• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
38
0
0

Teljes szövegt

(1)

volume 5, issue 3, article 58, 2004.

Received 09 January, 2004;

accepted 22 April, 2004.

Communicated by:P.S. Bullen

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

A DISCRETE EULER IDENTITY

A. AGLI ´C ALJINOVI ´C AND J. PE ˇCARI ´C

Department of Applied Mathematics

Faculty of Electrical Engineering and Computing Unska 3, 10 000 Zagreb, Croatia.

EMail:andrea@zpm.fer.hr Faculty of Textile Technology University of Zagreb Pierottijeva 6, 10000 Zagreb Croatia.

EMail:pecaric@mahazu.hazu.hr

c

2000Victoria University ISSN (electronic): 1443-5756 086-04

(2)

A Discrete Euler Identity A. Agli´c Aljinovi´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of38

J. Ineq. Pure and Appl. Math. 5(3) Art. 58, 2004

http://jipam.vu.edu.au

Abstract

A discrete analogue of the weighted Montgomery identity (i.e. Euler identity) for finite sequences of vectors in normed linear space is given as well as a discrete analogue of Ostrowski type inequalities and estimates of difference of two arithmetic means.

2000 Mathematics Subject Classification:26D15

Key words: Discrete Montgomery identity, Discrete Ostrowski inequality.

Contents

1 Introduction. . . 3 2 Discrete Weighted Euler Identity. . . 5 3 Discrete Ostrowski Type Inequalities . . . 13 4 Estimates of the Differences Between Two Weighted Arith-

metic Means. . . 24 References

(3)

A Discrete Euler Identity A. Agli´c Aljinovi´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of38

J. Ineq. Pure and Appl. Math. 5(3) Art. 58, 2004

http://jipam.vu.edu.au

1. Introduction

The following Ostrowski inequality is well known [10]:

f(x)− 1 b−a

Z b a

f(t)dt

"

1

4+ x− a+b2 2

(b−a)2

#

(b−a)kf0k.

It holds for everyx∈[a, b]wheneverf : [a, b]→Ris continuous on[a, b]and differentiable on(a, b)with derivativef0 : (a, b)→Rbounded on(a, b)i.e.

kf0k= sup

t∈(a,b)

|f0(t)|<+∞.

Let f : [a, b] → R be differentiable on [a, b], f0 : [a, b] → R integrable on [a, b]andw : [a, b] → [0,∞)some probability density function, i.e. integrable function satisfying Rb

a w(t)dt = 1; defineW(t) = Rt

aw(x)dx for t ∈ [a, b], W(t) = 0fort < aandW(t) = 1fort > b. The following identity, given by Peˇcari´c in [11], is the weighted Montgomery identity

f(x) = Z b

a

w(t)f(t)dt+ Z b

a

Pw(x, t)f0(t)dt, where the weighted Peano kernel is

Pw(x, t) =

( W(t), a≤t≤x, W(t)−1 x < t≤b.

All results in this paper are discrete analogues of results from [1]. The aim of this paper is to prove the discrete analogue of the weighted Euler identity for

(4)

A Discrete Euler Identity A. Agli´c Aljinovi´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of38

J. Ineq. Pure and Appl. Math. 5(3) Art. 58, 2004

http://jipam.vu.edu.au

finite sequences of vectors in normed linear spaces and to use it to obtain some new discrete Ostrowski type inequalities as well as estimates of differences be- tween two (weighted) arithmetic means. In Section2, a discrete weighted Mont- gomery (i.e. Euler) identity is presented. In Section 3, Ostrowski’s inequality and its generalization are proved. These are the discrete analogues of some re- sults from [6]. In Section4, estimates of differences between two (weighted) arithmetic means are given and these are the discrete analogues of some results from [2], [3], [4], [5] and [12].

(5)

A Discrete Euler Identity A. Agli´c Aljinovi´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of38

J. Ineq. Pure and Appl. Math. 5(3) Art. 58, 2004

http://jipam.vu.edu.au

2. Discrete Weighted Euler Identity

Let x1, x2, . . . , xn be a finite sequence of vectors in the normed linear space (X,k·k) and w1, w2, . . . , wn finite sequence of positive real numbers. If, for 1≤k ≤n,

Wk =

k

X

i=1

wi, Wk=

n

X

i=k+1

wi =Wn−Wk,

then we have, see [9],

(2.1)

n

X

i=1

wixi

=xkWn+

k−1

X

i=1

Wi(xi−xi+1) +

n−1

X

i=k

Wi(xi+1−xi), 1≤k ≤n.

