• Nem Talált Eredményt

The structure of the unit group of the group algebra F(C₃ × D₁₀)

N/A
N/A
Protected

Academic year: 2022

Ossza meg "The structure of the unit group of the group algebra F(C₃ × D₁₀)"

Copied!
10
0
0

Teljes szövegt

(1)

The structure of the unit group of the group algebra 𝐹 (𝐶 3 × 𝐷 10 )

Meena Sahai, Sheere Farhat Ansari

Department of Mathematics and Astronomy, University of Lucknow, Lucknow, U.P. 226007, India

meena_sahai@hotmail.com sheere_farhat@rediffmail.com

Submitted: February 7, 2021 Accepted: September 7, 2021 Published online: September 19, 2021

Abstract

Let𝐷𝑛be the dihedral group of order𝑛. The structure of the unit group 𝑈(𝐹(𝐶3×𝐷10))of the group algebra 𝐹(𝐶3×𝐷10) over a finite field 𝐹 of characteristic3is given in [10]. In this article, the structure of𝑈(𝐹(𝐶3×𝐷10)) is obtained over any finite field𝐹 of characteristic𝑝̸= 3.

Keywords:Group rings, unit groups, dihedral groups, cyclic groups AMS Subject Classification:16U60, 20C05

1. Introduction

Let𝑈(𝐹 𝐺)be the group of invertible elements of the group algebra𝐹 𝐺of a group 𝐺 over a field 𝐹. The study of units and their properties is one of the most challenging problems in the theory of group rings. Explicit calculations in 𝑈(𝐹 𝐺) are usually difficult, even when𝐺is fairly small and𝐹 is a finite field. The results obtained in this direction are also useful for the investigation of the Lie properties of group rings, the isomorphism problem and other open questions in this area, see [2].

The financial assistance provided to the second author in the form of a Senior Research Fellowship from the University Grants Commission, INDIA is gratefully acknowledged.

doi: https://doi.org/10.33039/ami.2021.09.001 url: https://ami.uni-eszterhazy.hu

73

(2)

For a normal subgroup 𝐻 of 𝐺, the natural homomorphism 𝐺 → 𝐺/𝐻 can be extended to an 𝐹-algebra homomorphism from 𝐹 𝐺 → 𝐹(𝐺/𝐻) defined by

∑︀

𝑔𝐺𝑎𝑔𝑔↦→∑︀

𝑔𝐺𝑎𝑔𝑔𝐻,𝑎𝑔∈𝐹. The kernel of this homomorphism, denoted by

∆(𝐺, 𝐻), is the ideal generated by {ℎ−1 : ℎ∈ 𝐻} in 𝐹 𝐺 and 𝐹 𝐺/∆(𝐺, 𝐻) ∼= 𝐹(𝐺/𝐻).

Let 𝐽(𝐹 𝐺) be the Jacobson radical of 𝐹 𝐺 and let 𝑉 = 1 +𝐽(𝐹 𝐺). The 𝐹- algebra 𝐹 𝐺/𝐽(𝐹 𝐺)is semisimple whenever 𝐺is a finite group. It is known from the Wedderburn structure theorem that

𝐹 𝐺/𝐽(𝐹 𝐺)∼=

⨁︁𝑟 𝑖=1

𝑀(𝑛𝑖, 𝐾𝑖)

where 𝑟 is the number of non-isomorphic irreducible 𝐹 𝐺 modules, 𝑛𝑖 ∈ N and 𝐾𝑖’s are finite dimensional division algebras over𝐹. In this context two results by Ferraz [3, Theorem 1.3 and Prop 1.2] (stated at the end of this section) are very useful in determining the Wedderburn decomposition of𝐹 𝐺/𝐽(𝐹 𝐺).

If𝐹 𝐺is semisimple, then𝐽(𝐹 𝐺) = 0and by [8, Prop 3.6.11], 𝐹 𝐺∼=𝐹(𝐺/𝐺)⊕∆(𝐺, 𝐺)

where 𝐹(𝐺/𝐺) is the sum of all the commutative simple components of 𝐹 𝐺, whereas ∆(𝐺, 𝐺) is the sum of all the non-commutative simple components of 𝐹 𝐺. We conclude that, if𝐹 𝐺is semisimple, then

𝐹 𝐺∼=𝐹(𝐺/𝐺)⊕

⨁︁𝑙 𝑖=1

𝑀(𝑛𝑖, 𝐾𝑖).

Now, ifdim𝐹(𝑍(𝐹 𝐺)) =𝑟 and if the number of commutative simple components is𝑠, then𝑙≤𝑟−𝑠.

