• Nem Talált Eredményt

Review of Metal-Halogen Vibrational Frequencies R. J. H. CLARK William Ramsay and Ralph Forster Laboratories, University College, London, England

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Review of Metal-Halogen Vibrational Frequencies R. J. H. CLARK William Ramsay and Ralph Forster Laboratories, University College, London, England"

Copied!
37
0
0

Teljes szövegt

(1)

Review of Metal-Halogen Vibrational Frequencies

R . J . H . C L A R K

William Ramsay and Ralph Forster Laboratories, University College, London, England 1. Introduction . .

2. Metal-Fluorine Vibrational Frequencies A . Octahedral Molecules . .

B . Tetrahedral Molecules . . C. Heptafluorides . . D . Other Stereochemistries E . A s s i g n m e n t s in Metal Complexes

3. Metal-Chlorine, M e t a l - B r o m i n e , a n d M e t a l - I o d i n e Vibrational Frequ A . Octahedral H e x a h a l o a n i o n s

B . Tetrahedral A n i o n s C. Square Planar I o n s D . Five-coordinate H a l i d e s E . Linear Species . .

F . A s s i g n m e n t s in Metal Complexes 4. Conclusion

References

85 86 86 91 92 93 93 94 94 97 98 99 101 102 116 116

1. Introduction

W i t h t h e increasing use of infrared spectroscopy, p a r t i c u l a r l y in t h e region below 600 cm-^, t h e c h a r a c t e r i z a t i o n of low frequency s t r e t c h i n g a n d b e n d i n g m o d e s is b e c o m i n g a m a t t e r of some i m p o r t a n c e . M a n y v i b r a t i o n a l m o d e s m a y occur in t h i s region of t h e s p e c t r u m , e.g. m e t a l - halogen, m e t a l - s u l p h u r , m e t a l - n i t r o g e n , m e t a l - o x y g e n , a n d m e t a l - p h o s p h o r u s s t r e t c h i n g v i b r a t i o n s , as well as t h e 8(MC0), δ(ΜΟΑ) a n d δ(ΟΜΟ) b e n d i n g m o d e s in m e t a l carbonyls a n d m e t a l cyanides. M e t a l - halogen b o n d s occur frequently in inorganic complexes, a n d therefore t h e c h a r a c t e r i z a t i o n of t h e i r v i b r a t i o n a l frequencies is of p a r t i c u l a r im­

p o r t a n c e . R e c e n t studies h a v e shown t h a t m e t a l - h a l o g e n a b s o r p t i o n b a n d s v(MX) are often intense, a n d therefore readily identifiable, a n d t h a t t h e frequencies of t h e s e v i b r a t i o n s are r e l a t e d t o t h e o x i d a t i o n s t a t e a n d t h e coordination n u m b e r of t h e m e t a l a n d also t o t h e stereochemistry of t h e complex. <2)

I t would clearly b e of v a l u e t o h a v e a m e a s u r e of t h e s t r e n g t h of b o n d s

8 5

(2)

86 R. J. H. CLARK

a s t h e y a c t u a l l y exist in molecules. T h e force c o n s t a n t of a m e t a l - l i g a n d b o n d should provide one such m e a s u r e , albeit d e p e n d e n t on t h e physical model used. H o w e v e r , frequently t h e r e is insufficient information on t h e vibrational s p e c t r a of inorganic complexes (particularly R a m a n d a t a ) for t h e calculation of even a p p r o x i m a t e force c o n s t a n t s . H e n c e t h e necessity for gleaning as m u c h information as possible a b o u t complexes from their v i b r a t i o n a l s p e c t r a alone.

Most emphasis will b e placed on t h e v i b r a t i o n a l frequencies of octa­

hedral complexes, b u t corresponding d a t a for t e t r a h e d r a l , s q u a r e p l a n a r , trigonal b i p y r a m i d a l , p e n t a g o n a l b i p y r a m i d a l a n d linear species will also b e discussed. T o some e x t e n t t h e properties of fluoro complexes s t a n d a p a r t from those of o t h e r halo complexes, a n d accordingly ν (MF) v i b r a t i o n s are discussed s e p a r a t e l y from t h e o t h e r v(MX) v i b r a t i o n s . F i n a l l y t h e factors affecting t h e frequencies of i/(MX) v i b r a t i o n s will b e s u m m a r i z e d . While t h e v(MX) v i b r a t i o n a l frequencies discussed in t h i s review centre on those of t h e t r a n s i t i o n m e t a l s a n d i m m e d i a t e post- t r a n s i t i o n elements, t h e t e r m ' ' m e t a l " will b e used r a t h e r loosely, a n d w h e r e r e l e v a n t t h e v i b r a t i o n a l frequencies of pre-transition elements will also be discussed.

2. Metal-Fluorine Vibrational Frequencies A. Octahedral molecules

(i) Neutral Species

T h e best characterized v(MF) v i b r a t i o n s are t h o s e of t h e o c t a h e d r a l m e t a l hexafluorides<^-^^) in t h e gaseous s t a t e . These c o m p o u n d s h a v e been studied b y infrared a n d frequently also b y R a m a n t e c h n i q u e s a n d a l m o s t complete a s s i g n m e n t s h a v e b e e n m a d e for t h e i r six v i b r a ­ tional frequencies. T h e s t r e t c h i n g m o d e s v-^ a n d lie in t h e r a n g e s 628-771 a n d 616-748 cm~^ respectively. T h e m o d e V g , being inactive in b o t h t h e infrared a n d t h e R a m a n , m u s t be o b t a i n e d from c o m b i n a t i o n b a n d s (Table I ) .

T h e corresponding s p e c t r a for t h e n o n - m e t a l hexafluorides are also i n c l u d e d i n T a b l e I . T h a t t h e b o n d i n g in b o t h t h e m e t a l (of which t h e r e are 14) a n d t h e n o n - m e t a l (of which t h e r e a r e four) hexafluorides is similar, is e v i d e n t from t h e close similarity b e t w e e n t h e v i b r a t i o n a l s p e c t r a of t h e s e t w o ''classes" of c o m p o u n d . I t is also interesting t h a t for t h e t r a n s i t i o n m e t a l hexafluorides of t h e t h i r d r o w lies 31-62 cm~^

a b o v e t h e m o d e of t h e corresponding second-row hexafluorides, suggesting t h a t t h e effects of t h e l a n t h a n i d e contraction in t h e t h i r d t r a n s i t i o n series a r e being reflected in t h e i/(MF) m o d e s .

T h e b o n d stretching force c o n s t a n t s for t h e m e t a l hexafluorides a r e also higher for t h i r d - r o w t r a n s i t i o n elements t h a n for t h e corresponding

(3)

METAL-HALOGEN VIBRATIONAL FREQUENCIES 87 second-row elements, a n d decrease w i t h i n each series w i t h increasing TT-electron o c c u p a t i o n of t h e n o n - b o n d i n g shell of t h e m e t a l (Table I) . ( i ^ )

T A B L E I . V i b r a t i o n a l s p e c t r a ( c m - ^ ) o f m e t a l h e x a f l u o r i d e s / ( m d / Â ) Réf.