The difference operator∆is defined by

(2.2) ∆xi =xi+1−xi.

So using formula (2.1), we get the discrete analogue of weighted Mont- gomery identity

(2.3) xk = 1

Wn

n

X

i=1

wixi+

n−1

X

i=1

Dw(k, i) ∆xi,

(6)

A Discrete Euler Identity A. Agli´c Aljinovi´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of38

J. Ineq. Pure and Appl. Math. 5(3) Art. 58, 2004

http://jipam.vu.edu.au

where the discrete Peano kernel is defined by

(2.4) Dw(k, i) = 1 Wn ·

( Wi, 1≤i≤k−1,

−Wi

, k ≤i≤n.

If we takewi = 1, i = 1, . . . , n, thenWi = i andWi = n −i, and (2.3) reduces to the discrete Montgomery identity

(2.5) xk = 1

n

n

X

i=1

xi+

n−1

X

i=1

Dn(k, i) ∆xi,

where

Dn(k, i) = ( i

n, 1≤i≤k−1,

i

n−1, k≤i≤n.

Ifn∈N,∆nis inductively defined by

nxi = ∆n−1(∆xi).

It is then easy to prove, by induction or directly using the elementary theory of operators,see [8], that

nxi =

n

X

k=0

n k

(−1)n−kxi+k.

In the next theorem we give the generalization of the identity (2.3).

(7)

A Discrete Euler Identity A. Agli´c Aljinovi´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of38

J. Ineq. Pure and Appl. Math. 5(3) Art. 58, 2004

http://jipam.vu.edu.au

Theorem 2.1. Let(X,k·k)be a normed linear space,x1, x2, . . . , xna finite se- quence of vectors inX, w1, w2, . . . , wnfinite sequence of positive real numbers.

Then for allm ∈ {2,3, . . . , n−1}andk ∈ {1,2, . . . , n}the following identity is valid:

(2.6) xk= 1 Wn

n

X

i=1

wixi+

m−1

X

r=1

1 n−r

n−r

X

i=1

rxi

!

×

n−1

X

i1=1 n−2

X

i2=1

· · ·

n−r

X

ir=1

Dw(k, i1)Dn−1(i1, i2)· · ·Dn−r+1(ir−1, ir)

!

+

n−1

X

i1=1 n−2

X

i2=1

· · ·

n−m

X

im=1

Dw(k, i1)Dn−1(i1, i2)· · ·Dn−m+1(im−1, im) ∆mxim.

Proof. We prove our assertion by induction with respect to m. For m = 2we have to prove the identity

xk = 1 Wn

n

X

i=1

wixi+ 1 n−1

n−1

X

i=1

∆xi

! n−1 X

i=1

Dw(k, i)

!

+

n−1

X

i=1 n−2

X

j=1

Dw(k, i)Dn−1(i, j) ∆2xj.

Applying the identity (2.5) for the finite sequence of vectors∆xi,i= 1,2, . . . , n−

1,we obtain

∆xi = 1 n−1

n−1

X

i=1

∆xi+

n−2

X

j=1

Dn−1(i, j) ∆2xj

(8)

A Discrete Euler Identity A. Agli´c Aljinovi´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of38

J. Ineq. Pure and Appl. Math. 5(3) Art. 58, 2004

http://jipam.vu.edu.au

so, again using (2.3), we have

xk = 1 Wn

n

X

i=1

wixi+

n−1

X

i=1

Dw(k, i) 1 n−1

n−1

X

i=1

∆xi+

n−2

X

j=1

Dn−1(i, j) ∆2xj

!

= 1 Wn

n

X

i=1

wixi+ 1 n−1

n−1

X

i=1

∆xi

! n−1 X

i=1

Dw(k, i)

!

+

n−1

X

i=1 n−2

X

j=1

Dw(k, i)Dn−1(i, j) ∆2xj.

Hence the identity (2.6) holds form = 2.

Now, we assume that it holds for a natural number m ∈ {2,3, . . . , n−2}.

Applying the identity (2.5) for the∆mxim

mxim = 1 n−m

n−m

X

i=1

mxi+

n−m−1

X

im+1=1

Dn−m(im, im+1) ∆m+1xim+1

and using the induction hypothesis, we get

xk = 1 Wn

n

X

i=1

wixi+

m−1

X

r=1

1 n−r

n−r

X

i=1

rxi

!