In what follows,𝐷𝑛 is the dihedral group of order𝑛,𝐶𝑛 is the cyclic group of order𝑛,𝐹𝑛is the direct sum of𝑛copies of𝐹,𝐹𝑛is the extension of𝐹 of degree𝑛, 𝑀(𝑛, 𝐹)is the algebra of all𝑛×𝑛matrices over𝐹,𝐺𝐿(𝑛, 𝐹)is the general linear group of degree𝑛over𝐹,𝑍(𝐹 𝐺)is the center of𝐹 𝐺,[𝑔]is the conjugacy class of 𝑔∈𝐺and𝑇𝑝 is the set of all𝑝-elements of𝐺including1.

Let𝐹 be a field of characteristic𝑝 >0 and let𝐺be a finite group. An element 𝑔∈𝐺is𝑝-regular, if𝑝∤𝑜(𝑔). Let𝑡be the l.c.m. of the orders of𝑝-regular elements of𝐺and let𝜔 be a primitive𝑡-th root of unity over the field𝐹. Then

𝐴={𝑟|𝜔→𝜔𝑟is an automorphism of𝐹(𝜔)over𝐹}.

Let𝛾𝑔 be the sum of all conjugates of𝑔∈𝐺. If𝑔 is a𝑝-regular element, then the cyclotomic𝐹-class of𝛾𝑔 is

𝑆𝐹(𝛾𝑔) ={𝛾𝑔𝑟 |𝑟∈𝐴}.

Many authors [1, 4, 5, 7, 9–12] have studied the structure of𝑈(𝐹 𝐺)for a finite group 𝐺 and for a finite field 𝐹. The structure of 𝑈(𝐹(𝐶3×𝐷10)) for 𝑝= 3 is

(3)

given in [10]. In this article, we provide an explicit description for the Wedderburn decomposition of 𝐹 𝐺/𝐽(𝐹 𝐺), 𝐺=𝐶3×𝐷10 and 𝐹 a finite field of characteristic 𝑝̸= 3, using the theory developed by Ferraz [3] and with the help of this description we obtain the structure of𝑈(𝐹(𝐶3×𝐷10)).

Lemma 1.1([3, Proposition 1.2]). Let𝐾be a field and let𝐺be a finite group. The number of simple components of 𝐾𝐺/𝐽(𝐾𝐺)is equal to the number of cyclotomic 𝐾-classes in 𝐺.

Lemma 1.2([3, Theorem 1.3]). Let 𝐾 be a field and let𝐺be a finite group. Sup- pose that𝐺𝑎𝑙(𝐾(𝜔)/𝐾)is cyclic. Let𝑠be the number of cyclotomic𝐾-classes in𝐺.

If 𝑅1, 𝑅2, . . . , 𝑅𝑠 are the simple components of 𝑍(𝐾𝐺/𝐽(𝐾𝐺))and𝑃1, 𝑃2, . . . , 𝑃𝑠

are the cyclotomic 𝐾-classes of 𝐺, then with a suitable re-ordering of indices,

|𝑃𝑖|= [𝑅𝑖:𝐾].

2. Structure of 𝑈 (𝐹 (𝐶

3

× 𝐷

10

))

Theorem 2.1. Let𝐹 be a finite field of characteristic𝑝with|𝐹|=𝑞=𝑝𝑛 and let 𝐺=𝐶3×𝐷10.

1. If𝑝= 2, then𝑈(𝐹 𝐺)∼= {︃𝐶23𝑛⋊(︀

𝐶23𝑛1×𝐺𝐿(2, 𝐹)6)︀

, if𝑞≡1,4 mod15;

𝐶23𝑛⋊(︀

𝐶2𝑛1×𝐶22𝑛−1×𝐺𝐿(2, 𝐹2)3)︀

, if𝑞≡2,−7 mod15. 2. If𝑝= 5, then

𝑈(𝐹 𝐺)∼=𝑉 ⋊

{︃𝐶56𝑛−1, if𝑞≡1mod6;

𝐶52𝑛1×𝐶522𝑛1, if𝑞≡ −1 mod6.

where𝑉 ∼= (𝐶515𝑛⋊𝐶56𝑛)⋊𝐶53𝑛 and𝑍(𝑉)∼=𝐶59𝑛. 3. If𝑝 >5, then𝑈(𝐹 𝐺)∼=

⎧⎪

⎪⎪

⎪⎪

⎪⎩

𝐶𝑝6𝑛1×𝐺𝐿(2, 𝐹)6, if𝑞≡1,−11 mod30;

𝐶𝑝2𝑛−1×𝐶𝑝22𝑛−1×𝐺𝐿(2, 𝐹)2×𝐺𝐿(2, 𝐹2)2, if𝑞≡ −1,11 mod30; 𝐶𝑝6𝑛1×𝐺𝐿(2, 𝐹2)3, if𝑞≡7,13mod30; 𝐶𝑝2𝑛1×𝐶𝑝22𝑛1×𝐺𝐿(2, 𝐹2)3, if𝑞≡ −7,−13mod30.