R R I . R . I . R . R I Réf. 10

Metal hexafluorides (gaseous state) f

MoFe 741 643 741 262 312 122 4-84 3

W F e 771 673 711 258 315 134 5-20 4

TcFg 712 639a 748 265 2 9 7 a 174 4-79 3

R e F e 755 6 7 l a 715 257 2 9 5 a 193 5-17 5

R u F e 675 624 735 275 283a 186 4-61 6

O s F e 733 668a 720 272 276a 205 5 1 4 7

R h F e 634 592 724 283 269 189 4-27 6

IrFe 701 646 719 276 258 206 4-94 8 , 9

P t F e 655 600 705 273 242 211 4-52 7

U F e 667 535 623 184 201 140 3-81 10

N p F e 648 528 624 198 205 165 3-73 10

P u F e 628 523 616 203 211 173 3-62 10

Non-metal hexafluorides (gaseous s t a t e ) t

SFg 773 641 938 613 519 350 5-53 11

SeFe 708 661 780 437 403 262 5-04 11

TeFe 701 674 752 325 313 195 5 1 1 11

Anionic hexafluorides (condensed phases)

613 560 275 17a

581 — — — 228 17a

W F g ^ - 589 — — — 230 17a

i > S i F 6 2 - 655 474 740 485 395 17a, 18a

cGeFe^- 627 454 600 350 318 18b

to.dSnFe^ - 585 470 556 241 — — 17a

PbFg^- 543 502 — — — — 17a

ePtFg^- 600 576 571 281 210 143 20

f A s F e - 682 583 706 402, 389 372 — — 21

eNbFe" 683 562 585, 619sh 256, 232 280 — — 17b, 26b

«TaFg- 692 581 560 240 272 — — 17c, 26b

HUF^- 506 503 150 145 100 22

"j- T h e frequencies q u o t e d are t h e revised v a l u e s of W e i n s t o c k a n d Goodmani^^^); t h e reference n u m b e r s a p p l y t o t h e m o s t recent p u b l i s h e d literature for e a c h molecule.

a T h e v a l u e s of ν2 and v g for t h e d^- a n d iZ^-hexafluorides h a v e b e e n o b t a i n e d b y inter­

polation of t h e corresponding v a l u e s for t h e non-Jahn-Teller-active hexafluorides.(^°^)

^ R a m a n spectrum of a q u e o u s solutions of t h e a m m o n i u m salt.

c Fluorogermanic acid solutions.

d Infrared spectrum of t h e salt [ ( n - C 3 H 7 ) 2 N H 2 ] 2 S n F 6 in MeCN solution.

e R a m a n s p e c t r u m refers t o a solution of t h e s o d i u m salt; infrared spectra refer t o nujol mulls and K B r pressed discs of t h e c a e s i u m salt.

' Infrared s p e c t r u m refers t o t h e A S C I 4 + salt.

? R a m a n a n d infrared spectra of t h e crystalline c a e s i u m salt.

^ D e d u c e d from a n analysis of t h e vibronic s p e c t r u m of t h e caesium salt.

R = R a m a n - a c t i v e ; I R = infrared-active; I = inactive. T h e force c o n s t a n t referred t o is t h e metal-fluorine stretching force constant.

(4)

88 R. J. H. CLARK

Because of t h e e x t r e m e difficulties associated w i t h t h e r a d i o a c t i v i t y of t h e m a t e r i a l , t h e s p e c t r u m of polonium hexafluoride h a s n o t y e t been reported. <^^>

X e n o n hexafluoride i^^) h a s six b o n d i n g a n d one n o n - b o n d i n g electron pairs a b o u t t h e central a t o m , a n d t h e r e was some speculation therefore, as t o w h e t h e r t h e molecule would be completely s y m m e t r i c a l (cf. t h e T e C y - ion). H o w e v e r , b o t h infrared a n d electron diffraction d a t a clearly indicate t h a t t h e molecule is signiflcantly d i s t o r t e d from octahedral.<i^^)

A t t e m p t s t o p r e p a r e t h e m o s t likely of t h e o t h e r possible hexafluorides (AmFg a n d PdFg) h a v e so far been unsuccessful. H o w e v e r , t h e v e r y u n s t a b l e c h r o m i u m hexafluoride was recently synthesized b y Glemser et αΖ.,<^^) w h o found t h a t in t h e solid s t a t e t h e v i b r a t i o n is split i n t o t h r e e b a n d s a t 730, 785 a n d 800 cm-^.

T h e v i b r a t i o n a l s p e c t r a of certain m e t a l hexafluorides h a v e been cited as providing evidence for t h e d y n a m i c J a h n - T e l l e r eff*ect. T h e t h e o r e m , e n u n c i a t e d in 1937,^^^»^^) s t a t e s t h a t s y m m e t r i c a l s t r u c t u r e s in non-linear p o l y a t o m i c molecules are u n s t a b l e w i t h respect t o certain nuclear dis­

p l a c e m e n t s if t h e electronic s t a t e of t h e molecule is degenerate. If such is t h e case, t h e molecule c a n lower its energy b y a distortion of t h e nuclear configuration t o one of lower s y m m e t r y , t h e r e b y destroying t h e electronic degeneracy. W h e n t h e gain in stability on distortion is com­

p a r a b l e w i t h t h e energy of t h e r e l e v a n t v i b r a t i o n a l m o d e , no s t a t i c distortion will be observed, b u t r a t h e r certain abnormalities in t h e v i b r a t i o n a l spectra are t o be e x p e c t e d as a result of vibrational-electronic coupling.

T h e i i i (TcFfi, ReFg), (RuFg, OsFg), a n d (RhFg, IrFg) m e t a l hexafiuorides h a v e d e g e n e r a t e electronic g r o u n d s t a t e s , a n d it m a y be shown t h a t a J a h n - T e l l e r effect could be e x p e c t e d for b o t h t h e Cg {v<^) a n d t^g (vg) v i b r a t i o n a l m o d e s of t h e s e molecules. T h e e x p e r i m e n t a l observations of Weinstock, Claassen a n d Chernick<^) were as follows:

for m e t a l hexafiuorides in which a J a h n - T e l l e r distortion is n o t possible (e.g. d^ molecules) v-^ -\- Vg a n d + occur w i t h similar frequencies, intensities a n d s h a p e ; however, for t h e d^ a n d hexafiuorides, t h e

^2 + c o m b i n a t i o n b a n d is v e r y m u c h b r o a d e r t h a n t h e v-^ + b a n d . H o w e v e r , in a r e c e n t comprehensive s u r v e y of t h e spectra of all k n o w n hexafiuorides, W e i n s t o c k a n d G o o d m a n h a v e concluded t h a t t h e Vg a n d V5 m o d e s for t h e d^ a n d d'^ hexafiuorides c a n n o t b e o b t a i n e d simply from t h e spectra, b u t m u s t be e v a l u a t e d from a detailed analysis of t h e d y n a m i c coupling of t h e electronic a n d v i b r a t i o n a l m o t i o n s of t h e mole­

cules. A static distortion is ruled o u t b y t h e lack of splitting of t h e t r i p l y degenerate f u n d a m e n t a l s . Corresponding abnormalities were n o t ob­

served for t h e d^ fiuorides, a n d reasons for this h a v e been given.