×

n−1

X

i1=1 n−2

X

i2=1

· · ·

n−r

X

ir=1

Dw(k, i1)Dn−1(i1, i2)· · ·Dn−r+1(ir−1, ir)

!

(9)

A Discrete Euler Identity A. Agli´c Aljinovi´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of38

J. Ineq. Pure and Appl. Math. 5(3) Art. 58, 2004

http://jipam.vu.edu.au

+

n−1

X

i1=1 n−2

X

i2=1

· · ·

n−m

X

im=1

Dw(k, i1)Dn−1(i1, i2)· · ·Dn−m+1(im−1, im)

×

 1 n−m

n−m

X

i=1

mxi+

n−m−1

X

im+1=1

Dn−m(im, im+1) ∆m+1xim+1

= 1 Wn

n

X

i=1

wixi+

m

X

r=1

1 n−r

n−r

X

i=1

rxi

!

×

n−1

X

i1=1 n−2

X

i2=1

· · ·

n−r

X

ir=1

Dw(k, i1)Dn−1(i1, i2)· · ·Dn−r+1(ir−1, ir)

!

+

n−1

X

i1=1 n−2

X

i2=1

· · ·

n−(m+1)

X

im+1=1

Dw(k, i1)Dn−1(i1, i2)· · ·Dn−m(im, im+1) ∆m+1xim+1.

We see that (2.6) is valid form+ 1and our assertion is proved.

Remark 2.1. Form=n−1(2.6) becomes

xk = 1 Wn

n

X

i=1

wixi+

n−2

X

r=1

1 n−r

n−r

X

i=1

rxi

!

×

n−1

X

i1=1 n−2

X

i2=1

· · ·

n−r

X

ir=1

Dw(k, i1)Dn−1(i1, i2)· · ·Dn−r+1(ir−1, ir)

!

(10)

A Discrete Euler Identity A. Agli´c Aljinovi´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of38

J. Ineq. Pure and Appl. Math. 5(3) Art. 58, 2004

http://jipam.vu.edu.au

+

n−1

X

i1=1 n−2

X

i2=1

· · ·

1

X

in−1=1

Dw(k, i1)Dn−1(i1, i2)· · ·D2(in−2, in−1) ∆n−1xin−1.

Corollary 2.2. Let(X,k·k)be a normed linear space,x1, x2, . . . , xna finite se- quence of vectors inX. Then for allm∈ {2,3, . . . , n−1}andk ∈ {1,2, . . . , n}

the following identity is valid:

xk = 1 n

n

X

i=1

xi+

m−1

X

r=1

1 n−r

n−r

X

i=1

rxi

!

×

n−1

X

i1=1 n−2

X

i2=1

· · ·

n−r

X

ir=1

Dn(k, i1)Dn−1(i1, i2)· · ·Dn−r+1(ir−1, ir)

!

+

n−1

X

i1=1 n−2

X

i2=1

· · ·

n−m

X

im=1

Dn(k, i1)Dn−1(i1, i2)· · ·Dn−m+1(im−1, im) ∆mxim.

Proof. Apply Theorem2.1withwi = 1,i= 1, . . . , n.

Remark 2.2. If we apply (2.6) withn = 2l−1andk =lwe get

xl = 1 W2l−1

2l−1

X

i=1

wixi+

m−1

X

r=1

1 2l−1−r

2l−1−r

X

i=1

rxi

!

×

2l−2

X

i1=1 2l−3

X

i2=1

· · ·

2l−1−r

X

ir=1

Dw(l, i1)D2l−2(i1, i2)· · ·D2l−r(ir−1, ir)

!

(11)

A Discrete Euler Identity A. Agli´c Aljinovi´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of38

J. Ineq. Pure and Appl. Math. 5(3) Art. 58, 2004

http://jipam.vu.edu.au

+

2l−2

X

i1=1 2l−3

X

i2=1

· · ·

2l−1−m

X

im=1

Dw(l, i1)D2l−2(i1, i2)· · ·D2l−m(im−1, im) ∆mxim.

We may regard this identity as a generalized midpoint identity since for m= 1 it reduces to

(2.7) xl = 1

W2l−1

2l−1

X

i=1

wixi+

2l−2

X

i=1

Dw(l, i) ∆xi

and further forwi = 1, i= 1,2, . . . ,2l−1to

(2.8) xl = 1

2l−1

2l−1

X

i=1

xi+ 1 2l−1

l−1

X

i=1

i(∆xi−∆x2l−1−i).

