• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
24
0
0

Teljes szövegt

(1)

volume 7, issue 5, article 173, 2006.

Received 27 January, 2006;

accepted 19 November, 2006.

Communicated by:S.S. Dragomir

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

APPLICATION OF A TRAPEZOID INEQUALITY TO NEUTRAL FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS IN

BANACH SPACES

ALEXANDRU MIAHI BICA, VASILE AUREL C ˘AU ¸S AND SORIN MURE ¸SAN

Department of Mathematics University of Oradea, Str. Universitatii no.1 410087, Oradea, Romania EMail:abica@uoradea.ro EMail:vcaus@uoradea.ro

c

2000Victoria University ISSN (electronic): 1443-5756 028-06

(2)

Application of a Trapezoid Inequality to Neutral Fredholm Integro-Differential Equations in

Banach Spaces

Alexandru Miahi Bica, Vasile Aurel C ˘au¸s and

Sorin Mure¸san

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of24

Abstract

A new approach for neutral Fredholm integro-differential equations in Banach spaces, using the Perov’s fixed point theorem of existence, uniqueness and ap- proximation is presented. The approximation of the solution and of its derivative is realized using the method of successive approximations and a trapezoidal quadrature rule in Banach spaces for Lipschitzian functions. The interest is focused on the error estimation.

2000 Mathematics Subject Classification:Primary 45J05, Secondary 45N05, 45B05, 65L05.

Key words: Nonlinear neutral Fredholm integro-differential equations in Banach spaces, Perov’s fixed point theorem, Method of successive approxima- tions, Trapezoidal quadrature rule.

Contents

1 Introduction. . . 3 2 Existence, Uniqueness and Approximation . . . 5 3 The Main Result . . . 11

References

(3)

Application of a Trapezoid Inequality to Neutral Fredholm Integro-Differential Equations in

Banach Spaces

Alexandru Miahi Bica, Vasile Aurel C ˘au¸s and

Sorin Mure¸san

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of24

1. Introduction

Consider the neutral Fredholm integro-differential equation (1.1) x(t) =

Z b a

f(t, s, x(s), x0(s))ds+g(t), t∈[a, b]

where f : [a, b]×[a, b]×X×X →Xis continuous,Xis a Banach space and g ∈C1([a, b], X).

To obtain the existence, uniqueness and global approximation of the solu- tion of (1.1) we will use Perov’s fixed point theorem. To this purpose, we dif- ferentiate the equation (1.1) with respect to t and assume that f(·, s, u, v) ∈ C1([a, b], X),∀s ∈ [a, b],∀u, v ∈ X, wherex0 = y.Hence (1.1) reduces to the following system of Fredholm integral equations:

(1.2)

x(t) = Rb

a f(t, s, x(s), y(s))ds+g(t) y(t) =Rb

a

∂f

∂t (t, s, x(s), y(s))ds+g0(t)

, t∈[a, b].

The Perov fixed point theorem will be applied to the system (1.2) obtaining also the approximation of the solution of (1.1) and its derivative.

The Perov fixed point theorem appeared for the first time in [16] and was later used for two point boundary value problems of second order differential equations in [5]. The Perov fixed point theorem was also used in [1], [10], [18] and [19]. Bica and Muresan have used the Perov fixed point theorem for delay neutral integro-differential equations in [6] and [7]. In this paper the authors have constructed a method of approximating the solution of (1.1) and

(4)

Application of a Trapezoid Inequality to Neutral Fredholm Integro-Differential Equations in

Banach Spaces

Alexandru Miahi Bica, Vasile Aurel C ˘au¸s and

Sorin Mure¸san

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of24

its derivative using a sequence of successive approximations and a trapezoidal quadrature rule from [8]. Some of the existing numerical methods applied to Fredholm integro-differential equations can be found in the papers [2], [3], [4], [9], [11], [12], [13], [14], [15], [17]. The tools utilised in these papers are:

the tau method, direct methods, collocation methods, Runge-Kutta methods, wavelet methods and spline approximation.