(5)

METAL-HALOGEN VIBRATIONAL FREQUENCIES 89 (ii) Anionic Species

These v e r y complete studies d o n o t , of course, e x t e n d t o condensed phases, e x c e p t in a few cases, i^^-^^)

T h e d a t a on GeFg^- in T a b l e I o b t a i n e d b y Griffiths a n d Irish(i8a)^

refer t o fluorogermanic acid s o l u t i o n s . T h e y also s t u d i e d Nujol mulls a n d caesium iodide pellets of t h e c o m p o u n d s CsgGeFe, (NH4)2 GeFg a n d B a GeFg, in o r d e r t o ascertain t h e effect of lowering t h e site s y m m e t r y of t h e g e r m a n i u m a t o m from Oh (as in t h e caesium salt) t o D^^ (^s in t h e b a r i u m salt). T h e s p e c t r a , r e p r o d u c e d in F i g . 1, indicate t h a t b o t h a n d

r e m a i n t r i p l y d e g e n e r a t e in t h e caesium salt, b u t t h a t splits b y ^ 3 0 0 c m- i in t h e b a r i u m salt, in a g r e e m e n t w i t h t h e selection rules for v i b r a ­ tional s p e c t r a of crystals w h e n t h e space g r o u p a n d n u m b e r of molecules p e r u n i t cell are k n o w n , i^^) (v^ is b r o a d e r in t h e b a r i u m salt, b u t does

Cs2GeF6

Space group: 0/

Site group: O^,

(NH4)2GeF6

Space group: ^ 3 ^ ; (9/

Site group: ^ 3 ^ ;

6 0 0 5 0 0 4 0 0 Frequency (cm"')

F I G . L Infrared spectra of CsaGeFe, (NH4)2GeF6 and BaGeFg in caesium iodide discs.ii»)

(6)

90 R. J. H. CLARK

not apparently split. ) T h e a m m o n i u m salt crystallizes i n b o t h a hexagonal f o r m (site group D^^) a n d a cubic f o r m (site group Oh) a n d the scan i n F i g . 1 is more consistent w i t h the latter f o r m .

I n their R a m a n study of the SnF^^- ion, as present in the salt KaSnFg.HgO, K r i e g s m a n n a n d Kessleri^^^) claimed t h a t > i n contrast to the general behaviour of m e t a l hexafluorides. V e r y recently, however, E v a n s a n d Dean<i^^) have shown t h a t the shoulder a t 624cm assigned as b y the flrst group of workers, arises f r o m the solid state splitting of the v i b r a t i o n , a n d t h a t < v-^ as expected.

T h e spectra of the VfF^^-^^^) P t C ^ - a n d PtBrg^- ions^^s) are interest­

ing because t h e y appear to provide the first experimental evidence for TT-bonding in the latter t w o species or indeed in a n y diamagnetic species of t h e t y p e MXg. T h e R a m a n spectrum of the PtFg^- ion shows the n o r m a l intensity p a t t e r n for octahedral MXg molecules, w i t h being more intense t h a n v^. H o w e v e r , t h e reverse is t r u e for the chloride a n d bromide, a n d i t is suggested b y W o o d w a r d a n d Ware^^^) t h a t t h e six -electrons on the p l a t i n u m are involved i n 7r-bonding to t h e v a c a n t , low-energy cZ-orbitals of the chlorine a n d bromine atoms.

Fluorine does n o t possess corresponding low-energy acceptor orbitals for electron delocalization f r o m the p l a t i n u m , a n d hence t h e R a m a n intensities of the bond stretching modes r e m a i n n o r m a l . This con­

clusion is supported b y the observation t h a t the metal-fluorine force constants decrease progressively i n the series WFg (d^), R e F ^ [άλ), OsFg (d!^), IrFg {d^) a n d P t F g [d"^) (no 77-bonding possible) b u t increase i n t h e series ReCle^- {d^, OSCIQ^- {d^) a n d PtClg^- [d^), consistent w i t h t h e presence of increasing 7r-bonding i n the hexachloro species.

T h e close similarity of t h e R a m a n spectrum of t h e crystalline solid CsNbFg to those of k n o w n hexafluoro species has established for the first t i m e t h a t the N b F g - ion exists i n this salt.^^"^^) I t is also present i n aqueous H F solutions containing a t least 2 5 % H F . I n the same study, i t was demonstrated t h a t the complex KaNbOFg.HgO contains the N b O F g ^ - ion (and w a t e r of h y d r a t i o n ) i n the solid state, a n d i n aqueous solution, rather t h a n the alternative Nb(OH)2F52- ion. I n K F / L i F melts, t h e predominant species is, however, t h e NbF7^~ ion.^^'^'^)

T h e d a t a for the UFg" ion were derived f r o m a n analysis of the vibronic spectrum of the caesium salt i n the near-infrared a n d visible regions. <22^) Using these d a t a , t h e U — F bond stretching force con­

stant <22i>) was calculated to be 2-44 m d / Â , assuming a U — F bond distance of 1-98Â.

T h e m a j o r i t y of d a t a currently available on M—^F vibrational fre­

quencies, however, refer only to the infrared-active stretching mode.

These d a t a , initially obtained b y Peacock and Sharp, i^^^) are summarized

(7)

METAL-HALOGEN VIBRATIONAL FREQUENCIES 91

MFe2- Ti V Cr Mn F e Co N i Ge

560 583 556 622 — — 654 600

Zra N b Mo Tc R u R h P d Sn

< 4 0 0 — — 581 589 602 552

H f T a W R e Os Ir P t P b

— — — 541 548 568 583 502

M F r V A s

715 700

N b Mo Tc R u Sb

580 623 640 660

T a W R e Os Ir

580 594 627 616 667

* T h e ZrFg^" ion is a c t u a l l y eight-coordinate (dodecahedral) in t h e solid s t a t e , w i t h four bridging a n d four terminal fluorine a t o m s b o u n d t o each zirconium a t o m .

in T a b l e I I . T h a t v(MP) frequencies characteristically increase w i t h in­

creasing o x i d a t i o n s t a t e of t h e m e t a l is clear from a comparison of t h e d a t a in T a b l e s I a n d I I , e.g. increases in t h e series RuFg^-, 581 ; RuFg", 640; RuFg, 735; IrFg^-, 568; IrFg-, 667; IrFg, 718 cm-i. T h e c o r r e s p o n d ­ ing m o d e s in t h e t e r v a l e n t hexafluorides (cryolites) a n d b i v a l e n t h e x a ­ fluorides (perovskites) occur t o lower frequencies again, in t h e ranges 446-617 c m- i (M = Al, Sc, T i , V , Cr, M n , F e , Co, Ga, R u , R h , I n ) a n d 407-489 c m- i (M - Mg, Cr, M n , F e , Co, N i , Cu, Zn) respectively. T h e

^ S i u ) b e n d i n g m o d e h a s been observed a t 292 cm-^ in KgVFg a n d a t 308 c m- i in K^CrF^A^^^) I t also occurs in t h e r a n g e s 234-289 c m- i for t h e salts CsgMFg (M R e , R u , Os, R h , I r , P d , a n d P t ) a n d 220-315 c m- i for t h e salts CsMFg (M = V , N b , T a , S b , M o , W, R e , R u , Os a n d I r ) ; is little d e p e n d e n t o n t h e o x i d a t i o n s t a t e , a n d is frequently split into t w o b a n d s in solid-state infrared spectra, i^e^)

B. Tetrahedral molecules

F o r t e t r a h e d r a l m e t a l fluorides, even fewer d a t a a r e c u r r e n t l y avail- able(22-30) (Table I I I ) , b u t it is e v i d e n t t h a t v(MF) m o d e s occur a t higher frequencies t h e lower t h e coordination n u m b e r of t h e m e t a l , e.g. 1^3(^2)

for GeF^ = 800 c m- i , b u t ^3(^1^ for GeFg^- = 600 c m- i . I t should b e n o t e d t h a t t h e d a t a in T a b l e I I I refer t o t h e gaseous molecule; in t h e solid s t a t e , t h e coordination p o l y h e d r o n a b o u t t h e m e t a l in zirconium a n d hafnium tetrafluorides is eight-coordinate s q u a r e a n t i p r i s m a t i c , while t h a t in t h o r i u m tetrafluoride is eight-coordinate dodecahedral. (^i) T h e i^(MF) m o d e s of such fluorine-bridged s t r u c t u r e s occur a t lower frequencies t h a n in t h e gaseous s t a t e .