Similarly, if we apply (2.6) withk = 1and then withk =n, then sum these two equalities and divide them by2, we get

(2.9) x1 +xn

2 = 1

Wn

n

X

i=1

wixi+

m−1

X

r=1

1 n−r

n−r

X

i=1

rxi

!

×

n−1

X

i1=1

· · ·

n−r

X

ir=1

Dw(1, i1) +Dw(n, i1)

2 Dn−1(i1, i2)· · ·Dn−r+1(ir−1, ir)

!

+

n−1

X

i1=1

· · ·

n−m

X

im=1

Dw(1, i1) +Dw(n, i1)

2 Dn−1(i1, i2)· · ·Dn−m+1(im−1, im) ∆mxim.

(12)

A Discrete Euler Identity A. Agli´c Aljinovi´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of38

J. Ineq. Pure and Appl. Math. 5(3) Art. 58, 2004

http://jipam.vu.edu.au

We may regard this identity as a generalized trapezoid identity since form = 1 it reduces to

(2.10) x1+xn

2 = 1

Wn

n

X

i=1

wixi+

n−1

X

i=1

Dw(1, i) +Dw(n, i) 2 ∆xi, and further forwi = 1, i= 1,2, . . . , nto

(2.11) x1+xn

2 = 1 n

n

X

i=1

xi+ 1 n

n−1

X

i=1

i−n

2

∆xi.

(2.8) and (2.11) were obtained by Dragomir in [7].

(13)

A Discrete Euler Identity A. Agli´c Aljinovi´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of38

J. Ineq. Pure and Appl. Math. 5(3) Art. 58, 2004

http://jipam.vu.edu.au

3. Discrete Ostrowski Type Inequalities

The Bernoulli numbersBi,i≥0, are defined by the implicit recurrence relation

m

X

i=0

m+ 1 i

Bi =

( 1, if m = 0, 0, if m 6= 0.

If, forn∈Nandm∈R,we write

Sm(n) = 1m+ 2m+ 3m+· · ·+ (n−1)m, it is well known, see [8], that ifm∈N

Sm(n) = 1 m+ 1

m

X

i=0

m+ 1 i

Bi nm+1−i.

Theorem 3.1. Let(X,k·k)be a normed linear space,x1, x2, . . . , xna finite se- quence of vectors inX, w1, w2, . . . , wnfinite sequence of positive real numbers.

Let also (p, q)be a pair of conjugate exponents1, m ∈ {2,3, . . . , n−1} and k ∈ {1,2, . . . , n}the following inequality holds:

(3.1)

xk− 1 Wn

n

X

i=1

wixi

m−1

X

r=1

1 n−r

n−r

X

i=1

rxi

!

×

n−1

X

i1=1 n−2

X

i2=1

· · ·

n−r

X

ir=1

Dw(k, i1)Dn−1(i1, i2)· · ·Dn−r+1(ir−1, ir)

!

1That is:1< p, q <,1p+1q = 1

(14)

A Discrete Euler Identity A. Agli´c Aljinovi´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of38

J. Ineq. Pure and Appl. Math. 5(3) Art. 58, 2004

http://jipam.vu.edu.au

n−1

X

i1=1 n−2

X

i2=1

· · ·

n−m+1

X

im−1=1

Dw(k, i1)Dn−1(i1, i2)· · ·Dn−m+1(im−1,·) q

k∆mxkp,

where

k∆mxkp =





n−m

P

i=1

k∆mxikp 1p

, if1≤p < ∞,

1≤i≤n−mmax k∆mxik ifp=∞.

Proof. By using the (2.6) and the Hölder inequality.

Corollary 3.2. Let (X,k·k) be a normed linear space, x1, x2, . . . , xn a finite sequence of vectors in X, w1, w2, . . . , wn a finite sequence of positive real numbers. Let also (p, q) be a pair of conjugate exponents. Then for all k ∈ {1,2, . . . , n}the following inequalities hold:

xk− 1 Wn

n

X

i=1

wixi

















 1 Wn

n P

i=1

|k−i|wi

· k∆xk,

1 Wn

k−1

P

i=1 i

P

j=1

wj

!q

+

n−1

P

i=k n

P

j=i+1

wi

!q!1q

· k∆xkp, 1

Wnmax{Wk−1, Wn−Wk} · k∆xk1.

