• Nem Talált Eredményt

847–863 DOI: 10.18514/MMN.2018.2368 ON THE SOLUTIONS OF A MULTI-POINT BVP FOR FRACTIONAL DIFFERENTIAL EQUATIONS WITH IMPULSES FATMA TOKMAK FEN Received 24 June, 2017 Abstract

N/A
N/A
Protected

Academic year: 2022

Ossza meg "847–863 DOI: 10.18514/MMN.2018.2368 ON THE SOLUTIONS OF A MULTI-POINT BVP FOR FRACTIONAL DIFFERENTIAL EQUATIONS WITH IMPULSES FATMA TOKMAK FEN Received 24 June, 2017 Abstract"

Copied!
17
0
0

Teljes szövegt

(1)

Vol. 19 (2018), No. 2, pp. 847–863 DOI: 10.18514/MMN.2018.2368

ON THE SOLUTIONS OF A MULTI-POINT BVP FOR FRACTIONAL DIFFERENTIAL EQUATIONS WITH IMPULSES

FATMA TOKMAK FEN Received 24 June, 2017

Abstract. The existence and uniqueness of solutions for a multi-point boundary value problem (BVP) of impulsive fractional differential equations are investigated by means of Schaefer’s fixed point theorem and Banach contraction mapping principle. Examples that support the theoretical results are presented.

2010Mathematics Subject Classification: 26A33; 34B37

Keywords: Caputo fractional derivative, impulsive differential equations, fractional differential equations, boundary value problems, Banach contraction mapping principle, Schaefer’s fixed point theorem

1. INTRODUCTION

Even though it is a 300-year-old topic, fractional calculus has come into promin- ence in the course of time, and nowadays it has an important role in the modeling of real world phenomena based on fractional derivatives [15]. Models arising from fractional order derivatives are excellent instruments for the description of memory and hereditary properties of various materials and processes [15]. Impulsive dif- ferential equations, on the other hand, are capable of describing the dynamics of processes in which abrupt changes occur [2,17]. For instance, according to the switching phenomenon, frequency changes or other sudden noises, the states of the electronic devices are often subject to instantaneous perturbations and experience abrupt changes at certain instants [2,11], i.e., they exhibit impulsive effects. There- fore, mathematical models with impulsive effects are more accurate to describe the evolutionary processes of the systems. Fractional order and impulsive differential equations have many applications in various fields such as mechanics, electronics, biology, economics, chaos theory, and neuroscience [1,3–5,8,12–14,19–21].

Various types of impulsive fractional differential equations were considered in the papers [22–27]. Banach, Krasnoselskii’s, and Leray-Schauder’s fixed point theorems were utilized to show the existence and uniqueness of solutions for a class of frac- tional order differential switched systems with coupled nonlocal initial and impulsive

c 2018 Miskolc University Press

(2)

conditions in [24]. The papers [6,27] were concerned with significant results on for- mulas for solutions of impulsive fractional differential equations. In [27], a boundary value problem (BVP) of order between1and2is studied. Fixed point theorems were also used in [6] and [27] to show the existence and uniqueness of solutions. On the other hand, the theory of impulsive fractional differential inclusions was improved in [25] by taking into account the existence of PC-mild solutions of such systems with nonlocal conditions when the linear part is a fractional sectorial operator defined on a separable Banach space. Moreover, existence results based on the Banach and Schauder’s fixed point theorems were revealed by Wang and Zhang [26] for frac- tional impulsive systems with Hadamard derivatives. In the present study, we make use of the Banach and Schaefer’s fixed point theorems to deal with the existence and uniqueness of solutions of a BVP of fractional differential equations with impulses.

In contrast with [27], in this paper multi-points in the boundary conditions are used and the order of the system is between2and3.

In [10], Liu et al. considered the following nonlinear fractional impulsive differ- ential equation

8 ˆˆ

<

ˆˆ :

D0ˇCp

D0˛Cu.t /

Df .t; u.t //; t2J0; u.tk/DIk.u.tk//; p

D0˛Cu.tk/

Dbk; kD1; 2; :::; m;

u.0/Du0; D0˛Cu.0/Du1;

where˛; ˇ2.0; 1 with˛Cˇ > 1:The existence and uniqueness of solutions were obtained by means of the Schauder’s fixed point theorem and Banach contraction mapping principle. Additionally, in [6], the authors considered the following frac- tional impulsive differential equation

8

<

:

CDqtu.t /Df .t; u.t //; t2J0WDJn ft1; : : : ; tmg; J DŒ0; 1 ; u.tkC/Du.tk/Cyk; kD1; 2; : : : ; m;

u.0/Du0; yk2R;

whereCDtq is the Caputo fractional derivative of orderq2.0; 1/,u02R, andf W J R!Ris a continuous function. Fixed point methods were utilized to obtain some sufficient conditions for the existence of solutions. Moreover, Rehman and Eloe [16] presented a general method for converting an impulsive fractional differential equation to an equivalent integral equation. Using this method, they investigated the existence of solutions for the following four-point impulsive fractional BVP

8

<

:

CD˛y.x/Df .x; y/; x2J;

y.xk/DIk.u.tk//; y0.xk/D NIk.y.xk//; kD1; 2; : : : ; m;

y.0/Dy./; y.1/Dˇy./;

where1 < ˛ < 2,ˇ,; ; 2R,; 2.0; 1/,J DŒ0; 1, andf WJR!Ris a continuous function.