T A B L E I L I n f r a r e d a c t i v e v ( M F ) m o d e s (v3,tiu, c m - ^ ) i n c o m p l e x h e x a i i u o r o a n i o n s ( p o t a s s i u m s a l t s )

(8)

92 Β . J. Η. CLARK

V2(e) ^4(^2) References

SiF^ 800 268 1010 390 28

GeF4 738 205 800 260 29

ZrF4 6 0 0 - 7 2 5 * 1 5 0 - 2 0 0 * 668 190 ± 2 0 30

HfF4

— —

645

30

ThF^

— —

520

30

a Calculated value.

As in t h e case of t h e o c t a h e d r a l fluorides, t h e r e is n o gross difference b e t w e e n t h e v i b r a t i o n a l frequencies of essentially metallic gaseous t e t r a ­ fluorides, a n d non-metallic ones such as

CF4

a n d SiF4.<2^'^2)

I n a d d i t i o n , S t a m m r e i c h , Sala a n d Bassi^^^) h a v e r e c e n t l y p u b l i s h e d a full v i b r a t i o n a l analysis of t h e t e t r a h e d r a l ions C r O g X - (X = F , CI);

t h e v i b r a t i o n s which a r e essentially C r — X stretching m o d e s occur a t 637 c m- i ( X - F ) a n d 438 c m- i ( X = CI).

C. Heptafluorides

T h e infrared spectra (vapour state) a n d R a m a n s p e c t r a (liquid state) of t h e t w o k n o w n n e u t r a l heptafluorides,

IF7<^^^)

a n d ReF7<^^^) a r e b o t h satisfactorily a c c o u n t e d for o n t h e basis of t h e p e n t a g o n a l b i p y r a m i d a l model (Z>5ii) (although t h e s a m p l e of t h e former m a y h a v e been con­

t a m i n a t e d w i t h

IOF5).

A l t h o u g h t h e s y m m e t r y of iodine heptafluoride in t h e solid s t a t e h a s b e e n t h e subject of considerable d i s p u t e , d u e t o i n a d e q u a t e X - r a y d a t a on a possibly i m p u r e sample, t h e m o s t r e c e n t analysis favours t h e D^^^ model in this s t a t e also.(^^^) F o r this model, t h e r e a r e flve e x p e c t e d R a m a n - a c t i v e v i b r a t i o n s (2αι' -f e^" -\- 2e^) a n d also five expected infrared-active v i b r a t i o n s {2α.^' + 3βι') w i t h o n e m o d e inactive [e^"). Only t h r e e of t h e infrared-active m o d e s were located for t h e r h e n i u m c o m p o u n d . T h e highest frequency f u n d a m e n t a l s , which a r e essentially b o n d - s t r e t c h i n g v i b r a t i o n s , occur a t 678 (R) a n d 670 (i.r.) for IF7, a n d a t 737 (R) a n d 703 c m- i (i.r.) for R e F ^ .

Only o n e infrared-active v(MF) m o d e h a s been r e p o r t e d for t h e seven- coordinate anions<^4*^) N b F 7 2 - a n d T a F 7 2 - a t 5 2 4 a n d 518 cm-^ respec­

tively (potassium salts), (^β) T h e R a m a n s p e c t r u m of t h e former (also a s t h e crystalline p o t a s s i u m salt) contains t h r e e b a n d s , a t 782 (w), 630 (vs) a n d 388 (m).<^^^> H o w e v e r , in a q u e o u s H F solutions t h e ion is n o t seven-coordinate; t h e n i o b i u m is p r e s e n t a s t h e N b F g - ion (in concen­

t r a t e d H F solutions) a n d a s t h e NbOFg^- ion (in dilute H F solutions).

This conclusion agrees w i t h t h a t d r a w n from n.m.r. measurements.<^^^)

T A B L E I I I . V i b r a t i o n a l s p e c t r a (cm"^) o f t e t r a h e d r a l m e t a l fluorides i n t h e v a p o u r s t a t e

(9)

METAL-HALOGEN VIBRATIONAL FREQUENCIES 93 I n a similar study of t h e corresponding t a n t a l u m s y s t e m , t h e

R a m a n spectra o f t h e crystalline complexes NagTaFg, (NH4)3TaOF6, K2TaF7 a n d CsTaFg as well as K e N b O F g a n d (NH4)3 N b O F g have been recorded. F r o m R a m a n spectra o f 2 4 M H F solutions o f t a n t a l u m ( ^ ^ I M i n t a n t a l u m ) t h e predominant species was identified as t h e T a F ^ - i o n , b u t i n more dilute H F solutions, t h e TSLF^^- ion is present i n appreciable amounts. I n melts o f TaFg i n t h e L i F / K F solvent, t h e p r e d o m i n a n t anionic species is t h e TaF^^- i o n , whereas w i t h t h e L i F / N a F solvent, t h e T a F e " ion is also present.

D. Other stereochemistries

T h e infrared spectrum o f VF5 v a p o u r has been studied, (^^*) b u t t h e d a t a alone were insufiicient t o determine whether t h e molecule has a trigonal b i p y r a m i d a l or a square p y r a m i d a l structure. M o r e refined infrared spectra, together w i t h R a m a n spectra, however, have demon­

strated t h a t t h e molecule has t h e t r i g o n a l - b i p y r a m i d a l structure i n the vapour phase, b u t t h a t i t is highly associated i n t h e l i q u i d phase.

Monomeric molecules are evidently present i n l o w concentration i n t h e room-temperature l i q u i d , b u t constitute t h e m a i n component i n t h e l i q u i d a t temperatures above 100°.

B o t h VF3 a n d VF4 show a broad b a n d a t 5 3 0 - 5 4 0 c m - \ p r o b a b l y associated w i t h t h e bridging i/ ( V F ) modes o f t h e octahedral polymeric units. H o w e v e r , t h e tetrafiuoride has additional bands a t 7 8 0 - 8 3 7 cm~^

which, i f t h e y are fundamentals rather t h a n combination or overtone bands, m a y be associated w i t h t h e t e r m i n a l V — F bonds o f the molecule.

A useful compilation o f M— X stretching frequencies i n n o n - m e t a l halides a n d oxyhalides o f t h e types

MX3,

OMXg,

O3MX,

a n d

MX5

( M = B r , I ) has been presented b y Nakamoto,<^^) a n d w i l l n o t be re­

peated here. T h e spectra o f t h e halides a n d m i x e d halides o f phosphorus a n d a n t i m o n y are discussed later. T h e spectra o f t h e linear difluorides, K r F g a n d X e F g have also been reported recently.