In this paper, our interest will be focused on the error estimation of the method presented in the Section3.

(5)

Application of a Trapezoid Inequality to Neutral Fredholm Integro-Differential Equations in

Banach Spaces

Alexandru Miahi Bica, Vasile Aurel C ˘au¸s and

Sorin Mure¸san

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of24

2. Existence, Uniqueness and Approximation

Consider the following conditions:

(i) (continuity): f ∈ C([a, b]×[a, b]×X×X, X), g ∈ C1([a, b], X) and f(·, s, u, v)∈C1([a, b], X),for anys∈[a, b], u, v ∈X

(ii) (Lipschitz conditions): there existα1, α2, β1, β2, γ1, γ2, δ1, δ2, η∈R+such that for anyt, t0, s, s1, s2 ∈[a, b]andu, v, u1, u2, v1, v2 ∈X,we have:

(2.1) kf(t, s, u1, v1)−f(t, s, u2, v2)kX

≤α1ku1−u2kX1kv1−v2kX,

(2.2)

∂f

∂t (t, s, u1, v1)− ∂f

∂t (t, s, u2, v2) X

≤α2ku1−u2kX2kv1−v2kX,

(2.3) kf(t, s1, u, v)−f(t, s2, u, v)kX ≤γ1|s1−s2|,

(2.4)

∂f

∂t (t, s1, u, v)−∂f

∂t (t, s2, u, v) X

≤γ2|s1−s2|,

(2.5) kf(t, s, u, v)−f(t0, s, u, v)kX ≤δ1|t−t0|,

(6)

Application of a Trapezoid Inequality to Neutral Fredholm Integro-Differential Equations in

Banach Spaces

Alexandru Miahi Bica, Vasile Aurel C ˘au¸s and

Sorin Mure¸san

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of24

(2.6)

∂f

∂t (t, s, u, v)− ∂f

∂t (t0, s, u, v) X

≤δ2|t−t0|,

(2.7) kg0(t)−g0(t0)kX ≤η· |t−t0|. We use Perov’s fixed point theorem (see [16], [5] and [10]):

Theorem 2.1. Let (X, d) be a complete generalized metric space such that d(x, y) ∈ Rn forx, y ∈ X. Suppose that there exists a functionA : X → X such that:

d(A(x), A(y))≤Q·d(x, y)

for anyx, y ∈X,whereQ ∈ Mn(R+). If all eigenvalues ofQlie in the open unit disc fromR2 thenQm → 0form → ∞and the operatorA has a unique fixed pointx ∈X. Moreover, the sequence of successive approximationsxm = A(xm−1)converges to x inX for anyx0 ∈ X and the following estimation holds:

(2.8) d(xm, x)≤Qm(In−Q)−1·d(x0, x1), for eachm∈N whereInis the unity matrix inMn(R).

We recall the notion of generalized metric, which is a functiond:Y ×Y → Rnon a nonempty setY with the properties:

a) d(x, y)≥0,for anyx, y ∈Y;

(7)

Application of a Trapezoid Inequality to Neutral Fredholm Integro-Differential Equations in

Banach Spaces

Alexandru Miahi Bica, Vasile Aurel C ˘au¸s and

Sorin Mure¸san

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of24

b) d(x, y) = 0⇔x=y,forx, y ∈Y; c) d(y, x) =d(x, y),for anyx, y ∈Y;

d) d(x, z)≤d(x, y) +d(y, z),for anyx, y, z ∈Y.

Here, the order relation onRnis defined by

x≤y⇔xi ≤yi, in R, for eachi= 1, n, xi, yi ∈R

forx= (x1, . . . , xn), y = (y1, . . . , yn)∈Rn.The pair(Y, d)denote a general- ized metric space.

In the following, we will use the notation

kukC = max{ku(t)kX :t∈[a, b]}, foru∈C([a, b], X).