(3)

Motivated by the above mentioned studies, in this paper, we consider the following p-point impulsive fractional BVP

8 ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆ<

ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆ:

CD0˛Cu.t /Df .t; u.t //; t2J0;

u.tk/DIk.u.tk//; u0.tk/D NIk.u.tk//;

u00.tk/D QIk.u.tk//; kD1; 2; : : : ; m;

au.0/Cbu0.0/D

p 2

X

iD1

ciu.i/;

cu.1/Cdu0.1/D

p 2

X

iD1

diu.i/; u00.0/D0;

(1.1)

whereCD˛0Cis the Caputo fractional derivative of order˛2.2; 3/,a; b; c, andd are real constants, the functions f WŒ0; 1R!R, Ik WR!R, INk WR!R;andIQk W R!Rare continuous in all their arguments,0 < 1< 2< < p 2< 1,ci; di 2 R, iD1; : : : ; p 2; withıWDacCad bc

p 2

X

iD1

dii

a

p 2

X

iD1

ci

C

p 2

X

iD1

di

b

p 2

X

iD1

cii

Cc

p 2

X

iD1

cii¤0,J DŒ0; 1 ; 0Dt0< t1< < tk< < tm< tmC1D1;

J0DJn ft1; t2; : : : ; tmg; u.tk/Du.tkC/ u.tk/;andu.tkC/D lim

t!tkC

u.t /for each kD1; 2; : : : ; m:The impulse actions u0.tk/ andu00.tk/ are defined in a similar way tou.tk/:

The rest of this paper is organized as follows. In Section 2, we provide some necessary definitions and preliminary lemmas, which are key tools for our main res- ults. In Section3, we make use of the Schaefer’s fixed point theorem and Banach contraction mapping principle to prove the existence and uniqueness of solutions of (1.1). Examples are provided in Section4to demonstrate the applications of the main results.

2. PRELIMINARIES

The following definitions are needed in the remaining parts of the paper.

Definition 1([9]). The Riemann-Liouville fractional integral of order˛for a func- tiongWŒ0;1/!Ris defined as

I0˛Cg.t /D 1 .˛/

Z t 0

.t s/˛ 1g.s/ds; t > 0; ˛ > 0;

provided the right side is point-wise defined onŒ0;1/, where is the gamma func- tion.

(4)

Definition 2 ([9]). The Riemann-Liouville derivative of order ˛ for a function gWŒ0;1/!Rcan be written as

LD0˛Cg.t /D 1 .n ˛/

dn dtn

Z t 0

g.s/

.t s/˛C1 nds; t > 0;

wherenDŒ˛C1andŒ˛is the integer part of˛:

Definition 3([9]). The Caputo fractional derivative of order˛ > 0for a continuous functiongWŒ0;1/!Rcan be written as

CD0˛Cg.t /D LD0˛C

"

g.t /

n 1

X

iD0

g.i /.0/

i Š ti

#

; t > 0;

wherenDŒ˛C1andŒ˛is the integer part of˛:

One can confirm that ifgWŒ0;1/!Ris an ntimes continuously differentiable function, then

CD0˛Cg.t /D 1 .n ˛/

Z t 0

g.n/.s/

.t s/˛C1 ndsDI0n ˛C g.n/.t /;

fort > 0andn 1 < ˛ < n:Moreover, the Caputo derivative of a constant is equal to zero.

We say that a real valued functionu.t /defined onJbelongs to the spaceP C.J;R/

if it is left-continuous and continuous except, possibly, at the pointstk,kD1; 2; : : : ; m, where it has discontinuities of the first kind. Besides, for a positive integer, we will denote byP C.J;R/the set of real valued functions whose derivative of order i belongs to the set P C.J;R/ for each i D0; 1; : : : ; . It is worth noting that the space P C.J;R/ is a Banach space endowed with the norm kuk Dsupt2Jju.t /j. In the sequel, we will denote J0 DŒ0; t1; J1 D.t1; t2; : : : ; Jm 1 D.tm 1; tm;

andJmD.tm; 1. Moreover, let AC.J;R/ be the set of functions u.t / such that u. 1/2P C.J;R/and the restriction ofu. 1/onJk,kD0; 1; : : : ; m, is absolutely continuous.