Proof. Let 𝐺 = ⟨𝑥, 𝑦, 𝑧 | 𝑥2 = 𝑦5 = 𝑧3 = 1, 𝑥𝑦 = 𝑦4𝑥, 𝑥𝑧 = 𝑧𝑥, 𝑦𝑧 = 𝑧𝑦⟩. The conjugacy classes in𝐺are:

[𝑧𝑖] ={𝑧𝑖}for𝑖= 0,1,2;

[𝑦𝑧𝑖] ={𝑦±1𝑧𝑖}for𝑖= 0,1,2;

[𝑦2𝑧𝑖] ={𝑦±2𝑧𝑖}for𝑖= 0,1,2;

[𝑥𝑧𝑖] ={𝑥𝑧𝑖, 𝑥𝑦±1𝑧𝑖, 𝑥𝑦±2𝑧𝑖}for𝑖= 0,1,2.

(4)

1. 𝑝= 2. Clearly,𝑇̂︁2= 1 +𝑥𝑦̂︀. Let𝛼=∑︀1

𝑘=0

∑︀2 𝑗=0

∑︀5(𝑗+3𝑘)+4

𝑖=5(𝑗+3𝑘)𝑎𝑖𝑥𝑘𝑦𝑖−5(𝑗+3𝑘)𝑧𝑗. If𝛼̂︁𝑇2= 0, then we have

𝛼+

∑︁1 𝑘=0

∑︁2 𝑗=0

5(𝑗+3𝑘)+4

∑︁

𝑖=5(𝑗+3𝑘)

𝑎𝑖𝑥𝑘+1̂︀𝑦𝑧𝑗 = 0.

For𝑘= 0,1,2and𝑖= 0,1,2,3,4 this yields the following equations:

𝑎5𝑘+𝑖+

∑︁4 𝑗=0

𝑎5𝑘+𝑗+15= 0,

𝑎5𝑘+15+𝑖+

∑︁4 𝑗=0

𝑎5𝑘+𝑗 = 0.

After simplification we get, 𝑎5𝑘 = 𝑎5𝑘+𝑖 = 𝑎5𝑘+𝑖+15 for 𝑖 = 0,1,2,3,4 and 𝑘= 0,1,2. Hence

Ann(̂︁𝑇2) = {︂∑︁2

𝑖=0

𝛽𝑖(1 +𝑥)𝑦𝑧̂︀ 𝑖|𝛽𝑖 ∈𝐹 }︂

.

Since 𝑧,𝑦̂︀ ∈ 𝑍(𝐹 𝐺), Ann2(̂︁𝑇2) = 0 and Ann(̂︁𝑇2) ⊆ 𝐽(𝐹 𝐺). Thus by [12, Lemma 2.2],𝐽(𝐹 𝐺) = Ann(𝑇̂︁2)anddim𝐹(𝐽(𝐹 𝐺)) = 3. Hence𝑉 ∼=𝐶23𝑛 and by [6, Lemma 2.1],

𝑈(𝐹 𝐺)∼=𝐶23𝑛⋊𝑈(𝐹 𝐺/𝐽(𝐹 𝐺)).

Now it only remains to find the Wedderburn decomposition of𝐹 𝐺/𝐽(𝐹 𝐺).

As [1], [𝑦], [𝑦2], [𝑧], [𝑧2], [𝑦𝑧], [𝑦𝑧2], [𝑦2𝑧], and [𝑦2𝑧2] are the2-regular con- jugacy classes of𝐺, 𝑡= 15 anddim𝐹(𝐹 𝐺/𝐽(𝐹 𝐺)) = 27. Now the following cases occur:

(a) If𝑞 ≡1,4 mod15, then |𝑆𝐹(𝛾𝑔)|= 1 for 𝑔 = 1, 𝑦, 𝑦2, 𝑧, 𝑧2, 𝑦𝑧, 𝑦𝑧2, 𝑦2𝑧,𝑦2𝑧2. Consquently, [3, Theorem 1.3], yields nine components in the decomposition of𝐹 𝐺/𝐽(𝐹 𝐺). In view of the dimension requirements, the only possibility is:

𝐹 𝐺/𝐽(𝐹 𝐺)∼=𝐹3⊕𝑀(2, 𝐹)6.

(b) If 𝑞≡2,−7mod 15, then|𝑆𝐹(𝛾𝑔)|= 1for 𝑔= 1 and|𝑆𝐹(𝛾𝑔)|= 2 for 𝑔=𝑦,𝑧,𝑦𝑧, 𝑦𝑧2. So, due to the dimension restrictions, we have

𝐹 𝐺/𝐽(𝐹 𝐺)∼=𝐹⊕𝐹2⊕𝑀(2, 𝐹2)3.