E, Assignments in metal complexes

F e w assignments o f v ( M F ) modes i n m e t a l complexes have y e t been made. P a r t o f t h e difficulty arises because such vibrations w o u l d be expected t o occur i n t h e 4 0 0 - 7 0 0 cm^^ region i n which several vibrations (notably aromatic ring vibrations) o f t h e more common ligands are k n o w n t o occur. H e n c e unambiguous identification is difficult. E a r l y assignments o f v ( T i F ) modes were m a d e b y R a o o n adducts o f t i t a n i u m tetrafluoride w i t h pyridine a n d acetonitrile a n d more recent d a t a o n these vibrations<^^'^i) are summarized i n T a b l e I V . Corresponding v i b r a ­ tions i n adducts of silicon tetrafluoride w i t h pyridine, triphenylphosphine

(10)

94 R. J. H. CLARK

v(MF) 8(FMF) References

TiF^bipy 634, 562, 450? 311, 272, 254 40

TiF^.phen 645, 570, 462? 308, 276, 256 40

Ti(acac)2F2 629 306? 41

Sn(acac)2F2 581

41

b i p y = 2,2'-bipyridyl; p h e n = 1,1 O-phenanthroline; H a c a c = acetylacetone.

oxide a n d o-phenanthroline occur^^^) in t h e 759-813 cm-^ region for i/(SiP), a n d a t 399-490 cm-^ for 8(FSiP); cf. a n d of SiFg^- occur a t 726 a n d 480 cm-^ respectively. (^6) ( F r o m t h e n u m b e r of r(SiF) m o d e s active in t h e infrared, t h e first t w o complexes are believed t o h a v e t h e trans configuration.) F o r t h e v e r y limited n u m b e r of six-coordinate complexes of Si, Ti a n d Sn so far s t u d i e d , it a p p e a r s t h a t v(MF) m o d e s occur a t slightly higher frequencies in m e t a l fluoride complexes t h a n in t h e p a r e n t MF^^- ions.

K r i e g s m a n n a n d Kessleri^^^) a n d K o l d i t z a n d Nussbucher(^^) h a v e s t u d i e d t h e infrared a n d R a m a n s p e c t r a of t h e complex anions [SnFsOH]^-, [ A s F g O H ] - a n d [ S b P g O H ] - a n d assigned b a n d s occurring in t h e 547-620, 670-675, a n d 615-640 cm-^ regions t o v{SnF), v(AsF) a n d i/(SbF) v i b r a t i o n s respectively. T h e oxygen-bridged dimeric anions [MgFgOa]^- (M = As, Sb) also h a v e v(MF) b a n d s in t h e r e l e v a n t regions a b o v e . (^^)

B a n d s occurring a t 444-562 a n d 367-372 cm-^ in t h e infrared s p e c t r a of t h e c o m p o u n d s SnClF, SnFg a n d ( N H 4 ) S n F 3 h a v e b e e n assigned as v(SnF) a n d 3(FSnF) m o d e s respectively, t h e d a t a being i n t e r p r e t e d t o i m p l y t h e presence of t h e [ S n F 3 ] - ion in each compound.i^^^) F o r c e c o n s t a n t calculations b y D o n a l d s o n et alA^^^^ suggest t h a t some revision t o these a s s i g n m e n t s m a y b e necessary.

I t h a s r e c e n t l y b e e n shown(^^^»^) t h a t , c o n t r a r y t o p r e v i o u s r e p o r t s , alkyl a n d aryl t i n fluorides of t h e t y p e s R 3 S n F a n d RgSnFg a b s o r b in t h e 328-350 c m - ^ r e g i o n a n d t h a t t h i s b a n d m u s t arise from a v(SnF) m o d e . T h e c o m p a r a t i v e l y low frequency for t h i s v i b r a t i o n m u s t i m p l y t h a t t h e fluorine a t o m s a r e bridging in t h e c o m p o u n d s (cf. X - r a y d a t a ) .

T h e c o m p o u n d ( C 6 F 5 ) 2 T I F is also believed t o be a fluorine-bridged d i m e r because of t h e c o m p a r a t i v e l y low values for t h e v(TlF) v i b r a t i o n s

(320 a n d 165 c m- i ) . ( ^ 5 )

3. Metal-Chlorine, M e t a l - B r o m i n e a n d M e t a l - I o d i n e Vibrational Frequencies

I t is convenient t o deal w i t h t h e frequencies t o g e t h e r .

T A B L E I V . v ( M F ) a n d S ( F M F ) m o d e s ( c m - ^ ) i n c o m p l e x e s o f t h e G r o u p I V e l e m e n t s

(11)

METAL-HALOGEN VIBRATIONAL FREQUENCIES 9 5

A. Octahedral Hexahaloanions

T h e r e a p p e a r s t o b e n o information o n t h e v i b r a t i o n a l s p e c t r a of n e u t r a l h e x a h a l i d e s MXg ( X = CI, B r , I ) , b u t some information is n o w available o n t h e hexahaloanions.(^^'^δ,47-56) These d a t a h a v e only r e ­ cently been o b t a i n e d because (a) t h e colours of t h e complexes often m a k e it impossible t o o b t a i n t h e i r R a m a n s p e c t r a w i t h t h e usual blue H g 4 3 5 8 Â exciting line a n d (b) infrared s p e c t r o m e t e r s h a v e only r e c e n t l y been developed commercially t o locate t h e low-lying f u n d a m e n t a l s of such molecules.

H o w e v e r , b y use of t h e green H g line ( 5 4 6 1 Â ) a n d t h e yellow a n d r e d H e lines ( 5 8 7 6 a n d 6 6 7 8 Â , respectively) for excitation, t h e R a m a n spectra of t h e ions ReCle^"", ReBrg^- a n d OsClg^- h a v e b e e n recorded b y W o o d w a r d a n d W a r e , i^^) T h e infrared-active c o m b i n a t i o n b a n d s of t h e s e molecules show some confusing aspects w h e n c o m p a r e d w i t h t h e corre­

sponding b a n d s of hexafluoride molecules w i t h t h e s a m e configura­

tion. B o t h ReCle^- a n d ReBrg^- (i^^) a n d OsCle^" (tig) b e h a v e like P t F ^ ^ - (tlg) b y giving a n infrared p a t t e r n i n which t h e c o m b i n a t i o n b a n d 1^2 + ^3 is observed b u t v-^^ + is n o t . This is t h e opposite result t o t h a t e x p e c t e d from a consideration of t h e J a h n - T e l l e r effect, a n d from t h a t found e x p e r i m e n t a l l y for t h e n e u t r a l hexafiuorides, b u t m a y b e a con­

sequence of t h e fact t h a t t h e s e infrared results were o b t a i n e d for nujol mulls of ionic solids r a t h e r t h a n for gaseous molecules (as i n t h e case of

T A B L E V . V i b r a t i o n a l s p e c t r a ( c m - ^ ) o f h e x a h a l o a n i o n s r(MX)A(23) R e f e r e n c e s

T i C l e ^ - 4 6 3 3 4 0 330«· 2 5 2 2-34 4 7 , 4 8 a

R e C l e ^ - 3 4 6 2 7 5 3131^ 172^ 159 2-37 2 0

O s C l e ^ - 3 4 6 2 7 4 314^ 1771) 165 2-36 2 0

P d C l e ^ - 317 2 9 2 3 4 0 d 175d 164 4 8 a , 4 9

P t C l e ^ - 3 4 4 3 2 0 3 4 3 d 182d 162 2-34 4 8 a , 4 9

G e C l g ^ - 3 1 8 2 1 3 293^ 2 0 5 a 191 4 8 a , 5 3 a

S n C l g ^ - 3 1 1 2 2 9 2 9 4 a 1 6 5 a 158 2 - 4 3 4 8 a , 4 9 , 5 0 , 5 3 a

P b C l e ^ - 2 8 5 2 1 5 2 6 5 » 130 137 2 - 5 0 4 8 a , 4 9 , 5 1 , 6 9

SeCle^- - - 3 4 6 2 5 2 2 9 4 e 1 8 2 e 164 2-41 5 2 , 5 3 a , b

T e C l e ^ - 2 8 7 2 4 7 2 2 8 e 105e 131 2-51 5 3 a , b

p c i e - 3 6 0 2 8 3 4 4 4 a.c 285» 2 3 8 5 3 a , 5 4 a

A s C l f i - 337 2 8 9 3 3 3 220» 2 0 2 5 3 a

S b C l g - 337 2 7 7 3 4 5 180 172 5 3 a , 5 5

R e B r e ^ - 2 1 3 174 217^ 118^ 104 2 - 5 0 2 0

P t B r e ^ - 2 0 7 190 2 4 4 d 90d 97 2 5 , 4 9

S n B r e ^ - 185 138 — — 95 2-64 2 5

P t i e ^ - — — 186d 4 6 d — — 56

T l C l e ^ - 2 8 0 2 6 2 — — 155 2 - 4 9 143

» T e t r a e t h y l a m m o n i u m s a l t .