Lemma 1([16, Corollary 2.5]). Assumef WJR!Ris continuous andn 1 <

˛ < n. Thenu2ACn.J;R/satisfies

CD0˛Cu.t /Df .t; u.t //; t2J;

if and only ifu2P Cn 1.J;R/and u.t /D

n 1

X

iD0

u.i /.0/

i Š tiC

n 1

X

iD0

X

0<tk<t

1

i Šu.i /.tk/.t tk/i

C Z t

0

.t s/˛ 1

.˛/ f .s; u.s//ds fort2J.

(5)

Theorem 1([18, Schaefer’s Fixed Point Theorem]). LetBbe a Banach space and T WB!B be a completely continuous operator. If the set

D.B/D fu2BWuDT u for some2Œ0; 1g is bounded, thenT has at least one fixed point.

Lemma 2([7,P C-type Ascoli-Arzela Theorem]). Let˝P C.J;R/. Suppose the following conditions are satisfied:

(i) ˝is uniformly bounded;

(ii) ˝is equicontinuous inJk; kD0; 1; : : : ; m.

Then˝is a relatively compact subset ofP C.J;R/.

3. MAIN RESULTS

This section is concerned with the existence as well as uniqueness of solutions of the problem (1.1).

In the following lemma, we provide an equivalent integral equation to problem (1.1).

Lemma 3. A functionu.t /is a solution of fractional impulsive BVP(1.1)if and only if it is a solution of the following equation

u.t /D 8 ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ

<

ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ :

Z t 0

.t s/˛ 1

.˛/ f .s; u.s//dsC1 ı

p 2

X

iD1

ciFu.i/

cCd

p 2

X

iD1

dii

c

p 2

X

iD1

di

t

C1 ı

p 2 X

iD1

diFu.i/ Au

bC

p 2

X

iD1

ciiC

a

p 2

X

iD1

ci

t

; t 2J0;

Fu.t /C1 ı

p 2

X

iD1

ciFu.i/

cCd

p 2

X

iD1

dii

c

p 2

X

iD1

di

t

C1 ı

p 2 X

iD1

diFu.i/ Au

bC

p 2

X

iD1

ciiC

a

p 2

X

iD1

ci

t

; t2Jk; kD1; 2; : : : ; m;

(3.1)

(6)

where

Fu.t /D Z t

0

.t s/˛ 1

.˛/ f .s; u.s//dsC X

0<tk<t

Ik.u.tk//

C X

0<tk<t

INk.u.tk//.t tk/C X

0<tk<t

IQk.u.tk//.t tk/2

2 ;

(3.2)

and

AuD Z 1

0

c.1 s/˛ 1

.˛/ Cd.1 s/˛ 2 .˛ 1/

f .s; u.s//ds Cc

m

X

kD1

Ik.u.tk//C

m

X

kD1

INk.u.tk// .c.1 tk/Cd /

C1 2

m

X

kD1

IQk.u.tk// c.1 tk/2C2d.1 tk/ :

(3.3)

Proof. Suppose thatu.t /is solution of (1.1). One can confirm by means of Lemma 1that

u.t /De1Ce2tCe3t2C X

0<tk<t

Ik.u.tk//C X

0<tk<t

INk.u.tk//.t tk/

C X

0<tk<t

Q

Ik.u.tk//.t tk/2

2 C

Z t 0

.t s/˛ 1

.˛/ f .s; u.s//ds;

(3.4)

u0.t /De2C2e3tC X

0<tk<t

INk.u.tk//C X

0<tk<t

IQk.u.tk//.t tk/

C Z t

0

.t s/˛ 2

.˛ 1/ f .s; u.s//ds;

(3.5)

and

u00.t /D2e3C X

0<tk<t

IQk.u.tk//C Z t

0

.t s/˛ 3

.˛ 2/ f .s; u.s//ds: (3.6) Applying the boundary condition u00.0/D0 in (3.6), we obtain e3 D0: Now, using the boundary conditionsau.0/Cbu0.0/D

p 2

X

iD1

ciu.i/andcu.1/Cdu0.1/D

p 2

X

iD1

diu.i/;it can be verified that

a

p 2

X

iD1

ci

e1C

b

p 2

X

iD1

cii

e2D

p 2

X

iD1

ciFu.i/; (3.7)

(7)

and

c

p 2

X

iD1

di

e1C

cCd

p 2

X

iD1

dii

e2D

p 2

X

iD1

diFu.i/ Au: (3.8) Solving the linear system of equations (3.7) and (3.8) fore1ande2, we get

e1D1 ı

cCd

p 2

X

iD1

dii

p 2 X

iD1

ciFu.i/C

bC

p 2

X

iD1

cii

p 2 X

iD1

diFu.i/ Au

;

e2D1 ı

a

p 2

X

iD1

ci

p 2 X

iD1

diFu.i/ Au

c

p 2

X

iD1

di

p 2 X

iD1

ciFu.i/

:

Substituting the values ofe1 ande2in (3.4), we obtain (3.1). Conversely, ifu.t / satisfies (3.1), then it is easy to show thatusatisfies (1.1). This completes the proof.