Proof. By using the discrete analogue of the weighted Montgomery identity

(15)

A Discrete Euler Identity A. Agli´c Aljinovi´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of38

J. Ineq. Pure and Appl. Math. 5(3) Art. 58, 2004

http://jipam.vu.edu.au

(2.3) and applying the Hölder inequality we get

xk− 1 Wn

n

X

i=1

wixi

≤ kDw(k,·)kqk∆xkp.

We have

kDw(k,·)k1 = 1 Wn

k−1

X

i=1

|Wi|+

n−1

X

i=k

−Wi

!

= 1 Wn

k−1

X

i=1

(k−i)wi+

n−k

X

i=1

iwk+i

!

= 1 Wn

n

X

i=1

|k−i|wi

and the first inequality is proved.

Since

kDw(k,·)kq = 1 Wn

k−1

X

i=1

|Wi|q+

n−1

X

i=k

−Wi

q

!1q

= 1 Wn

k−1

X

i=1 i

X

j=1

wj

!q

+

n−1

X

i=k n

X

j=i+1

wi

!q!1q

the second inequality is proved.

Finally, for the third

kDw(k,·)k= 1

Wn max{Wk−1, Wn−Wk},

(16)

A Discrete Euler Identity A. Agli´c Aljinovi´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of38

J. Ineq. Pure and Appl. Math. 5(3) Art. 58, 2004

http://jipam.vu.edu.au

which completes the proof.

The first and the third inequality from Corollary3.2 and also the following corollary was proved by Dragomir in [7].

Corollary 3.3. Let (X,k·k) be a normed linear space, x1, x2, . . . , xn a finite sequence of vectors in X, w1, w2, . . . , wn finite sequence of positive real num- bers, and also let (p, q) be a pair of conjugate exponents. Then for all k ∈ {1,2, . . . , n}the following inequalities hold:

(3.2)

xk− 1 n

n

X

i=1

xi









1 n

n2−1

4 + k− n+12 2

· k∆xk,

1

n(Sq(k) +Sq(n−k+ 1))1q · k∆xkp,

1

nmax{k−1, n−k} · k∆xk1.

Proof. If we apply Corollary3.2withwi = 1,i= 1,2, . . . , n, or use the discrete Montgomery identity (2.5), we have

xk− 1 n

n

X

i=1

xi

=

n−1

X

i=1

Dn(k, i) ∆xi

n−1

X

i=1

|Dn(k, i)|q

!1q n−1 X

i=1

k∆xikp

!1p .

Since forq = 1

n−1

X

i=1

|Dn(k, i)|= 1 n

n2−1

4 +

k− n+ 1 2

2! ,

(17)

A Discrete Euler Identity A. Agli´c Aljinovi´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of38

J. Ineq. Pure and Appl. Math. 5(3) Art. 58, 2004

http://jipam.vu.edu.au

the first inequality follows.

For the second let1< q <∞

n−1

X

i=1

|Dn(k, i)|q = 1 nq

k−1

X

i=1

iq+

n−1

X

i=k

(n−i)q

!

= 1

nq (Sq(k) +Sq(n−k+ 1)) the second inequality follows.

Finally forq =∞and

1≤i≤n−1max {|D(k, i)|}= 1

n max{k−1, n−k}

implies the last inequality.

Corollary 3.4. Assume that all assumptions from Theorem 3.1hold. Then the following inequality holds

xl− 1 W2l−1

2l−1

X

i=1

wixi

m−1

X

r=1

1 2l−1−r

2l−1−r

X

i=1

rxi

!

×

2l−2

X

i1=1 2l−3

X

i2=1

· · ·

2l−1−r

X

ir=1

Dw(l, i1)D2l−2(i1, i2)· · ·D2l−r(ir−1, ir)

!