We consider the product spaceY =C([a, b], X)×C([a, b], X)and define the generalized metricd:Y ×Y →R2 by,

d((u1, v1),(u2, v2)) = (ku1−u2kC,kv1−v2kC), for(u1, v1),(u2, v2)∈Y.

It is easy to prove that (Y, d) is a complete generalized metric space. We define the operatorA:Y →Y, A= (A1A2)by,

A1(x, y) (t) = Z b

a

f(t, s, x(s), y(s))ds+g(t)

(8)

Application of a Trapezoid Inequality to Neutral Fredholm Integro-Differential Equations in

Banach Spaces

Alexandru Miahi Bica, Vasile Aurel C ˘au¸s and

Sorin Mure¸san

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of24

and

(2.9) A2(x, y) (t) = Z b

a

∂f

∂t (t, s, x(s), y(s))ds+gt(t), t∈[a, b]. The following result concerning the existence and uniqueness of the solution for the equation (1.1) holds.

Theorem 2.2. In the conditions (i), (2.1), (2.2), if12) (b−a)<2and (2.10) 1 + (b−a)41β2−α2β1)2+ 2α2β1(b−a)2 >(b−a)2 α2122 then the operatorAhas a unique fixed point(x, y)such that

x ∈C1([a, b], X), y = (x)0

and x is the unique solution of the equation (1.1). Moreover, the sequence of the successive approximations given by,

(2.11) (x0(t), y0(t)) = (g(t), g0(t)), t∈[a, b]

(2.12) xm+1(t) = Z b

a

f(t, s, xm(s), ym(s))ds+g(t), t∈[a, b]

and

(2.13) ym+1(t) = Z b

a

∂f

∂t (t, s, xm(s), ym(s))ds+g0(t), t ∈[a, b],

(9)

Application of a Trapezoid Inequality to Neutral Fredholm Integro-Differential Equations in

Banach Spaces

Alexandru Miahi Bica, Vasile Aurel C ˘au¸s and

Sorin Mure¸san

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of24

converges inY to(x, y)and the following error estimation holds:

(2.14) d((xm, ym),(x, y))≤Qm(In−Q)−1·d((x0, y0),(x1, y1)), for anym ∈N,

where

Q= (b−a)

α1 β1 α2 β2

.

Proof. From condition (i) we infer that A(Y)⊂ Y.For(u1, v1),(u2, v2)∈ Y, t ∈[a, b]we have

kA1(u1, v1) (t)−A1(u2, v2) (t)kX

≤ Z b

a

1ku1(s)−u2(s)kX1kv1(s)−v2(s)kX]

≤(b−a)·[α1ku1−u2kC1kv1−v2kC], for anyt∈[a, b]

and

kA2(u1, v1) (t)−A2(u2, v2) (t)kX

≤(b−a)·[α2ku1−u2kC2kv1−v2kC], for anyt∈[a, b]. We infer that

d(A(u1, v1), A(u2, v2))≤Q·d((u1, v1),(u2, v2)),

for any (u1, v1),(u2, v2)∈Y,

(10)

Application of a Trapezoid Inequality to Neutral Fredholm Integro-Differential Equations in

Banach Spaces

Alexandru Miahi Bica, Vasile Aurel C ˘au¸s and

Sorin Mure¸san

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of24

where

Q=

(b−a)α1 (b−a)β1 (b−a)α2 (b−a)β2

! .

It is easy to see that the eigenvalues ofQ are real. The inequalities (2.10) and (α12) (b−a) < 2 lead to µ1, µ2 ∈ (−1,1), where µ1 and µ2 are these eigenvalues. From the Perov fixed point theorem we infer that Qm → 0 for m → ∞and the operatorAhas a unique fixed point(x, y)∈Y.Then,

x(t) = Z b

a

f(t, s, x(s), y(s))ds+g(t), ∀t ∈[a, b]

and

y(t) = Z b

a

∂f

∂t (t, s, x(s), y(s))ds+g0(t), ∀t∈[a, b].