(5)

2. 𝑝 = 5. If 𝐾 = ⟨𝑦⟩, then 𝐺/𝐾 ∼= 𝐻 ∼= ⟨𝑥, 𝑧⟩ ∼= 𝐶6. Thus from the ring epimorphism𝜂:𝐹 𝐺→𝐹 𝐻, given by

𝜂 (︂∑︁2

𝑗=0

∑︁4 𝑖=0

𝑦𝑖𝑧𝑗(𝑎𝑖+5𝑗+𝑎𝑖+5𝑗+15𝑥) )︂

=

∑︁2 𝑗=0

∑︁4 𝑖=0

𝑧𝑗(𝑎𝑖+5𝑗+𝑎𝑖+5𝑗+15𝑥),

we get a group epimorphism𝜑:𝑈(𝐹 𝐺)→𝑈(𝐹 𝐻)andker𝜑∼= 1 +𝐽(𝐹 𝐺) = 𝑉. Further, we have the inclusion map𝑖:𝑈(𝐹 𝐻)→𝑈(𝐹 𝐺)such that𝜑𝑖= 1𝑈(𝐹 𝐻). Thus𝑈(𝐹 𝐺)∼=𝑉 ⋊𝑈(𝐹 𝐶6).

The structure of𝑈(𝐹 𝐶6)is given in [11, Theorem 4.1].

If𝑣=∑︀2 𝑗=0

∑︀4

𝑖=0𝑦𝑖𝑧𝑗(𝑎𝑖+5𝑗+𝑎𝑖+5𝑗+15𝑥)∈𝑈(𝐹 𝐺), then 𝑣∈𝑉 if and only if∑︀4

𝑖=0𝑎𝑖= 1and∑︀4

𝑖=0𝑎𝑖+5𝑘= 0 for𝑘= 1,2,3,4,5. Hence 𝑉 =

{︂

1 +

∑︁2 𝑗=0

∑︁4 𝑖=1

(𝑦𝑖−1)𝑧𝑗(𝑏𝑖+4𝑗+𝑏𝑖+4𝑗+12𝑥)|𝑏𝑖∈𝐹 }︂

and|𝑉|= 524𝑛. Since,𝐽(𝐹 𝐺)5= 0,𝑉5= 1.

Now we show that 𝑉 ∼= (𝐶515𝑛⋊𝐶56𝑛)⋊𝐶53𝑛. The proof is split into the following steps:

Step 1: Let𝑅={1 +𝑎𝑦(1−𝑦)3𝑥|𝑎∈𝐹} ⊆𝑉. Then𝑅∼=𝐶5𝑛. If

𝑟1= 1 +𝑎𝑦(1−𝑦)3𝑥∈𝑅 and

𝑟2= 1 +𝑏𝑦(1−𝑦)3𝑥∈𝑅 where𝑎, 𝑏∈𝐹, then

𝑟1𝑟2= 1 + (𝑎+𝑏)𝑦(1−𝑦)3𝑥∈𝑅.

Therefore,𝑅is an abelian subgroup of𝑉 of order5𝑛. Hence𝑅∼=𝐶5𝑛. Step 2: |𝐶𝑉(𝑅)|= 521𝑛, where𝐶𝑉(𝑅) ={𝑣∈𝑉 |𝑟𝑣=𝑟for all𝑟∈𝑅}.

Let

𝑟= 1 +𝑎𝑦(1−𝑦)3𝑥∈𝑅 and

𝑣= 1 +

∑︁2 𝑗=0

∑︁4 𝑖=1

(𝑦𝑖−1)𝑧𝑗(𝑏𝑖+4𝑗+𝑏𝑖+4𝑗+12𝑥)∈𝑉 where 𝑎, 𝑏𝑖 ∈ 𝐹. Then 𝑣 = 1 +𝑣1+𝑣2𝑥, 𝑣1 = ∑︀2

𝑗=0

∑︀4

𝑖=1𝑏𝑖+4𝑗(𝑦𝑖−1)𝑧𝑗 and𝑣2=∑︀2

𝑗=0

∑︀4

𝑖=1𝑏𝑖+4𝑗+12(𝑦𝑖−1)𝑧𝑗. So𝑣1=𝑣4= 1 + 4𝑣1+ 4𝑣2𝑥mod (𝑦−1)2𝐹 𝐺. Thus

𝑟𝑣= 1 +𝑣1𝑎𝑦(1−𝑦)3𝑥𝑣=𝑟+ 2𝑎𝑦̂︀

∑︁2 𝑗=0

∑︁4 𝑖=1

𝑖𝑏𝑖+4𝑗𝑧𝑗𝑥.

