• Nem Talált Eredményt

INTRODUCTION Let f be a nonconstant meromorphic function in the whole complex plane

N/A
N/A
Protected

Academic year: 2022

Ossza meg "INTRODUCTION Let f be a nonconstant meromorphic function in the whole complex plane"

Copied!
5
0
0

Teljes szövegt

(1)

http://jipam.vu.edu.au/

Volume 3, Issue 5, Article 76, 2002

EXTENSIONS OF HIONG’S INEQUALITY

MING-LIANG FANG AND DEGUI YANG DEPARTMENT OFMATHEMATICS,

NANJINGNORMALUNIVERSITY, NANJING, 210097, PEOPLESREPUBLIC OFCHINA

mlfang@pine.njnu.edu.cn COLLEGE OFSCIENCES,

SOUTHCHINAAGRICULTURALUNIVERSITY, GUANGZHOU, 510642,

PEOPLESREPUBLIC OFCHINA

yangde@macs.biu.ac.il

Received 15 July, 2002; accepted 25 July, 2002 Communicated by H.M. Srivastava

ABSTRACT. In this paper, we treat the value distribution ofφfn−1f(k), wheref is a transcen- dental meromorphic function,φis a meromorphic function satisfyingT(r, φ) =S(r, f), nand kare positive integers. We generalize some results of Hiong and Yu.

Key words and phrases: Inequality, Value distribution, Meromorphic function.

2000 Mathematics Subject Classification. Primary 30D35, 30A10.

1. INTRODUCTION

Let f be a nonconstant meromorphic function in the whole complex plane. We use the following standard notation of value distribution theory,

T(r, f), m(r, f), N(r, f), N(r, f), . . .

(see Hayman [1], Yang [4]). We denote byS(r, f)any function satisfying S(r, f) = o{T(r, f)},

asr →+∞, possibly outside of a set with finite measure.

In 1956, Hiong [3] proved the following inequality.

ISSN (electronic): 1443-5756 c

2002 Victoria University. All rights reserved.

Supported by the National Nature Science Foundation of China (Grant No. 10071038) and “Qinglan Project”of the Educational Department of Jiangsu Province.

079-02

(2)

Theorem 1.1. Let f be a non-constant meromorphic function; let a, b and c be three finite complex numbers such thatb 6= 0,c6= 0andb 6=c; and letkbe a positive integer. Then

T(r, f)≤N

r, 1 f −a

+N

r, 1

f(k)−b

+N

r, 1 f(k)−c

−N

r, 1 f(k+1)

+S(r, f).

Recently, Yu [5] extended Theorem 1.1 as follows.

Theorem 1.2. Let f be a non-constant meromorphic function; and letb andcbe two distinct nonzero finite complex numbers; and letn, k be two positive integers. Ifφ(6≡ 0) is a meromor- phic function satisfyingT(r, φ) = S(r, f),n= 1orn≥k+ 3, then

(1.1) T(r, f)≤N

r, 1 f

+ 1

n

N

r, 1

φfn−1f(k)−b

+N

r, 1

φfn−1f(k)−c

− 1 n

N(r, f) +N

r, 1

(φfn−1f(k+1))0

+S(r, f).

Iff is entire, then (1.1) is valid for all positive integersn(6= 2).

In [5], the author expected that (1.1) is also valid forn = 2iff is entire.

In this note, we prove that (1.1) is valid for all positive integersneven iff is meromorphic.

Theorem 1.3. Let f be a non-constant meromorphic function; and letb andcbe two distinct nonzero finite complex numbers; and letn, k be two positive integers. Ifφ(6≡ 0) is a meromor- phic function satisfyingT(r, φ) = S(r, f), then

(1.2) T(r, f)≤N

r, 1 f

+ 1

n

N

r, 1

φfn−1f(k)−b

+N

r, 1

φfn−1f(k)−c

−N(r, f)− 1 n

(k−1)N(r, f) +N

r, 1

(φfn−1f(k+1))0

+S(r, f).

In [6], the author proved

Theorem 1.4. Letf be a transcendental meromorphic function; and letnbe a positive integer.