2l−2

X

i1=1 2l−3

X

i2=1

· · ·

2l−m

X

im−1=1

Dw(l, i1)D2l−2(i1, i2)· · ·D2l−m(im−1,·) q

k∆mxkp;

(18)

A Discrete Euler Identity A. Agli´c Aljinovi´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of38

J. Ineq. Pure and Appl. Math. 5(3) Art. 58, 2004

http://jipam.vu.edu.au

it may be regarded as a generalized midpoint inequality since for m = 1 it reduces to

xl− 1 W2l−1

2l−1

X

i=1

wixi

















 1 W2l−1

2l−1 P

i=1

|l−i|wi

· k∆xk,

1 W2l−1

l−1

P

i=1 i

P

j=1

wj

!q

+

2l−2

P

i=l n

P

j=i+1

wi

!q!1q

· k∆xkp, 1

W2l−1

max{Wl−1, W2l−1−Wl} · k∆xk1; if in additionwi = 1, i= 1,2, . . . ,2l−1it further reduces to

(3.3)

xl− 1 2l−1

2l−1

X

i=1

xi













l(l−1)

2l−1 · k∆xk, 1

2l−1(2Sq(l))1q · k∆xkp, l−1

2l−1 · k∆xk1.

Proof. Apply (3.1) withn= 2l−1andk=lto get the first inequality.

For the second, takingm= 1, or applying Hölder’s inequality to (2.7), gives

xl− 1 W2l−1

2l−1

X

i=1

wixi

=

2l−2

X

i=1

Dw(l, i) ∆xi

≤ kDw(l,·)kqk∆xkp.

(19)

A Discrete Euler Identity A. Agli´c Aljinovi´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page19of38

J. Ineq. Pure and Appl. Math. 5(3) Art. 58, 2004

http://jipam.vu.edu.au

Now

kDw(l,·)k1 = 1 W2l−1

l−1

X

i=1

|Wi|+

2l−1

X

i=l

−Wi

!

= 1

W2l−1 2l−1

X

i=1

|l−i|wi

! ,

kDw(l,·)kq= 1 W2l−1

l−1

X

i=1

|Wi|q+

2l−1

X

i=l

−Wi

q

!1q

= 1

W2l−1 l−1

X

i=1 i

X

j=1

wj

!q

+

2l−2

X

i=l n

X

j=i+1

wi

!q!1q ,

kDw(l,·)k = 1

W2l−1 max{Wl−1, W2l−1−Wl} and the second inequality is proved.

Now if we take wi = 1, i = 1,2, . . . ,2l − 1, or apply inequality (3.2) with n = 2l−1andk =l,

kD2l−1(l,·)k1 = 1 2l−1

2l−1

X

i=1

|l−i|= l(l−1) 2l−1 ,

kD2l−1(l,·)kq= 1 2l−1

2l−1

X

i=1

|l−i|q

!1q

= 1

2l−1(2Sq(l))1q , kD2l−1(l,·)k = 1

2l−1max{l−1,2l−1−l}= l−1 2l−1, and thus the third inequality is proved.

(20)

A Discrete Euler Identity A. Agli´c Aljinovi´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page20of38

J. Ineq. Pure and Appl. Math. 5(3) Art. 58, 2004

http://jipam.vu.edu.au

Corollary 3.5. Let all the assumptions from Theorem 3.1 hold. Then the fol- lowing inequality holds:

x1+xn

2 − 1

Wn

n

X

i=1

wixi

m−1

X

r=1

1 n−r

n−r

X

i=1

rxi

!

×

n−1

X

i1=1

· · ·

n−r

X

ir=1

Dw(1, i1) +Dw(n, i1)

2 Dn−1(i1, i2)· · ·Dn−r+1(ir−1, ir)

!

n−1

X

i1=1

· · ·

n−m+1

X

im−1=1

Dw(1, i1) +Dw(n, i1)

2 Dn−1(i1, i2)· · ·Dn−m+1(im−1,·) q

× k∆mxkp; this may regarded as a generalized trapezoid inequality since for m = 1 it reduces to

x1+xn

2 − 1

Wn

n

X

i=1

wixi













 Pn−1

i=1

Wi

Wn12

· k∆xk, Pn−1

i=1

Wi

Wn12

q1q

· k∆xkp,

maxn

w1

Wn12 ,

wn

Wn12

o· k∆xk1.

and if in addition,wi = 1, i= 1,2, . . . , nit further reduces to

(3.4)

x1 +xn 2 − 1

n

n

X

i=1

xi

(21)

A Discrete Euler Identity A. Agli´c Aljinovi´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page21of38

J. Ineq. Pure and Appl. Math. 5(3) Art. 58, 2004

http://jipam.vu.edu.au





















1

n n−1−n

2

n

2

· k∆xk,





1

n 2Sq n21q

· k∆xkp, ifnis even,

1 n

Sq(n−1)

2q−1 −2Sq n−12 1q

· k∆xkp, ifnis odd,

n−2

2n · k∆xk1.