(6)

Thus𝑟𝑣=𝑟if and only if∑︀4

𝑖=1𝑖𝑏𝑖+4𝑗= 0for𝑗= 0,1,2. Hence

𝐶𝑉(𝑅) = {︂

1 +

∑︁2 𝑗=0

∑︁3 𝑖=1

[(𝑦𝑖−1) +𝑖(𝑦4−1)]𝑐𝑖+3𝑗𝑧𝑗

+

∑︁2 𝑗=0

∑︁4 𝑖=1

(𝑦𝑖−1)𝑐𝑖+4𝑗+9𝑧𝑗𝑥|𝑐𝑖 ∈𝐹 }︂

and|𝐶𝑉(𝑅)|= 521𝑛.

Step 3: 𝐶𝑉(𝑅)∼=𝐶515𝑛⋊𝐶56𝑛. Consider the sets

𝑆 ={1 +𝑦3(𝑦−1)2[𝑦𝑏1+𝑦(𝑦+ 2)𝑏2+𝑏3+ (𝑦𝑏4+ (𝑦+ 1)2𝑏5)𝑥]} and

𝑇 ={1 +𝑦3(𝑦−1)[(𝑦−1)(𝑦𝑐1+ (𝑦+ 1)2𝑐2) + (𝑦𝑐3+ (𝑦2+𝑦+ 1)𝑐4)𝑥]} where 𝑏1+𝑗 =∑︀2

𝑖=0𝑝𝑖+3𝑗𝑧𝑖 for 𝑗 = 0,1,2,3,4 and 𝑐1+𝑗 =∑︀2

𝑖=0𝑞𝑖+3𝑗𝑧𝑖 for 𝑗 = 0,1,2,3. With some computation it can be shown that 𝑆 and 𝑇 are abelian subgroups of𝐶𝑉(𝑅). So𝑆∼=𝐶515𝑛 and𝑇 ∼=𝐶512𝑛.

Now, let

𝑠= 1 +𝑦3(𝑦−1)2[𝑦𝑏1+𝑦(𝑦+ 2)𝑏2+𝑏3+ (𝑦𝑏4+ (𝑦+ 1)2𝑏5)𝑥]∈𝑆

and

𝑡= 1 +𝑦3(𝑦−1)[(𝑦−1)(𝑦𝑐1+ (𝑦+ 1)2𝑐2) + (𝑦𝑐3+ (𝑦2+𝑦+ 1)𝑐4)𝑥]∈𝑇.

Then

𝑠𝑡= 1 +𝑦3(𝑦−1)2{𝑦𝑏1+𝑦(𝑦+ 2)𝑏2+𝑏3+𝑘1𝑦3(1−𝑦) + [𝑦𝑏4+ (𝑦+ 1)2𝑏5+ (𝑦−1)2(𝑘2+𝑘3)]𝑥} ∈𝑆 where

𝑘1= (𝑐4+ 2𝑐3)(𝑏4−𝑏5), 𝑘2= (𝑐4+ 2𝑐3)(𝑏2−𝑏3) 𝑘3= 2(𝑐24−𝑐3𝑐4−𝑐23)(𝑏4−𝑏5).

Let

𝑈 =𝑆∩𝑇 ={1 +𝑦3(𝑦−1)2[𝑦𝑐1+ (𝑦+ 1)2𝑐2]} where𝑐1+𝑗 =∑︀2

𝑖=0𝑞𝑖+3𝑗𝑧𝑖for𝑗= 0,1. Thus𝑈 ∼=𝐶56𝑛. So for some subgroup 𝑊 ∼= 𝐶56𝑛 of 𝑇, 𝑇 = 𝑈 ×𝑊 and 𝑊 ∩𝑆 = 1. Hence 𝐶𝑉(𝑅) ∼= 𝑆⋊𝑊 ∼= 𝐶515𝑛⋊𝐶56𝑛.

(7)

Step 4: Let𝑀={1 +∑︀2

𝑗=0𝑟𝑗𝑧𝑗𝑦(𝑦+ 1)2(1−𝑦)(1 +𝑥)|𝑟𝑖∈𝐹} ⊆𝑉. Then 𝑀∼=𝐶53𝑛.

Let

𝑚1= 1 +

∑︁2 𝑗=0

𝑟𝑗𝑧𝑗𝑦(𝑦+ 1)2(1−𝑦)(1 +𝑥)∈𝑀

and

𝑚2= 1 +

∑︁2 𝑗=0

𝑠𝑗𝑧𝑗𝑦(𝑦+ 1)2(1−𝑦)(1 +𝑥)∈𝑀 where𝑟𝑗, 𝑠𝑗∈𝐹. Then

𝑚1𝑚2= 1 +

∑︁2 𝑗=0

(𝑟𝑗+𝑠𝑗)𝑧𝑗𝑦(𝑦+ 1)2(1−𝑦)(1 +𝑥)∈𝑀.