Then either fnf0 −a or fnf0 +a has infinitely many zeros, wherea(6≡ 0)is a meromorphic function satisfyingT(r, a) =S(r, f).

In this note, we will prove

Theorem 1.5. Letf be a transcendental meromorphic function; and letnbe a positive integer.

Then eitherfnf0 −aorfnf0 −b has infinitely many zeros, wherea(6≡0)andb(6≡ 0)are two meromorphic functions satisfyingT(r, a) =S(r, f)andT(r, b) =S(r, f).

2. PROOF OFTHEOREMS

For the proofs of Theorem 1.3 and 1.5, we require the following lemmas.

Lemma 2.1. [2]. Iff is a transcendental meromorphic function andK >1, then there exists a setM(K)of upper logarithmic density at most

δ(K) = min{(2eK−1−1)−1,(1 +e(K−1)) exp(e(1−K))}

such that for every positive integerk,

(2.1) lim sup

r→∞,r /∈M(K)

T(r, f)

T(r, f(k)) ≤3eK.

(3)

Lemma 2.2. If f is a transcendental meromorphic function and φ(6≡ 0) is a meromorphic function satisfyingT(r, φ) =S(r, f). Thenφfn−1f(k) 6≡constant for every positive integern.

Proof. Suppose that φfn−1f(k) ≡ constant. If n = 1, then φf(k) ≡ constant. Therefore, T(r, f(k)) =S(r, f), which implies that

lim sup

r→∞,r /∈M(K)

T(r, f)

T(r, f(k)) =∞.

This is contradiction to Lemma 2.1.

Ifn ≥2,thenT(r, fn−1f(k)) = S(r, f).On the other hand, nT(r, f)≤T(r, fn−1f(k)) +T

r, f

f(k)

+S(r, f)

≤T(r, fn−1f(k)) +T

r,f(k) f

+S(r, f)

≤T(r, fn−1f(k)) +N

r,f(k) f

+S(r, f)

≤T(r, fn−1f(k)) +N(r, 1

f) +N(r, fn−1f(k)) +S(r, f)

≤2T(r, fn−1f(k)) +T(r, f) +S(r, f).

HenceT(r, f) ≤ n−12 T(r, fn−1f(k)) +S(r, f),Therefore, T(r, f) = S(r, f),which is a con-

tradiction. Which completes the proof of this lemma.

Lemma 2.3. [1]. Iff is a meromorphic function, anda1, a2, a3 are distinct meromorphic func- tions satisfyingT(r, aj) = S(r, f)forj = 1,2,3.Then

T(r, f)≤

3

X

j=1

N

r, 1 f−aj

+S(r, f).

Proof of Theorem 1.3. By Lemma 2.2, we have φfn−1f(k) 6≡constant if n andk are positive integers. By (4.17) of [1], we have

m

r, 1 fn

+m

r, 1

φfn−1f(k)−b

+m

r, 1

φfn−1f(k)−c (2.2)

≤m

r, 1

φfn−1f(k)

+m

r,f(k) f

+m

r, 1

φfn−1f(k)−b

+m

r, 1

φfn−1f(k)−c

+S(r, f)

≤m

r, 1

φfn−1f(k)

+m

r, 1

φfn−1f(k)−b

+m

r, 1

φfn−1f(k)−c

+S(r, f)

≤m

r, 1

(φfn−1f(k))0

+S(r, f)

(4)

≤T(r,(φfn−1f(k))0)−N

r, 1

(φfn−1f(k))0

+S(r, f)

≤T(r, φfn−1f(k)) +N(r, f)−N

r, 1

(φfn−1f(k))0

+S(r, f) By (2.2), we have

T(r, fn) +T(r, φfn−1f(k))

≤N

r, 1 fn

+N

r, 1

φfn−1f(k)−b

+N

r, 1

φfn−1f(k)−c

+N(r, f)−N

r, 1

(φfn−1f(k))0

+S(r, f).