^ C a e s i u m s a l t . c A s t h e P C I 4 +s a l t .

I P o t a s s i u m s a l t .

' T e t r a m e t h y l a m m o n i u m s a l t .

(12)

96 R. J . H. CLARK

nihu) L a t t i c e m o d e ?

K g W C l e 3 2 4 165 77

R b a W C l e 3 0 6 1 6 0 6 6

C s g W C l e 3 0 8 166 71

K a M o C l e 3 4 0 174 7 4

R b g M o C l e 3 3 4 1 7 2 7 0

C s a M o C l e 3 2 5 170 7 0

K g W B r e 2 2 9 7 4

R b a W B r e 2 2 0 7 8

C s g W B r e 2 1 4 6 0

highest frequencies for a n anion. T h e b a n d a t 66-77 cm~^ in t h e infrared s p e c t r a of t h e chlorides (Table V I ) is p r e s u m e d t o b e either a lattice m o d e , or t h e V6(Î2m) m o d e , r e n d e r e d active b y t h e low site s y m m e t r y of t h e ion in t h e crystal lattice.

T h e infrared s p e c t r a of t h e ions MXe^- (M - Se, T e ; X = Cl, B r , I ) h a v e r e c e n t l y b e e n e x a m i n e d w i t h t h e conclusion t h a t t h e ions do n o t d e v i a t e from 0 ^ s y m m e t r y , i^^*)

t h e n e u t r a l hexafluorides). A n o r m a l coordinate analysis of t h e ReClg^", ReBrg^- a n d OsClg^- ions b y Yeranos^^^) h a s yielded force c o n s t a n t s of 1-34, 1-11 a n d 1-34 m d / Â respectively for t h e stretching of t h e m e t a l - halogen b o n d s .

I n a d d i t i o n t o t h e a b o v e results, infrared spectral m e a s u r e m e n t s h a v e located t h e v^ihu) niode for t h e following h e x a h a l o anions^^^^'^'^) as their t e t r a e t h y l a m m o n i u m salts: ZrClg^", 293; RuClg^-, 332; IrClg^-, 316, 324;

ThCle^-, 263; U C ^ - , 260; N p C ^ " , 265; ThBre^-, 177; UBrg^-, 178;

NbCle", 330; TaClg-, 330; WCle", 329 c m- i ; a n d AsCle", 352 c m- i . T h i s result for t h e t u n g s t e n d e r i v a t i v e disagrees w i t h t h a t of Β agnail. B r o w n a n d d u Preez,<^^) w h o o b t a i n t h e v a l u e 305 cm-^ for t h e m o d e of t h e complex E t 4 N [ W C l 6 ] . They(^^) also r e p o r t t h a t t h i s m o d e occurs a t 317 cm-^ in t h e caesium salt, a n d 315 cm-^ in t h e t e t r a m e t h y l a m m o n i u m salt of t h e WClg- ion. F o r t h e UClg" ion, t h e vg m o d e occurs a t 303-310 cm~^ for four salts, i.e. t h e r e is '^50 cm~^ rise in per u n i t rise in oxi­

d a t i o n s t a t e of t h e u r a n i u m a t o m . I n addition, from a n analysis of t h e electronic s p e c t r u m of t h e c o m p o u n d CsaUClg, it h a s been suggested t h a t vi(aip) = 310 cm"^ for t h e anion.(^^)

T h e r e is a r a t h e r p r o n o u n c e d dependence of a n d t o a lesser e x t e n t of ï^4, on t h e size of t h e cation. As t h e l a t t e r is decreased in size, t h e c a t i o n - a n i o n interactions increase leading t o a n increase in b o t h vg a n d Ï/4 (Table VI). T h u s sodium or p o t a s s i u m salts c o m m o n l y give rise t o t h e

T A B L E V I . A b s o r p t i o n b a n d s (cm"^) o f s o m e h e x a h a l o a n i o n s a s a f u n c t i o n o f t h e c a t i o n

(13)

METAL-HALOGEN VIBRATIONAL FREQUENCIES 97

V2(e) ^4(^2)

R R I.R., R I.R., R

»AsCl4+ 422 156 500 187

GeCl4 397 132 451 171

GeBr4 234 78 328 111

Gel4 159 60 264 80

GaCl4- 346 114 386 149

GaBr4- 210 71 278 102

G a l 4 - 145 52 222 73

ZnCl42- 282 82 277 116

ZnBr42- 172 61 210 82

Znl42- 122 44 170 62

a Ref. 2 1 .

of t h e analogous species MX4-. I n fact, t h i s is a general result t h a t b o n d stretching frequencies, a n d t h e r e l a t e d force c o n s t a n t s increase as t h e oxidation s t a t e of t h e m e t a l increases. R e a s o n s for t h i s h a v e b e e n dis­

cussed b y W o o d w a r d a n d b y G o d n e v a n d Alexandrovskayai^^). I t is also n o t e w o r t h y t h a t m e t a l - h a l o g e n single b o n d l e n g t h s decrease as t h e o x i d a t i o n s t a t e of t h e m e t a l increases, a n d t h a t v^^ (and t h e corresponding force constants) fall off in t h e order CI > B r > I for a given series of m e t a l t e t r a h a l i d e s .

T h e infrared s p e c t r a of t h e m e t a l t e t r a h a l o g e n species

MX42-

h a v e b e e n fairly extensively i n v e s t i g a t e d b y several a u t h o r s , a n d s o m e t i m e s V4 being located.(^s^»^^'^^) T h e results are s u m m a r i z e d in F i g . 2 for t h e vi­

b r a t i o n . Clearly, M—Cl stretching frequencies occur a t ^^290 cm-^, M — B r stretching frequencies a t ^^220 cm-^, a n d M — I s t r e t c h i n g frequencies a t ^^180 cm-^ for t h e s e species. T h e corresponding v a l u e s for V4 are 112-133 cm-^ for t h e chloro species, a n d 71-92 cm-^ for t h e b r o m o species. T h e m e t a l - h a l o g e n s t r e t c h i n g frequencies follow t h e order M n < F e < Co > N i > Z n w h i c h is t h e order of t e t r a h e d r a l ligand-field stabilization energies. T h e copper complexes a r e excluded from t h e a b o v e generalization, because t h e y d e p a r t a p p r e c i a b l y from t e t r a h e d r a l s y m m e t r y . This s a m e t r e n d w i t h c h a n g e in t h e central m e t a l h a s since b e e n observed(^^) for t h e corresponding s t r e t c h i n g m o d e of t h e series M ( N C 0) 4 2 - (M = Mn, F e , Co, N i , Zn).