Proof. To obtain the first inequality take (2.9) and apply Hölder’s inequality.

For the second we takem= 1or apply Hölder’s inequality to (2.10),

x1+xn

2 − 1

Wn

n

X

i=1

wixi

=

n−1

X

i=1

Dw(1, i) +Dw(n, i)

2 ∆xi

Dw(1,·) +Dw(n,·) 2

q

k∆xkp.

Now

Dw(1,·) +Dw(n,·) 2

1

=

n−1

X

i=1

Wi−Wi 2Wn

=

n−1

X

i=1

Wi Wn − 1

2 ,

Dw(1,·) +Dw(n,·) 2

q

=

n−1

X

i=1

Wi

Wn − 1 2

q!1q ,

(22)

A Discrete Euler Identity A. Agli´c Aljinovi´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page22of38

J. Ineq. Pure and Appl. Math. 5(3) Art. 58, 2004

http://jipam.vu.edu.au

Dw(1,·) +Dw(n,·) 2

= max

1≤i≤n−1

Wi Wn −1

2

= max

W1

Wn − 1 2 ,

Wn−1

Wn − 1 2

= max

w1

Wn − 1 2 ,

wn

Wn −1 2

and the second inequality is proved.

Now if we take wi = 1, i = 1,2, . . . , n, or use (2.11) and apply Hölder’s in- equality, we get

x1+xn 2 − 1

n

n

X

i=1

xi

≤ i n − 1

2 q

k∆xkp.

Forq= 1 i n −1

2 1

= 1 n

n−1

X

i=1

i−n

2 = 1

n

n−1−jn 2

k jn 2

k

;

for1< q <∞ i n −1

2 q

= 1 n

n−1

X

i=1

i− n

2

q!1q

=





1

n 2Sq n21q

, ifnis even,

1 n

S

q(n−1)

2q−1 −2Sq n−12 1q

, ifnis odd;

(23)

A Discrete Euler Identity A. Agli´c Aljinovi´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page23of38

J. Ineq. Pure and Appl. Math. 5(3) Art. 58, 2004

http://jipam.vu.edu.au

and forq =∞ i n − 1

2

= max

1≤i≤n−1

i n −1

2

= n−2 2n .

Remark 3.1. The first inequality from (3.3) was obtained by Dragomir in [7]

and also an incorrect version of the first inequality from (3.4), viz.:

x1+xn 2 − 1

n

n

X

i=1

xi

k−1

2 k∆xk, ifn = 2k,

2k2+2k+1

2(2k+1) k∆xk, ifn = 2k+ 1.

The second coefficient 2k2(2k+1)2+2k+1 should be 2k+1k2 since

1 2k+ 1

(2k+ 1)−1−

2k+ 1 2

2k+ 1 2

= k2 2k+ 1.

(24)

A Discrete Euler Identity A. Agli´c Aljinovi´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page24of38

J. Ineq. Pure and Appl. Math. 5(3) Art. 58, 2004

http://jipam.vu.edu.au

4. Estimates of the Differences Between Two Weighted Arithmetic Means

In this section we will give the estimates of the differences between two weighted arithmetic means using the discrete weighted Montgomery (Euler) identity. We suppose l, m, n ∈ N. The first method is by subtracting two weighted Mont- gomery identities. The second is by summing the discrete weighted Mont- gomery identity. Both methods are possible for both the case1 ≤l ≤ m ≤n, i.e. [l, m]⊆[1, n]and the case1≤l≤n ≤m, i.e.[1, n]∩[l, m] = [l, n].

Theorem 4.1. Let(X,k·k)be a normed linear space,x1, x2, . . . , xmax{m,n}a fi- nite sequence of vectors inX,l, m, n ∈N,w1, w2, . . . , wnandul, ul+1, . . . , um, two finite sequences of positive real numbers. Let also W = Pn

i=1wi, U = Pm

i=lui and fork∈N

Wk =

k

P

i=1

wi, 1≤k ≤n, W, k > n,

(4.1) Uk =









0, k < l,

k

P

i=l

ui l≤k ≤m, U, k > m.