Therefore,

nT(r, f)≤nN

r, 1 f

+N

r, 1

φfn−1f(k)−b

+N

r, 1

φfn−1f(k)−c

+N(r, f)−N

r, 1

(φfn−1f(k))0

−N(r, fn−1f(k)) +S(r, f)

≤nN

r, 1 f

+N

r, 1

φfn−1f(k)−b

+N

r, 1

φfn−1f(k)−c

−nN(r, f)−(k−1)N(r, f)−N

r, 1

(φfn−1f(k))0

+S(r, f),

thus we get (1.2). This completes the proof of Theorem 1.3.

Proof of Theorem 1.5. By Nevanlinna’s first fundamental theorem, we have 2T(r, f) = T

r, f f0· f f0

≤T(r, f f0) +T

r, f f0

+S(r, f)

≤T(r, f f0) +T

r,f0 f

+S(r, f)

≤T(r, f f0) +N

r,f0 f

+S(r, f)

=T(r, f f0) +N

r, 1 f

+N(r, f) +S(r, f)

≤T(r, f f0) +T(r, f) + 1

3N(r, f f0) +S(r, f).

Thus we get

T(r, f)≤ 4

3T(r, f f0) +S(r, f).

Hence we getT(r, a) = S(r, f f0)andT(r, b) =S(r, f f0).

(5)

By Lemma 2.3, we have

T(r, f f0)≤N(r, f) +N

r, 1 f f0−a

+N

r, 1

f f0−b

+S(r, f f0)

≤ 1

3N(r, f f0) +N

r, 1 f f0−a

+N

r, 1

f f0 −b

+S(r, f f0).

Hence we get

T(r, f)≤ 3 2

N

r, 1

f f0 −a

+N

r, 1 f f0−b

+S(r, f f0).

Thus we know that eitherf f0 −aorf f0−bhas infinitely many zeros.

REFERENCES

[1] W.K. HAYMAN, Meromorphic Functions, Clarendon Press, Oxford, 1964.

[2] W.K. HAYMAN AND J. MILES, On the growth of a meromorphic function and its derivatives, Complex Variables, 12(1989), 245–260.

[3] K.L. HIONG, Sur la limitation deT(r, f)sans intervention des pôles, Bull. Sci. Math., 80 (1956), 175–190.

[4] L. YANG, Value Distribution Theory, Springer-Verlag, Berlin, 1993.

[5] K.W. YU, On the distribition ofφ(z)fn−1(z)f(k)(z), J. of Ineq. Pure and Appl. Math., 3(1) (2002), Article 8. [ONLINE:http://jipam.vu.edu.au/v3n1/037_01.html]

[6] K.W. YU, A note on the product of a meromorphic function and its derivative, Kodai Math. J., 24(3) (2001), 339–343.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Theorems for vectors derived from the truth table of Boolean function F(x) Let y.k denote the difference vector of one of the vectors Xl and one of the vectors xO...

Але усё ж таю народная мудрасць сцвярджае, што мужчына без жанчыны не можа абысщся: Гаспадар без гаспадыт не чалавек, а пау- чалавека (Серж., КА,

Amíg a barátja távol volt, Tony lejjebb húzta a leplet, hogy a kavargó, örvénylő tengeri moszat között megnézze a halott arcát a sós hajnali levegőben.. Tony az

A sci-fi műfaji meghatározásával foglalkozó elméletírók szinte mindent megpróbál- tak tudományos-fantasztikus irodalomként definiálni, amiben fantasztikus elemet

Theorem 1 Let A be a collection of n pairwise intersecting closed Jordan curves in general position in the plane. Let T denote the set of touching points and let X denote the set

Tzanakis, “Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms.” Acta Arith., vol. Tzanakis, “Solving elliptic Diophantine equations by

Let n be a positive integer number, the order (or rank) of appearance of n in the Fibonacci sequence, denoted by ´.n/, is defined as the smal- lest positive integer k, such that n j F

The stability of positive equilibrium and the non-existence of non-constant positive solution are discussed rigorously, respectively in Case 1: f ( u ) > 0 and f u ( u ) < 0 for