Let us define an operatorT WP C.J;R/!P C.J;R/as

T u.t /DFu.t /C1 ı

p 2

X

iD1

ciFu.i/

cCd

p 2

X

iD1

dii

c

p 2

X

iD1

di

t

C1 ı

p 2 X

iD1

diFu.i/ Au

bC

p 2

X

iD1

ciiC

a

p 2

X

iD1

ci

t

; t2J;

(3.9)

whereFu.t /andAuare defined as in (3.2) and (3.3), respectively. Clearly, the fixed points of the operatorT are the solutions of the problem (1.1).

For the sake of convenience, we define

1D sup

t2Œ0;1

ˇ ˇ ˇ ˇ

cCd

p 2

X

iD1

dii

c

p 2

X

iD1

di

t

ˇ ˇ ˇ ˇ

jıj ;

2D sup

t2Œ0;1

ˇ ˇ ˇ ˇ

bC

p 2

X

iD1

ciiC

a

p 2

X

iD1

ci

t

ˇ ˇ ˇ ˇ

jıj ;

1D ˇ ˇ ˇ ˇ c

p 2

X

iD1

di

ˇ ˇ ˇ ˇ

jıj ; 2D ˇ ˇ ˇ ˇ a

p 2

X

iD1

ci

ˇ ˇ ˇ ˇ jıj :

A property of the operatorT defined by (3.9) is given in the next lemma.

Lemma 4. The operatorT WP C.J;R/!P C.J;R/is completely continuous.

(8)

Proof. The operator T is continuous in view of the continuity of the functions f; Ik; INk and IQk: Let ˝ be a bounded subset of P C.J;R/: There exist positive constantsMi; i D1; 2; 3; 4;such thatjf .t; u/j M1;jIk.u/j M2

ˇINk.u/ˇ ˇM3

andˇ ˇIQk.u/ˇ

ˇM4for allu2˝:

Thus, we have foru2˝that jFu.i/j

Z i 0

.i s/˛ 1

.˛/ jf .s; u.s//jdsC X

0<tk<i

jIk.u.tk//j

C X

0<tk<i

ˇ

ˇINk.u.tk//ˇ

ˇ.i tk/C X

0<tk<i

ˇ

ˇIQk.u.tk//ˇ ˇ

.i tk/2 2 i˛

.˛C1/M1Cm M2CiM3Ci2 2 M4

!

;

and

jAuj Z 1

0

jcj.1 s/˛ 1

.˛/ Cjdj.1 s/˛ 2 .˛ 1/

jf .s; u.s//jds C jcj

m

X

kD1

jIk.u.tk//j C

m

X

kD1

ˇ

ˇINk.u.tk//ˇ

ˇjc.1 tk/Cdj C1

2

m

X

kD1

ˇ

ˇIQk.u.tk//ˇ ˇ

ˇˇc.1 tk/2C2d.1 tk/ˇ ˇ

jcj

.˛C1/C jdj .˛/

M1Cm .jcjM2C.jcj C jdj/ M3/ Cm

2 .jcj C2jdj/ :

Therefore, one can confirm fort2J that jT u.t /j

Z t 0

.t s/˛ 1

.˛/ jf .s; u.s//jdsC X

0<tk<t

jIk.u.tk//j

C X

0<tk<t

ˇ

ˇINk.u.tk//ˇ

ˇ.t tk/C X

0<tk<t

ˇ

ˇIQk.u.tk//ˇ ˇ

.t tk/2 2 C 1

jıj

p 2

X

iD1

jcij jFu.i/j ˇ ˇ ˇ ˇ ˇ

cCd

p 2

X

iD1

dii

! c

p 2

X

iD1

di

! t

ˇ ˇ ˇ ˇ ˇ C 1

jıj

p 2

X

iD1

jdij jFu.i/j C jAuj

! ˇ ˇ ˇ ˇ ˇ

bC

p 2

X

iD1

ciiC a

p 2

X

iD1

ci

! t

ˇ ˇ ˇ ˇ ˇ

(9)

M1

.˛C1/Cm

M2CM3CM4

2

C

p 2

X

iD1

.1jcij C2jdij/

"

i˛

.˛C1/M1Cm M2CiM3Ci2 2 M4

!#

C2M1

jcj

.˛C1/C jdj .˛/

C2m

jcjM2C.jcj C jdj/ M3Cjcj C2jdj

2 M4

:

Hence, the operator T is uniformly bounded. On the other hand, for any t 2Jk; 0km, one can confirm that

j.T u/0.t /j Z t

0

.t s/˛ 2

.˛ 1/ jf .s; u.s//jdsC X

0<tk<t

ˇ

ˇINk.u.tk//ˇ ˇ

C X

0<tk<t

ˇ

ˇIQk.u.tk//ˇ

ˇ.t tk/C 1 jıj

p 2

X

iD1

jcij jFu.i/j ˇ ˇ ˇ ˇ ˇ c

p 2

X

iD1

di

ˇ ˇ ˇ ˇ ˇ C 1

jıj

p 2

X

iD1

jdij jFu.i/j C jAuj

! ˇ ˇ ˇ ˇ ˇ a

p 2

X

iD1

ci

ˇ ˇ ˇ ˇ ˇ : Therefore, we have

j.T u/0.t /j M1

.˛/Cm .M3CM4/ C

p 2

X

iD1

.1jcij C2jdij/

"

i˛

.˛C1/M1Cm M2CiM3Ci2 2 M4

!#

C2M1

jcj

.˛C1/C jdj .˛/

C2m

jcjM2C.jcj C jdj/ M3Cjcj C2jdj

2 M4

:

The last inequality implies the equicontinuity of T .˝/ on Jk; kD0; 1; : : : ; m:

In accordance with the PC-type Arzela-Ascoli theoremT .˝/is relatively compact inP C.J;R/:Consequently, the operator T WP C.J;R/!P C.J;R/is completely

continuous.

The following conditions are required for the next theorem, which is concerned with the existence of solutions of (1.1).

(C1) There exist nonnegative constantshandlsuch that jf .t; u/j hCljuj; t 2J; u2RI

(10)

(C2) There exist nonnegative constantshk; lk;hNk;lNk;hQk;lQk such that foru2R;

kD1; 2; : : : ; m,

jIk.u/j hkClkjuj;ˇ ˇINk.u/ˇ

ˇ NhkC Nlkjuj;ˇ ˇIQk.u/ˇ

ˇ QhkC Qlkjuj: Let us define

KD 1C2jcj

.˛C1/C2jdj .˛/ C

p 2

X

iD1

.1jcij C2jdij/ i˛ .˛C1/

! l

C

p 2

X

iD1

.1jcij C2jdij/ X

0<tk<i

lkCilNkCi2 2 lQk

!

C

m

X

kD1

.1C jcj2/ lkC.1C2.jcj C jdj//lNkC1C2.jcj C2jdj/

2 lQk

:

(3.10)

The numberKdefined by (3.10) is used in the following theorem.

Theorem 2. Assume that the conditions.C1/and.C 2/are valid. IfK< 1;then the problem(1.1)has at least one solution.

Proof. First of all, we know by Lemma 4 that the operator T W P C.J;R/ ! P C.J;R/defined by equation (3.9) is completely continuous. For01;con- sider the equation

uDT u: (3.11)

Ifuis a solution of (3.11), then we have fort2J that jFu.i/j

Z i 0

.i s/˛ 1

.˛/ .hClju.s/j/ dsC X

0<tk<i

hkClkju.tk/j

C X

0<tk<i

hNkC Nlkju.tk/j

.i tk/C X

0<tk<i

hQkC Qlkju.tk/j.i tk/2 2 i˛h

.˛C1/C X

0<tk<i

hkCihNkCi2 2 hQk

!

C i˛l .˛C1/kuk

C X

0<tk<i

lkCilNkCi2 2 lQk

! kuk

(11)

and

jAuj Z 1

0

jcj.1 s/˛ 1

.˛/ Cjdj.1 s/˛ 2 .˛ 1/

jf .s; u.s//jds C jcj

m

X

kD1

jIk.u.tk//j C

m

X

kD1

ˇ

ˇINk.u.tk//ˇ

ˇjc.1 tk/Cdj C1

2

m

X

kD1

ˇ

ˇIQk.u.tk//ˇ ˇ

ˇˇc.1 tk/2C2d.1 tk/ˇ ˇ

jcj

.˛C1/C jdj .˛/

.hClkuk/ C

m

X

kD1

jcjhkC.jcj C jdj/hNkC1

2.jcj C2jdj/hQk

C

m

X

kD1

jcjlkC.jcj C jdj/lNkC1

2.jcj C2jdj/lQk

kuk: Therefore, we have

ju.t /j DjT u.t /j

Z t 0

.t s/˛ 1

.˛/ .hClju.s/j/ dsC X

0<tk<t

.hkClkju.tk/j/

C X

0<tk<t

hNkC Nlkju.tk/j

.t tk/C X

0<tk<t

hQkC Qlkju.tk/j.t tk/2 2 C1

p 2

X

iD1

jcij jFu.i/j C2 p 2

X

iD1

jdij jFu.i/j C2jAuj

(12)

and thus,

ju.t /j 1C2jcj

.˛C1/C2jdj .˛/ C

p 2

X

iD1

.1jcij C2jdij/ i˛ .˛C1/

! h

C

p 2

X

iD1

.1jcij C2jdij/ X

0<tk<i

hkCihNkCi2 2 hQk

!