B. Tetrahedral Anions

A comprehensive collection of t h e extensive d a t a relating t o t h e v i b r a t i o n a l frequencies of t e t r a h a l o g e n molecules h a s been published b y Nakamoto.^^^) Typical results only are given in T a b l e V I I . E v e r y v i b r a ­ tional m o d e of a given species

MX42-

lies below t h e corresponding m o d e

T A B L E V I I . V i b r a t i o n a l f r e q u e n c i e s ( c m - ^ ) for a n i s o e l e c t r o n i c s e r i e s o f t e t r a h e d r a l M X 4 units(^'>

(14)

98 Β . J. Η. CLARK

Μη Fe Co Ni Cu Zn

F I G . 2. ^3(^2) m o d e s o f ( E t 4 N ) 2 M C I 4 , ( E t 4 N ) 2 M B r 4 , a n d ( n - P r 4 N ) 2 M I 4 a s n u j o l mulls.ie^.es)

T h e s p e c t r a of v a n a d i u m tetrachloride/^^'^^) a n o d d electron molecule (d^), do n o t suggest t h a t it is d i s t o r t e d from t e t r a h e d r a l . H o w e v e r , it is n o t certain t h a t v^ie) h a s been located a n d indeed t h i s is t h e m o d e which m i g h t b e e x p e c t e d t o suffer b r o a d e n i n g a t r o o m t e m p e r a t u r e as a result of J a h n - T e l l e r effects.

T h e s p e c t r a of v a r i o u s m i x e d halides (e.g. TiBr2Cl2) h a v e also been s u m m a r i z e d . I n a d d i t i o n D e h n i c k e h a s r e c e n t l y r e p o r t e d t h e s p e c t r a of t h e m i x e d halide SnFaClg as well as t h o s e of several oxyhalides. ^^^^

T h e s p e c t r u m of t h e halide SnFaClg w a s i n t e r p r e t e d on t h e basis of t e t r a h e d r a l s y m m e t r y , a l t h o u g h t h e physical properties of t h e com­

p o u n d (solid till 153°, insoluble in benzene a n d c a r b o n tetrachloride) a n d indeed t h e v(SnF) m o d e s (all below 570 cm-^) are m o r e consistent w i t h those e x p e c t e d for a fluorine-bridged o c t a h e d r a l polymer.

C. Square Planar Ions

S t a m m r e i c h a n d Forneris<^^) r e p o r t e d t h e R a m a n s p e c t r a of t h e s q u a r e p l a n a r ions A u C l 4 ~ , A u B r 4 ~ a n d P t C l 4 ^ ~ in 1960, a n d t h e infrared s p e c t r a of these ions were r e p o r t e d m o r e r e c e n t l y b y several sets of w o r k e r s . (^^-^1)

T h e m o s t complete of these, b y Sabatini, Sacconi a n d Schettino^^^), is s u m m a r i z e d in T a b l e V I I I , t o g e t h e r w i t h t h e force c o n s t a n t s derived b y these a u t h o r s b y use of a general valence force field. T h e conclusions of previous sections hold here also; n a m e l y that/j^ci > /ΜΒΓ /M(TII)CI >

/Μ(Π)ΟΙ c o m p a r a b l e c o m p o u n d s .

(15)

METAL-HALOGEN VIBRATIONAL FREQUENCIES 99

/ M X (md/A) References R R I . R . R L R . , R L R . , R

PtCl^^- 3 3 5 164 160 3 0 4 3 1 6 185 1-78 6a, 71

174

3 2 6 194 6 9

PdCl^^-

168 3 3 2 190 6 9

PdBr^^- 106

2 5 4 136 6 9

AUCI4- 3 4 7 171 143 3 2 4 3 5 6 173 2 1 0 6 8 , 71

AuBr^- 2 1 2 1 0 2 196 2 5 2 1 0 0 1-76 6 8 , 7 1

AUI4-

190 6 9

a Infrared d a t a refer t o t h e caesium salts, e x c e p t for t h e d a t a of Reference 6 8 , which refers t o t h e p o t a s s i u m salts. T h e vibrations are n u m b e r e d according t o t h e procedure of Nakamoto.t^^)

L a t t i c e m o d e s for VtCl^'^- salts were identified<^^) for t h e K + , R b + a n d Cs+ salts a t 106, 82 a n d 80 cm-^ respectively. T h e site s y m m e t r y of t h e

PtCl4^~

ion is D^h in t h e p o t a s s i u m salt, a n d accordingly t h e selection rules a r e t h e s a m e as t h e y would b e for t h e free gaseous ion. H o w e v e r , t h e site s y m m e t r i e s of t h e

AUCI4-

a n d A u B r 4 - ions a r e lower t h a n D^i^, a n d as a consequence t h e modes show site s y m m e t r y splittings of u p t o 11 cm~^.

D. Five Coordinate Halides

T h e k n o w n data<^^^''^^~'^^) for trigonal b i p y r a m i d a l p e n t a h a l i d e s MX5 a n d

MX3Y2

a r e s u m m a r i z e d in T a b l e I X (the s t a n d a r d v i b r a t i o n a l n u m b e r i n g scheme for molecules w i t h i^g^ s y m m e t r y is a d h e r e d t o ) .

P h o s p h o r u s p e n t a c h l o r i d e is a n interesting molecule because it occurs w i t h t h e trigonal b i p y r a m i d a l s t r u c t u r e in t h e gaseous s t a t e , a n d also in t h e solid s t a t e if formed b y v a p o u r deposition o n t o a cold p l a t e a t

'-'90°K; however, a t r o o m t e m p e r a t u r e in t h e solid s t a t e it exists^^^^»^^) as t h e ionic species

PCI4+PCI6-.

T h e v i b r a t i o n a l s p e c t r a of t h e p h o s ­ p h o r u s chlorofluorides PCl^Fg.^ also indicate t h a t these molecules exist b o t h in low t e m p e r a t u r e molecular forms a n d in r o o m t e m p e r a t u r e ionic forms.<^2^) T h e molecule

PF2CI3

h a s full D^^ s y m m e t r y , a n d t h e r e ­ fore t h e fluoride a t o m s are in axial positions. A n o r m a l coordinate analysis h a s been carried o u t on t h e molecules

PF5, PF2CI3

a n d

PCI5

w i t h t h e complete G - m a t r i x a n d t h e a b o v e v i b r a t i o n a l assignments, i"^^^) T h e spectra of t h e halides SbFg a n d SbFgClg a r e included in T a b l e I X , on t h e basis of v i b r a t i o n a l work b y Dehnicke a n d Weidleinj^"^^) a l t h o u g h o t h e r physical properties of these molecules indicate t h a t t h e y a r e asso­

ciated in t h e liquid s t a t e . Certainly t h e earlier formulation of t h e m i x e d halide SbF3Cl2 as t h e ionic species SbCl4+SbF6- (cf. t h e a u t h e n t i c AsCl4+AsF6'') is n o w considered t o b e incorrect.

TABLE V H I . Vibrational frequencies (cm-^) of square planar MX4^- anions^

(16)

100 R. J. H. CLARK

v i ( a / ) Me') Mel

R(p) R(p) I . R . I . R . R ( d p ) ; R{dp); R ( d p ) ; R(dp)

I.R. I.R. L R .

817 640 945 576 1026 533 301 514 72a

PF2CI3 ^ 633 387 867 328 625 404 122 357 72a

PCI5 c,d 395 282 441 301 581 281 100 261 7 3 , 7 4

SbFs e.f 667 491

— —

716 264 - - 9 0 228 7 5 , 7 6 t

SbFgCla f 610 392 399

655 442 147 292 76t

SbCls g 356 307 371 154 395 172 (72) 165 54a

VF^i^ 719 608 784 331 810 282 0 ^-200) 350 36b

f R e c e n t ^^F n.m.r. work (E. L. Muetterties, W . Mahler, K. J . Packer, a n d R. Schmutz­

ler, Inorg. Chem. 3, 1302, 1964) indicates t h a t t h e c o m p o u n d s SbF5 a n d SbF3Cl2 are associated in t h e liquid state. H o w e v e r , t h e n.m.r. data were recorded at 20° whereas t h e R a m a n data were recorded at 80°.

a Infrared spectrum of gas; R a m a n spectrum of liquid at —86°.

