D1.

4. CONCLUSION

This paper has investigated the main properties of complex quaternion and com- plex split quaternion matrices with the use of 2x2 complex matrix representation of them, respectively. Then, the method of computing the determinant of given complex quaternion and complex split quaternion matrices has been proposed. Although, the determinant properties, conjugate products, special matrices of complex quaternion and complex split quaternion matrices were investigated with the similar methods, but different results were obtained due to the difference of the basis elements of these quaternion matrices.

REFERENCES

[1] Y. Alag¨oz, K. H. Oral, and S. Y¨uce, “Split quaternion matrices.”Miskolc Math. Notes, vol. 13, no. 2, pp. 223–232, 2012, doi:10.18514/MMN.2012.364.

[2] H.-D. Ebbinghaus, H. Hermes, F. Hirzebruch, M. Koecher, K. Mainzer, J. Neukirch, A. Prestel, and R. Remmert,Numbers. With an introduction by Klaus Lamotke. Translated by H. L. S. Orde. Edited by John H. Ewing. Paperback ed., paperback ed. ed. New York etc.: Springer-Verlag, 1991, vol.

123, doi:10.1007/978-1-4612-1005-4.

[3] M. Erdo˘gdu and M. ¨Ozdemir, “On complex split quaternion matrices.”Adv. Appl. Clifford Algebr., vol. 23, no. 3, pp. 625–638, 2013, doi:10.1007/s00006-013-0399-z.

[4] K. G¨urlebeck, K. Habetha, and W. Spr¨oßig,Application of holomorphic functions in two and higher dimensions. Basel: Birkh¨auser/Springer, 2016. doi:10.1007/978-3-0348-0964-1.

[5] M. L. Mehta,Random matrices. Boston, MA: Academic Press, Inc., 1991.

[6] B. Rosenfeld,Geometry of Lie groups. Dordrecht: Kluwer Academic Publishers, 1997.

[7] J. P. Ward,Quaternions and Cayley numbers: algebra and applications. Dordrecht: Kluwer Academic Publishers, 1997. doi:10.1007/978-94-011-5768-1.

Authors’ addresses

Y. Alag¨oz

Yildiz Technical University, Department of Mathematics, 34220 Istanbul, Turkey E-mail address:ygulluk@yildiz.edu.tr

(14)

G. ¨Ozyurt

Yildiz Technical University, Department of Mathematics, 34220 Istanbul, Turkey E-mail address:gozdeozyurt1@gmail.com

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Complex Event Processing deals with the detection of complex events based on rules and patterns defined by domain experts.. Many complex events require real-time detection in order

By mapping the service’s input and output to the global schema, we should be able to determine the semantic relation- ship between complex types of the service and complex types of

In this paper, starting out from the argument principle and logarithmic integral theorem of complex variables and using some auxiliary theorems, the complex-plane methods

It is worthwhile to note that Tangboonduangjit and Thanatipanonda [11, 12] derived the determinant identities more generally, for matrices whose entries include (rising) powers of

Baksalary and Pukelsheim showed how the partial orderings of two Hermitian positive semidefinite matrices A and B relate to the orderings of their squares A 2 and B 2 in the sense

This problem is a special case of finding an upper bound for the determinant of matrices whose entries are a permutation of an arithmetic progression:.

Our result is a characterisation of the matrices with maximal determinant in the set of matrices with given entry sum and square sum, and a general inequality for the absolute value

To approach the concept of an approximant consider a set of mathematical objects (complex numbers, matrices or linear operator, say) each of which is, in some sense, “nice”,