C

m

X

kD1

.1C2jcj/ hkC.1C2.jcj C jdj//hNkC1C2.jcj C2jdj/

2 hQk

C

1C2jcj

.˛C1/C2jdj .˛/C

p 2

X

iD1

.1jcij C2jdij/ i˛ .˛C1/

! l C

m

X

kD1

.1C2jcj/ lkC.1C2.jcj C jdj//lNkC1C2.jcj C2jdj/

2 lQk

C

p 2

X

iD1

.1jcij C2jdij/ X

0<tk<i

lkCilNkCi2 2 lQk

! kuk: Hence, we have fort2J that

ju.t /j KCKkuk; where

KD 1C2jcj

.˛C1/C2jdj .˛/ C

p 2

X

iD1

.1jcij C2jdij/ i˛ .˛C1/

! h

C

p 2

X

iD1

.1jcij C2jdij/ X

0<tk<i

hkCihNkCi2 2hQk

!

C

m

X

kD1

.1C2jcj/ hkC.1C2.jcj C jdj//hNkC1C2.jcj C2jdj/

2 hQk

: BecauseK< 1, the last inequality implies that

kuk K 1 K:

Therefore, any solution of (3.11) is bounded regardless of the value of:According to Theorem1, the operatorT has a fixed point. Consequently, the fractional impulsive

multi-point BVP (1.1) has at least one solution.

Now, we will use the Banach contraction mapping principle to prove the existence and uniqueness of solutions for problem (1.1).

The following conditions are required.

(13)

(C3) There exists a positive numberLsuch thatjf .t; u/ f .t; v/j Lju vjfor allt2J andu; v2RI

(C4) There exist positive numbers L1; L2;and L3 such that jIk.u/ Ik.v/j L1ju vj; ˇ

ˇINk.u/ INk.v/ˇ

ˇ L2ju vj, andˇ

ˇIQk.u/ IQk.v/ˇ

ˇL3ju vj for allu; v2R;andkD1; 2; : : : ; m:

Theorem 3. Suppose that the conditions.C 3/,.C 4/hold, and

L <1 4

1C2jcj CPp 2

iD1.1jcij C2jdij/ i˛

.˛C1/ C2jdj

.˛/

! 1

;

L1< 1 4m

p 2

X

iD1

.1jcij C2jdij/C1C2jcj

! 1

;

L2< 1 4m

p 2

X

iD1

.1jcij C2jdij/ iC1C2.jcj C jdj/

! 1

;

L3< 1 2m

p 2

X

iD1

.1jcij C2jdij/ i2C1C2.jcj C2jdj/

! 1 : Then, the problem(1.1)has a unique solution.

Proof. Letu; v2P C.J;R/:For eacht2J;we have jT u.t / T v.t /j jFu.t / Fv.t /j

C 1 jıj

p 2

X

iD1

jcij jFu.i/ Fv.i/j ˇ ˇ ˇ ˇ

cCd

p 2

X

iD1

dii

c

p 2

X

iD1

di

t

ˇ ˇ ˇ ˇ C 1

jıj

p 2

X

iD1

jdij jFu.i/ Fv.i/j C jAu Avj

!

ˇ ˇ ˇ ˇ

bCPp 2 iD1ciiC

a Pp 2 iD1ci

t

ˇ ˇ ˇ ˇ

1C2jcjCPp 2

iD1.1jcijC2jdij/i˛

C1/ C2jdj .˛/

L C

p 2 X

iD1

.1jcij C2jdij/C1C2jcj

mL1

C

Pp 2

iD1.1jcij C2jdij/ iC1C2.jcj C jdj/

mL2

C p 2

X

iD1

.1jcij C2jdij/ i2C1C2.jcj C2jdj/ mL3

2

ku vk:

(14)

Since the inequality

1C2jcj CPp 2

iD1.1jcij C2jdij/ i˛

.˛C1/ C2jdj

.˛/

L C

p 2 X

iD1

.1jcij C2jdij/C1C2jcj

mL1

C

Pp 2

iD1.1jcij C2jdij/ iC1C2.jcj C jdj/

mL2

C p 2

X

iD1

.1jcij C2jdij/ i2C1C2.jcj C2jdj/ mL3

2

< 1

holds, T is a contraction mapping. According to the Banach contraction mapping principle,T has a unique fixed point inP C.J;R/;which is a solution of the problem

(1.1).

Examples that support the theoretical results are presented in the next section.