^ Infrared spectrum of gas; R a m a n spectrum of liquid at —40°.

c R a m a n spectra in benzene a n d in carbon tetrachloride solutions.

d Infrared spectra in benzene a n d carbon disulphide solutions.

e Infrared spectra for b o t h liquid a n d vapour; R a m a n spectrum for liquid.

f Infrared a n d R a m a n spectra of liquid a n d solid.

κ Infrared a n d R a m a n spectra of t h e liquid.

^ Infrared and R a m a n spectra of t h e vapour.

T h e R a m a n s p e c t r u m (^^^) of t h e h a h d e SbCl4P in t h e soUd s t a t e is consistent w i t h t h e polar form SbCl4+F- b u t , in t h e m o l t e n s t a t e a n d in non-polar solvents, a v(SbP) m o d e a p p e a r s a t 542 cm-^ consistent w i t h t h e non-polar form for t h e molecule, a n d w i t h t h e molecular weight m e a s u r e m e n t s in non-polar solvents (Cgv s y m m e t r y assumed).(^^) H o w ­ ever, a n X - r a y diffraction study^^^^) h a s shown t h a t in t h e solid s t a t e t h e molecule is a c t u a l l y a cis fluorine bridged t e t r a m e r .

T h e o t h e r chlorofluorides of p h o s p h o r u s also a p p e a r t o h a v e t h e trigonal b i p y r a m i d a l structure,<^2a,so) ^ j ^ ^ s p e c t r a of PCI4F being b e s t i n t e r p r e t e d in t e r m s of t h e Ggv s t r u c t u r e w i t h one fluorine a t o m occupying a n axial position, a n d t h o s e for PCI2F3 in t e r m s of t h e C^y s t r u c t u r e in which t h e fluorine a t o m s o c c u p y b o t h axial positions a n d one trigonal position. T h e molecule CF3PCI4 is also believed t o h a v e t h e trigonal b i p y r a m i d a l s t r u c t u r e on t h e basis of its v i b r a t i o n a l spectrum,(^i^> w i t h t h e CF3 g r o u p in a n axial position. N o information could b e o b t a i n e d on t h e b a r r i e r t o i n t e r n a l r o t a t i o n of t h e CF3 g r o u p . Similarly, t h e molecule (CF3)2PCl3 is trigonal b i p y r a m i d a l , w i t h t h e CF3 g r o u p s occupying t h e axial positions.

A n u m b e r of infrared a n d R a m a n m e a s u r e m e n t s h a v e also b e e n m a d e o n n i o b i u m a n d t a n t a l u m p e n t a c h l o r i d e s , p a r t i c u l a r l y b y Carlson,

T A B L E I X . V i b r a t i o n a l s p e c t r a o f t r i g o n a l b i p y r a m i d a l m o l e c u l e s (Dgh s y m m e t r y ) (cm-^)

(17)

METAL-HALOGEN VIBRATIONAL FREQUENCIES 101 b u t in n o case does sufficient care a p p e a r t o h a v e b e e n t a k e n t o exclude t r a c e s of m o i s t u r e from t h e solvents. T h u s t h e m e a s u r e m e n t s i m p l y t h e presence of oxychlorides in solution. F u r t h e r m o r e , n i o b i u m p e n t a ­ chloride is k n o w n t o dimerize b y chlorine bridging in b o t h t h e solid s t a t e (^2) a n d in carbon t e t r a c h l o r i d e solution (^^) a n d only for t h e gaseous state<®^) h a s t h e trigonal b i p y r a m i d a l s t r u c t u r e b e e n established (electron diffraction d a t a ) . I t therefore seems u n r e a s o n a b l e t o follow Carlson's p r o c e d u r e a n d a t t e m p t a s s i g n m e n t s of t h e v i b r a t i o n a l s p e c t r a of t h i s molecule in condensed p h a s e s on t h e basis of D^^ selection rules. A d d i ­ tional d a t a on t h e s e halides h a s b e e n o b t a i n e d b y B a d e r a n d H u a n g ;<^^^) t h e s e a u t h o r s also assigned some of t h e v i b r a t i o n a l m o d e s of t h e p e n t a ­ chlorides of m o l y b d e n u m a n d t u n g s t e n .

E. Linear Species

T h e infrared s p e c t r a of a series of gaseous t r a n s i t i o n - m e t a l halides a t 600-1000° h a v e b e e n recorded b y Leroi et al,,^^ a n d i n t e r p r e t e d in t e r m s of t h e linear (Dooh) m o d e l (Table X ) . Significant c o n c e n t r a t i o n s of t h e d i m e r were also indicated. T h e a s y m m e t r i c stretching frequencies (vg) a n d t h e force c o n s t a n t s (1-99-2-67 m d / Â ) derived therefrom each p a s s t h r o u g h a m a x i m u m b e t w e e n m a n g a n e s e a n d zinc.

T A B L E X . V i b r a t i o n a l f r e q u e n c i e s ( c m - ^ ) o f l i n e a r m e t a l d i h a l i d e s

Molecule S t a t e v i( l l ) V 8( I . I I . )

MnClg gas 4 6 7

FeClj, gas

4 9 2

CoCla gas — — 4 9 3

NiCla gas — — 5 1 6

CuCla gas 3 7 0 4 9 6

ZnCla gas 2 9 5 5 1 6

CoBra gas — — 3 9 6

ZnBra gas 2 2 5

CuCla- solution 2 9 6 — —

solid — — 4 1 0

C u B r g - solution 1 9 0 — —

HgCl^ g a s 3 6 0 7 0 4 1 3

m e l t 3 1 3 (100) 3 7 6

solid 3 1 4 1 1 6 3 7 5

HgBr^ gas 2 2 5 4 1 2 9 3

m e l t 1 9 5 (90) 2 7 1

solid 1 8 4 2 5 1

H g i a g a s 156 3 3

E s t i m a t e d v a l u e s in parentheses.

Creighton a n d Lippincott^^^) h a v e recorded t h e R a m a n s p e c t r a of t h e ion CuCl2~ formed b y e x t r a c t i o n of a solution of c u p r o u s chloride in

Ábra

TABLE  V H I .  Vibrational frequencies (cm-^) of square planar MX4^- anions^

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

187, in surveying results obtained by many different workers, notes t h a t the average tensile stress at fracture recorded on specimens of embalmed bone is usually

Niobium oxidetri-iodide NbOIg has been prepared b y the reaction of niobium metal, iodine and niobium pentoxide in a sealed tube in a temperature gradient (Schafer and Gerken,

The greatest effect of the water is noticed during soaking and blanching operations. The length of time, temperature and proportion of water to vegetable are the main

Whether a process is of the batch or continuous type the quality control of the product requires (i) a knowledge of the likely variation in properties, and (ii) a clear

Most pressing is the need for thorough and careful measurements of the dielectric constant on a number of liquids as a function of density in the region of their critical

laboratories at the Department of Physics of the Teachers' Training College in Eger, and summarizes the optical research carried out at the department * Some

5 Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, London, UK; 6 Division of Surgery and Interventional Science, University College London, London, UK;

[1] Costello A, Abbas M, Allen A, et al. Managing the health effects of climate change. Lancet and University College London Insti- tute for Global Health Commission.