Since f(·, s, u, v) ∈ C1([a, b], X), for any s ∈ [a, b], u, v ∈ X and g ∈ C1([a, b], X) we infer that x ∈ C1([a, b], X). If we differentiate the first equality with respect totwe obtainy = (x)0.Thenx is the unique solution of (1.1). From the relations (2.12) and (2.13) and from (2.9) we infer that the sequences given in (2.12), (2.13) fulfil the recurrence relation

(xm+1, ym+1) =A((xm, ym)), ∀m∈N.

Now, the inequality (2.14) follows from the estimation (2.8). SinceQm →0for m → ∞ inM2(R)we infer that

m→∞lim d((xm, ym),(x, y)) = (0,0). This proves the theorem.

(11)

Application of a Trapezoid Inequality to Neutral Fredholm Integro-Differential Equations in

Banach Spaces

Alexandru Miahi Bica, Vasile Aurel C ˘au¸s and

Sorin Mure¸san

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of24

3. The Main Result

To compute the terms of the sequence of successive approximations we use in the calculus of integrals in (2.12), (2.13) the trapezoidal quadrature rule for Lipschitzian functions from [8]:

(3.1) Z b

a

F (x)dx

= (b−a) 2n

"

F (a) + 2

n−1

X

i=1

F

a+i(b−a) n

+F (b)

#

+Rn(F)

with

(3.2) kRn(F)kX ≤ L(b−a)2

4n ,

whereLis the Lipschitz constant ofF : [a, b]→X.

In this respect consider the uniform partition of[a, b], (3.3) ∆ : a=t0 < t1 <· · ·< tn−1 < tn =b

withti = a+ i(b−a)n , i = 0, n and compute xm(ti), ym(ti), i = 0, n, m∈ N.

From (2.12) and (2.13) we have (3.4) xm+1(ti) =

Z b a

f(ti, s, xm(s), ym(s))ds+g(ti)

(12)

Application of a Trapezoid Inequality to Neutral Fredholm Integro-Differential Equations in

Banach Spaces

Alexandru Miahi Bica, Vasile Aurel C ˘au¸s and

Sorin Mure¸san

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of24

and

(3.5) ym+1(ti) = Z b

a

∂f

∂t (ti, s, xm(s), ym(s))ds+g0(ti),

for anyi= 0, n, m ∈N. We define the functions

Fm,i, Gm,i : [a, b]→X, m∈N, i= 0, n by

(3.6)

Fm,i(s) = f(ti, s, xm(s), ym(s)) Gm,i(s) = ∂f∂t (ti, s, xm(s), ym(s))

, for anys∈[a, b].

Definition 3.1. A setZ ⊂C([a, b], X)is equally Lipschitz if there existsL≥0 such that for anyh∈Z,

kh(t)−h(t0)kX ≤L· |t−t0|, for eacht, t0 ∈[a, b]. Theorem 3.1. The subsets

{{Fm,i}m∈

N, i= 0, n} ⊂C([a, b], X) and

{{Gm,i}m∈

N, i= 0, n} ⊂C([a, b], X)

defined in (3.6), are equally Lipschitz, if the conditions (i) and (2.1) – (2.7) are true.

(13)

Application of a Trapezoid Inequality to Neutral Fredholm Integro-Differential Equations in

Banach Spaces

Alexandru Miahi Bica, Vasile Aurel C ˘au¸s and

Sorin Mure¸san

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of24

Proof. Let

µ=kg0kC = max{kg0(t)kX :t∈[a, b]}. Form∈Nandi= 0, nwe have

kFm,i(s1)−Fm,i(s2)kX

≤γ1|s1−s2|+α1kxm(s1)−xm(s2)kX1kym(s1)−ym(s2)kX

≤γ1|s1−s2|+α11(b−a) +µ]· |s1−s2|

12(b−a)· |s1−s2|+kg0(s1)−g0(s2)kX]