Therefore,𝑀 is an abelian subgroup of𝑉 of order53𝑛. Hence, 𝑀∼=𝐶53𝑛. Step 5: 𝑉 ∼=𝐶𝑉(𝑅)⋊𝑀.

Let

𝑎= 1 +

∑︁2 𝑗=0

∑︁3 𝑖=1

[(𝑦𝑖−1) +𝑖(𝑦4−1)]𝑐𝑖+3𝑗𝑧𝑗

+

∑︁2 𝑗=0

∑︁4 𝑖=1

(𝑦𝑖−1)𝑐𝑖+4𝑗+9𝑧𝑗𝑥∈𝐶𝑉(𝑅)

and let

𝑏= 1 +

∑︁2 𝑗=0

𝑟𝑗𝑧𝑗𝑦(𝑦+ 1)2(1−𝑦)(1 +𝑥)∈𝑀 where𝑐𝑖, 𝑟𝑖∈𝐹. Then

𝑎𝑏 = 1 +

∑︁2 𝑗=0

∑︁3 𝑖=1

[(𝑦𝑖−1) +𝑖(𝑦4−1)]𝑐𝑖+3𝑗𝑧𝑗

+

∑︁2 𝑗=0

∑︁4 𝑖=1

(𝑦𝑖−1)𝑐𝑖+4𝑗+9𝑧𝑗𝑥+ (𝑘1+𝑘2𝑥)∈𝐶𝑉(𝑅)

where

𝑘1=

∑︁2 𝑗=0

𝑟𝑗𝑧𝑗{

∑︁2 𝑘=0

(𝑐10+4𝑘−𝑐11+4𝑘−𝑐12+4𝑘+𝑐13+4𝑘)𝑧𝑘

+ 3

∑︁2 𝑗=0

𝑟𝑗𝑧𝑗

∑︁4 𝑖=1

∑︁2 𝑘=0

𝑖(𝑐𝑖+4𝑘+9𝑧𝑘)}𝑦(1−𝑦)3

(8)

and

𝑘2= 2

∑︁2 𝑗=0

𝑟𝑗𝑧𝑗{

∑︁2 𝑘=0

(𝑐2+3𝑘−𝑐3+3𝑘)𝑧𝑘(1−𝑦)

∑︁2 𝑗=0

𝑟𝑗𝑧𝑗

∑︁4 𝑖=1

∑︁2 𝑘=0

𝑖𝑐𝑖+4𝑘+9𝑧𝑘}𝑦(1−𝑦)3−2

∑︁2 𝑗=0

𝑟𝑗𝑧𝑗

∑︁4 𝑖=0

𝑑𝑖𝑦𝑖

with

𝑑0=

∑︁2 𝑗=0

(4𝑐10+4𝑗+ 4𝑐11+4𝑗+𝑐12+4𝑗+𝑐13+4𝑗)𝑧𝑗,

𝑑1=

∑︁2 𝑗=0

(4𝑐10+4𝑗+ 3𝑐11+4𝑗+ 3𝑐12+4𝑗)𝑧𝑗,

𝑑2=

∑︁2 𝑗=0

(4𝑐11+4𝑗+ 3𝑐12+4𝑗+ 3𝑐13+4𝑗)𝑧𝑗,

𝑑3=

∑︁2 𝑗=0

(2𝑐10+4𝑗+ 2𝑐11+4𝑗+𝑐12+4𝑗)𝑧𝑗,

𝑑4=

∑︁2 𝑗=0

(2𝑐11+4𝑗+ 2𝑐12+4𝑗+𝑐13+4𝑗)𝑧𝑗.

Clearly,𝐶𝑉(𝑅)∩𝑀 = 1. Therefore,𝑉 =𝐶𝑉(𝑅)⋊𝑀. In the sequel, we show that𝑍(𝑉)∼=𝐶59𝑛.

If𝑣= 1 +∑︀2 𝑗=0

∑︀4

𝑖=1(𝑦𝑖−1)𝑧𝑗(𝑏𝑖+4𝑗+𝑏𝑖+4𝑗+12𝑥)∈𝐶𝑉(𝑦) ={𝑣∈𝑉 |𝑣𝑦= 𝑦𝑣}, then

𝑣𝑦−𝑦𝑣=

∑︁4 𝑖=1

∑︁2 𝑗=0

𝑦(1−𝑦𝑖)(𝑦3−1)𝑏𝑖+4𝑗+12𝑧𝑗𝑥.

Thus 𝑣 ∈ 𝐶𝑉(𝑦) if and only if 𝑏𝑖 = 𝑏𝑖+𝑗 for 𝑗 = 1,2,3 and 𝑖 = 13,17,21.