If[1, n]∩[l, m]6=∅, then, for both cases[l, m]⊆[1, n]and[1, n]∩[l, m] = [l, n],

(25)

A Discrete Euler Identity A. Agli´c Aljinovi´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page25of38

J. Ineq. Pure and Appl. Math. 5(3) Art. 58, 2004

http://jipam.vu.edu.au

the next formula is valid

(4.2) 1

W

n

X

i=1

wixi− 1 U

m

X

i=l

uixi =

max{m,n}

X

i=1

K(i) ∆xi,

where

K(i) = Ui U − Wi

W, 1≤i≤max{m, n}. Proof. Fork ∈([1, n]∩[l, m])∩N, we subtract the identities

xk = 1 W

n

X

i=1

wixi+

n−1

X

i=1

Dw(k, i) ∆xi,

and

xk = 1 U

m

X

i=l

uixi+

m−1

X

i=l

Du(k, i) ∆xi.

Then put

K(k, i) =Du(k, i)−Dw(k, i). AsK(k, i)does not depend onkwe write simplyK(i):

(4.3) K(i) =





WWi, 1≤i≤l−1,

Ui

UWWi, l≤i≤m, 1−WWi, m+ 1 ≤i≤n,

if [l, m]⊆[1, n],

(26)

A Discrete Euler Identity A. Agli´c Aljinovi´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page26of38

J. Ineq. Pure and Appl. Math. 5(3) Art. 58, 2004

http://jipam.vu.edu.au

(4.4) K(i) =





WWi, 1≤i≤l−1,

Ui

UWWi, l ≤i≤n,

Ui

U −1, n+ 1≤i≤m,

if [1, n]∩[l, m] = [l, n].

Theorem 4.2. Let all assumptions from Theorem4.1 hold and(p, q)be a pair of conjugate exponents. Then we have

1 W

n

X

i=1

wixi− 1 U

m

X

i=l

uixi

≤ kKkqk∆xkp.

The constantkKkq is sharp for1≤p≤ ∞.

Proof. We use the identity (4.2) and apply the Hölder inequality to obtain

1 W

n

X

i=1

wixi− 1 U

m

X

i=l

uixi

=

max{m,n}

X

i=1

K(i) ∆xi

≤ kKkqk∆xkp.

For the proof of the sharpness of the constant kKkq, we will find x, a finite sequence of vectors inX such that

max{m,n}

X

i=1

K(i) ∆xi

=

max{m,n}

X

i=1

|K(i)|q

1 q

k∆xkp.

(27)

A Discrete Euler Identity A. Agli´c Aljinovi´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page27of38

J. Ineq. Pure and Appl. Math. 5(3) Art. 58, 2004

http://jipam.vu.edu.au

For1< p <∞takexto be such that

∆xi = sgnK(i)· |K(i)|p−11 . Forp=∞take

∆xi = sgnK(i).

Forp= 1we will find a finite sequence of vectorsxsuch that

max{m,n}

X

i=1

K(i) ∆xi

= max

1≤i≤max{m,n}|K(i)|

max{m,n}

X

i=1

|∆xi|

.

Suppose that |K(i)|attains its maximum ati0 ∈ ([1, n]∪[l, m])∩N. First we assume thatK(i0)>0. Definexsuch that∆xi0 = 1and∆xi = 0,i6=i0,i.e.

xi =

( 0, 1≤i≤i0,

1, i0+ 1< i≤max{m, n}. Then,

max{m,n}

X

i=1

K(i) ∆xi

=|K(i0)|= max

1≤i≤max{m,n}|K(i)|

max{m,n}

X

i=1

|∆xi|

,

and the statement follows. In the caseK(i0) <0, we takexsuch that∆xi0 =

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

In the following part the role of simulation-based production schedule evaluation – as an analogue to construction project scheduling –, as well a new approach is described including

We associate an identity with every finite automaton and show that a set of equations consiting of some classical identities as well as the equations associated with a subclass

It is not surprising that the equality case characterizes the Wigner distribution that, in many respects, is the free analogue of the Gaussian distribution (see [18]).. In the

In [1], the parallelogram identity in a real inner product space, is rewritten in Cauchy- Schwarz form (with the deviation from equality given as a function of the angular

In [1], the parallelogram identity in a real inner product space, is rewritten in Cauchy- Schwarz form (with the deviation from equality given as a function of the angular

YANG, On some nonlinear integral and discrete inequalities related to Ou-Iang’s inequality,

A discrete analogue of Okrasinsky’s model for the infiltration phenomena of a fluid is also discussed to convey the usefulness of the discrete inequality obtained.. Key words

In the following part the role of simulation-based production schedule evaluation – as an analogue to construction project scheduling –, as well a new approach is described including