4. EXAMPLES

Example 1

Let us take into account the fractional order impulsive BVP 8

ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆ<

ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆ:

CD

9 4

0Cu.t /D1 2cos

p t

C 3

20tanh.u.t //; t2Œ0; 1n ft1; t2g; u .tk/D. 1/k

5 C 1

40u.tk/; u0.tk/D 1

10sin.u.tk//;

u00.tk/D 1

30arctan.u .tk//; kD1; 2;

3u.0/C2u0.0/D 8u 1

4

C4u 3

4

; u.1/ 2u0.1/D7u

1 4

u

3 4

; u00.0/D0;

(4.1)

wheret1D 3

10 andt2D4 5:

BVP (4.1) is in the form of (1.1) with˛D9

4; mD2; pD4; aD 3; bD2; cD1;

dD 2 c1D 8; c2D4; d1D7; d2D 1; 1D1

4; 2D3

4; f .t; u/D1

2cosp t

C 3

20tanh.u/; Ik.u/D. 1/k

5 C 1

40u;INk.u/D 1

10sin.u/;andIQk.u/D 1

30arctan.u/:It can be verified thatıD7; 1D3

7;and2D1

7 for (4.1). Moreover, conditions.C1/

(15)

and.C 2/are satisfied withhD1

2,lD 3

20,h1Dh2D1

5; l1Dl2D 1

40;hN1D Nh2D hQ1D Qh2D0,lN1D Nl2D 1

10;lQ1D Ql2D 1

30. Therefore, according to Theorem2, BVP (4.1) has at least one solution.

Example 2

Consider the fractional order impulsive BVP 8

ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆ<

ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆ:

CD

5 2

0Cu.t /DsintC 7

200arctan.u.t //; t2Œ0; 1n 3

4

; u

3 4

D eu.34/ 50

1Ceu.34/; u0 3

4

D 1 100u

3 4

; u00

3 4

D 1

20cosu 3

4

; u.0/C1

2u0.0/D u 1

2

C8u 7

8

; u.1/Cu0.1/D4u

1 2

8u

7 8

; u00.0/D0:

(4.2)

One can confirm that (4.2) is in the form of (1.1) with ˛ D 5

2; mD1; t1D 3 4; pD4; aDd D1; bD1

2; cD 1Dc1; c2D8; d1D4; d2D 8; 1D1

2; 2D7 8; f .t; u/DsintC 7

200arctan.u/; Ik.u/D eu

50.1Ceu/;INk.u/D 1

100u;andIQk.u/D 1

20cosu:One can confirm thatıD 12; 1D 5

12;and2D1

2 for (4.2). Conditions of Theorem3are valid for the problem withLD0:035; L1D0:02; L2D0:01and L3D0:05:Thus, the fractional impulsive BVP (4.2) has a unique solution.

REFERENCES

[1] E. Ahmed, A. M. A. El-Sayed, and H. A. A. El-Saka, “Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models,” J. Math. Anal. Appl., vol. 325, no. 1, pp. 542–553, 2007, doi:10.1016/j.jmaa.2006.01.087.

[2] M. Akhmet,Principles of Discontinuous Dynamical Systems. Springer, New York, 2010. doi:

10.1007/978-1-4419-6581-3.

[3] M. Akhmet and M. O. Fen,Replication of Chaos in Neural Networks, Economics and Physics.

Higher Education Press, Beijing; Springer, Heidelberg, 2016. doi:10.1007/978-3-662-47500-3.

[4] M. O. Fen and M. Akhmet, “Impulsive SICNNs with chaotic postsynaptic currents,” Discrete Cont. Dyn.-B, vol. 21, no. 4, pp. 1119–1148, 2016, doi:10.3934/dcdsb.2016.21.1119.

[5] M. O. Fen and F. Tokmak Fen, “Homoclinic and heteroclinic motions in hybrid systems with impacts,”Math. Slovaca, vol. 67, no. 5, pp. 1179–1188, 2017, doi:10.1515/ms-2017-0041.

(16)

[6] M. Feˇckan, Y. Zhou, and J. Wang, “On the concept and existence of solution for impulsive frac- tional differential equations,”Commun. Nonlinear Sci. Numer. Simul., vol. 17, no. 7, pp. 3050–

3060, 2012, doi:10.1016/j.cnsns.2011.11.017.

[7] D. Guo, J. Sun, and Z. Liu,Functional Method for Nonlinear Ordinary Differential Equation.

Shandong Science and Technolog Press, Jinan, 1995.

[8] R. Hilfer,Applications of Fractional Calculus in Physics. World Scientific, Hackensack, NJ, 2001.

[9] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo,Theory and Applications of Fractional Differen- tial Equations. Elsevier Science B.V., Amsterdam, 2006, vol. 204.

[10] Z. Liu, L. Lu, and I. Sz´ant´o, “Existence of solutions for fractional impulsive differential equa- tions withp-Laplacian operator,”Acta Math. Hungar., vol. 141, no. 3, pp. 203–219, 2013, doi:

10.1007/s10474-013-0305-0.

[11] J. Lu, D. Ho, J. Cao, and J. Kurths, “Exponential synchronization of linearly coupled neural networks with impulsive disturbances,”IEEE Trans. Neural Netw., vol. 22, no. 2, pp. 329–335, 2011, doi:10.1109/TNN.2010.2101081.