Hence

𝐶𝑉(𝑦) = {︂

1 +

∑︁2 𝑗=0

∑︁4 𝑖=1

(𝑦𝑖−1)𝑐𝑖+4𝑗𝑧𝑗+𝑦̂︀

∑︁2 𝑗=0

𝑐𝑗+13𝑧𝑗𝑥|𝑐𝑖∈𝐹 }︂

.

Since𝑍(𝑉)⊆𝐶𝑉(𝑦),

𝑍(𝑉) ={𝑠∈𝐶𝑉(𝑦)|𝑠𝑣=𝑣𝑠for all𝑣∈𝑉}.

(9)

Let 𝑢= 1 +∑︀2 𝑗=0

∑︀4

𝑖=1(𝑦𝑖−1)𝑐𝑖+4𝑗𝑧𝑗+̂︀𝑦𝑥∑︀2

𝑗=0𝑐𝑗+13𝑧𝑗 ∈ 𝐶𝑉(𝑦). Since 𝑣= 1 + (𝑦−1)𝑧𝑥∈𝑉 and𝑦̂︀∈𝑍(𝐹 𝐺),𝑣𝑢−𝑢𝑣= 0yields

(𝑦−1)

∑︁4 𝑖=1

∑︁2 𝑗=0

(𝑦𝑖−𝑦−𝑖)𝑐𝑖+4𝑗𝑧𝑗+1𝑥= 0.

Thus 𝑐𝑖 = 𝑐𝑖+3 for 𝑖 = 1,5,9 and 𝑐𝑗 = 𝑐𝑗+1 for 𝑗 = 2,6,10 and 𝑢 = 1 + 𝑦4(𝑦−1)2∑︀2

𝑗=0𝑑1+𝑗𝑧𝑗+𝑦3(𝑦2−1)2∑︀2

𝑗=0𝑑4+𝑗𝑧𝑗+𝑦̂︀∑︀2

𝑗=0𝑑7+𝑗𝑧𝑗𝑥. Clearly 𝑢∈𝑍(𝑉).

We conclude that𝑍(𝑉) ={1+𝑦4(𝑦−1)2∑︀2

𝑗=0𝑑1+𝑗𝑧𝑗+𝑦3(𝑦2−1)2∑︀2

𝑗=0𝑑4+𝑗𝑧𝑗 +̂︀𝑦∑︀2

𝑗=0𝑑7+𝑗𝑧𝑗𝑥|𝑑𝑖∈𝐹} ∼=𝐶59𝑛.

3. If𝑝 >5, then𝐽(𝐹 𝐺) = 0. Thus𝐹 𝐺is semisimple and𝑡= 30. As𝐺/𝐺∼=𝐶6, we have

𝐹 𝐺∼=𝐹 𝐶6

⨁︁𝑙 𝑖=1

𝑀(𝑛𝑖, 𝐾𝑖).

Sincedim𝐹(𝑍(𝐹 𝐺)) = 12, 𝑙≤6. Now we have the following cases:

(a) If𝑞≡1,−11mod30, then|𝑆𝐹(𝛾𝑔)|= 1for all𝑔∈𝐺. Therefore by [11, Theorem 4.1] and [3, Prop 1.2 and Theorem 1.3],

𝐹 𝐺∼=𝐹6

⨁︁6 𝑖=1

𝑀(𝑛𝑖, 𝐹)

and∑︀6

𝑖=1𝑛2𝑖 = 24. Clearly𝑛𝑖 = 2for𝑖∈ {1,2,3,4,5,6}. Hence, 𝐹 𝐺∼=𝐹6⊕𝑀(2, 𝐹)6.

(b) If𝑞≡ −1,11mod30, then|𝑆𝐹(𝛾𝑔)|= 1for𝑔= 1, 𝑥, 𝑦, 𝑦2and|𝑆𝐹(𝛾𝑔)|= 2 for 𝑔 =𝑧, 𝑥𝑧, 𝑦𝑧, 𝑦2𝑧. In this case𝐹 𝐶6 ∼= 𝐹2⊕𝐹22, thus dimension constraints yield

𝑛21+𝑛22+ 2𝑛23+ 2𝑛24= 24.

We get𝑛1=𝑛2=𝑛3=𝑛4= 2. Hence,

𝐹 𝐺∼=𝐹2⊕𝐹22⊕𝑀(2, 𝐹)2⊕𝑀(2, 𝐹2)2.

(c) If𝑞≡7,13mod30, then𝑇 ={1,7,13,19} mod30. Thus |𝑆𝐹(𝛾𝑔)|= 1 for𝑔= 1, 𝑥, 𝑧, 𝑧2, 𝑥𝑧, 𝑥𝑧2 and|𝑆𝐹(𝛾𝑔)|= 2for𝑔=𝑦, 𝑦𝑧, 𝑦𝑧2. Therefore,

2(𝑛21+𝑛22+𝑛23) = 24.

We get𝑛1=𝑛2=𝑛3= 2. Hence,

𝐹 𝐺∼=𝐹6⊕𝑀(2, 𝐹2)3.

(d) If𝑞≡ −7,−13mod30, then𝑇 ={1,17,19,23}mod30. Thus|𝑆𝐹(𝛾𝑔)|= 1for𝑔= 1, 𝑥and|𝑆𝐹(𝛾𝑔)|= 2for𝑔=𝑦, 𝑧, 𝑥𝑧, 𝑦𝑧, 𝑦𝑧2. Hence,

𝐹 𝐺∼=𝐹2⊕𝐹22⊕𝑀(2, 𝐹2)3.

(10)

References

[1] S. F. Ansari,M. Sahai:Unit Groups of Group Algebras of Groups of Order20, Quaestiones Mathematicae 44.4 (2021), pp. 503–511,

doi:https://doi.org/10.2989/16073606.2020.1727583.

[2] A. A. Bovdi,J. Kurdics:Lie properties of the Group Algebra and the Nilpotency Class of the Group of Units, Journal of Algebra 212.1 (1999), pp. 28–64,

doi:https://doi.org/10.1006/jabr.1998.7617.

[3] R. A. Ferraz:Simple Components of the Center of𝐹 𝐺/𝐽(𝐹 𝐺), Communications in Alge- bra 36.9 (2008), pp. 3191–3199,

doi:https://doi.org/10.1080/00927870802103503.

[4] J. Gildea: The Structure of 𝑈(𝐹5𝑘𝐷20), International Electronic Journal of Algebra 8 (2010), pp. 153–160.

[5] J. Gildea:Units of𝐹5𝑘𝐷10, Serdica Mathematical Journal 36 (2010), pp. 247–254.

[6] N. Makhijani,R. K. Sharma,J. B. Srivastava:A Note on Units in𝐹𝑝𝑚𝐷2𝑝𝑛, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis 30.1 (2014), pp. 17–25.

[7] N. Makhijani, R. K. Sharma, J. B. Srivastava: The Unit Groups of Some Special Semisimple Group Algebras, Journal of Algebra 39.1 (2016), pp. 9–28,

doi:https://doi.org/10.2989/16073606.2015.1024410.

[8] C. P. Milies,S. K. Sehgal: An Introduction to Group Rings, in: Dordrecht: Kluwer Academic Publishers, 2002.

[9] F. Monaghan:Units of Some Group Algebras of Non Abelian Groups of Order24 Over Any Finite Field of Characteristic3, International Electronic Journal of Algebra 12 (2012), pp. 133–161.

[10] M. Sahai, S. F. Ansari: The group of units of the group algebras of groups 𝐷30 and 𝐶3×𝐷10over a finite field of characteristic3, International Electronic Journal of Algebra 29 (2021), pp. 165–174,

doi:https://doi.org/10.24330/ieja.852146.

[11] M. Sahai,S. F. Ansari:Unit Groups of Finite Group Algebras of Abelian Groups of Order At Most16, Asian-European Journal of Mathematics 14.3 (2021), 2150030 (17 pages), doi:https://doi.org/10.1142/S1793557121500303.

[12] G. Tang,Y. Wei,Y. Li:Unit Groups of Group Algebras of Some Small Groups, Czechoslo- vak Mathematical Journal 64.1 (2014), pp. 149–157,

doi:https://doi.org/10.1007/s10587-014-0090-0.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

A heat flow network model will be applied as thermal part model, and a model based on the displacement method as mechanical part model2. Coupling model conditions will

The present paper reports on the results obtained in the determination of the total biogen amine, histamine and tiramine content of Hungarian wines.. The alkalized wine sample

Respiration (The Pasteur-effect in plants). Phytopathological chemistry of black-rotten sweet potato. Activation of the respiratory enzyme systems of the rotten sweet

An antimetabolite is a structural analogue of an essential metabolite, vitamin, hormone, or amino acid, etc., which is able to cause signs of deficiency of the essential metabolite

Perkins have reported experiments i n a magnetic mirror geometry in which it was possible to vary the symmetry of the electron velocity distribution and to demonstrate that

For this case, the group algebras F G with metabelian group of units are classified in [16], under restriction G is finite, and this result is extended to torsion G in [6]..

Social education has developed three major working forms. In individual case management the educator helps the client in a face to face meeting, while group work

In the second collection of doctoral conference proceedings entitled Theory and Practice of Music Education II (fig. 7), 8 the main conference guarantors in its introduction