[12] B. Lundstrom, M. Higgs, W. Spain, and A. Fairhall, “Fractional differentiation by neocortical pyramidal neurons,”Nat. Neurosci., vol. 11, pp. 1335–1342, 2008, doi:10.1038/nn.2212.

[13] J. A. T. Machado and M. E. Mata, “A fractional perspective to the bond graph modelling of world economies,”Nonlinear Dynam., vol. 80, no. 4, pp. 1839–1852, 2015, doi:10.1007/s11071-014- 1334-0.

[14] F. Mainardi,Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London, 2010. doi:10.1142/9781848163300.

[15] I. Podlubny,Fractional Differential Equations. Academic Press, Inc., San Diego, CA, 1999, vol.

198.

[16] M. u. Rehman and P. W. Eloe, “Existence and uniqueness of solutions for impulsive frac- tional differential equations,” Appl. Math. Comput., vol. 224, pp. 422–431, 2013, doi:

10.1016/j.amc.2013.08.088.

[17] A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations. World Scientific Publishing Co., Inc., River Edge, NJ, 1995, vol. 14, doi:10.1142/9789812798664.

[18] D. R. Smart,Fixed point theorems. Cambridge University Press, London-New York, 1974.

[19] V. E. Tarasov, “Fractional vector calculus and fractional Maxwell’s equations,”Ann. Physics, vol.

323, no. 11, pp. 2756–2778, 2008, doi:10.1016/j.aop.2008.04.005.

[20] F. Tokmak Fen and I. Yaslan Karaca, “Existence of positive solutions for nonlinear second-order impulsive boundary value problems on time scales,”Mediterr. J. Math., vol. 13, no. 1, pp. 191–

204, 2016, doi:10.1007/s00009-014-0494-y.

[21] V. V. Uchaikin,Fractional Derivatives for Physicists and Engineers. Volume I. Higher Education Press, Beijing; Springer, Heidelberg, 2013. doi:10.1007/978-3-642-33911-0.

[22] J. Wang, M. Feˇckan, and Y. Zhou, “Nonlocal impulsive fractional differential inclusions with fractional sectorial operators on Banach spaces,”Dynamics of PDE, vol. 8, no. 4, pp. 345–361, 2011.

[23] J. Wang, M. Feˇckan, and Y. Zhou, “A survey on impulsive fractional differential equations,”Fract.

Calc. Appl. Anal., vol. 19, no. 4, pp. 806–831, 2016, doi:10.1515/fca-2016-0044.

[24] J. Wang, M. Feˇckan, and Y. Zhou, “Fractional order differential switched systems with coupled nonlocal initial and impulsive conditions,”Bull. Sci. Math., vol. 141, no. 7, pp. 727–746, 2017, doi:10.1016/j.bulsci.2017.07.007.

[25] J. Wang, A. G. Ibrahim, and M. Feˇckan, “On the concept and existence of solution for impuls- ive fractional differential equations,” Appl. Math. Comput., vol. 257, pp. 103–118, 2015, doi:

10.1016/j.amc.2014.04.093.

(17)

[26] J. Wang and Y. Zhang, “On the concept and existence of solutions for fractional impuls- ive systems with Hadamard derivatives,” Appl. Math. Lett., vol. 39, pp. 85–90, 2015, doi:

10.1016/j.aml.2014.08.015.

[27] J. Wang, Y. Zhou, and M. Feˇckan, “On recent developments in the theory of boundary value problems for impulsive fractional differential equations,”Comput. Math. Appl., vol. 64, no. 10, pp. 3008–3020, 2012, doi:10.1016/j.camwa.2011.12.064.

Author’s address

Fatma Tokmak Fen

Department of Mathematics, Gazi University, 06500 Teknikokullar, Ankara, Turkey E-mail address:fatma.tokmakk@gmail.com

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Keywords: fractional differential equations, fractional integral boundary conditions, Lyapunov-type inequalities, boundary value problems, existence and uniqueness of solutions..

The paper deals with the existence and multiplicity of positive solutions for a system of higher-order singular nonlinear fractional differential equations with nonlocal

In this paper, by applying the coincidence degree theory which was first intro- duced by Mawhin, we obtain an existence result for the fractional three-point boundary value problems

Ntouyas, A four-point nonlocal integral boundary value prob- lem for fractional differential equations of arbitrary order, Electron.. The-

In this work, we are concerned with the existence and the multi- plicity of nontrivial positive solutions for a boundary value problem of a system of second-order differential

Zhang, Existence of three positive solutions of m-point boundary value problems for some nonlinear fractional differential equations on an infinite interval, Comput.. Zhang,

This paper presents some existence and uniqueness results for a boundary value problem of fractional differential equations of order α ∈ (1, 2] with four- point nonlocal

Ge, Nonlocal boundary value problem of higher order ordinary differential equations at resonance, Rocky Mountain J.. Kong, Solutions of second order multi-point boundary value