≤[γ11µ+β1η+ (b−a) (α1δ11δ2)]· |s1−s2|, for anys1, s2 ∈[a, b]and

kGm,i(s1)−Gm,i(s2)kX

≤γ2|s1−s2|+α2kxm(s1)−xm(s2)kX2kym(s1)−ym(s2)kX

≤[γ22µ+β2η+ (b−a) (α2δ12δ2)]· |s1−s2|, for anys1, s2 ∈[a, b].Moreover, for anyi= 0, nwe have,

kF0,i(s1)−F0,i(s2)kX ≤(γ11µ+β1η)·|s1 −s2|, for eachs1, s2 ∈[a, b]

and

kG0,i(s1)−G0,i(s2)kX ≤(γ22µ+β2η)·|s1 −s2|, for eachs1, s2 ∈[a, b]. Let

L111µ+β1η+ (b−a) (α1δ11δ2),

(14)

Application of a Trapezoid Inequality to Neutral Fredholm Integro-Differential Equations in

Banach Spaces

Alexandru Miahi Bica, Vasile Aurel C ˘au¸s and

Sorin Mure¸san

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of24

L222µ+β2η+ (b−a) (α2δ12δ2). From the above, we infer that for anyi= 0, n, we have,

kFm,i(s1)−Fm,i(s2)kX ≤L1· |s1−s2|, for eachs1, s2 ∈[a, b]

and

kGm,i(s1)−Gm,i(s2)kX ≤L2·|s1−s2|, for eachs1, s2 ∈[a, b] andm∈N. This concludes the proof of the theorem.

Applying in (3.4), (3.5) the quadrature rule (3.1) – (3.2) we obtain the nu- merical method:

(3.7) x0(ti) = g(ti), y0(ti) = g0(ti), fori= 0, n

(3.8) xm(ti) =g(ti) + (b−a) 2n ·

"

f(ti, a, xm−1(a), ym−1(a))

+ 2

n−1

X

j=1

f(ti;tj, xm−1(tj), ym−1(tj)) +f(ti, b, xm−1(b), ym−1(b))

#

+Rm,i, fori= 0, nandm∈N and

(3.9) ym(ti) = g0(ti) + (b−a) 2n ·

"

∂f

∂t (ti, a, xm−1(a), ym−1(a))

(15)

Application of a Trapezoid Inequality to Neutral Fredholm Integro-Differential Equations in

Banach Spaces

Alexandru Miahi Bica, Vasile Aurel C ˘au¸s and

Sorin Mure¸san

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of24

+ 2

n−1

X

j=1

∂f

∂t (ti;tj, xm−1(tj), ym−1(tj)) + ∂f

∂t (ti, b, xm−1(b), ym−1(b))

#

+Rm,i, fori= 0, nandm ∈N. with the remainder estimations

(3.10) kRm,ikX ≤ L1(b−a)2

4n , for anym ∈Nandi= 0, n,

(3.11) kωm,ikX ≤ L2(b−a)2

4n , or anym∈N andi= 0, n.

These lead to the following algorithm:

x0(ti) =g(ti), y0(ti) =g0(ti), x1(ti)

(3.12)

=g(ti) + (b−a) 2n ·

"

f(ti, a, g(a), g0(a))

+ 2

n−1

X

j=1

f(ti;tj, g(tj), g0(tj)) +f(ti, b, g(b), g0(b))

# +R1,i

=x1(ti) +R1,i,

(16)

Application of a Trapezoid Inequality to Neutral Fredholm Integro-Differential Equations in

Banach Spaces

Alexandru Miahi Bica, Vasile Aurel C ˘au¸s and

Sorin Mure¸san

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of24

y1(ti) = g0(ti) + (b−a) 2n ·

∂f

∂t (ti, a, g(a), g0(a)) (3.13)

+ 2

n−1

X

j=1

∂f

∂t (ti;tj, g(tj), g0(tj)) +∂f

∂t (ti, b, g(b), g0(b))

1,i

=y1(ti) +ω1,i,

x2(ti) =g(ti) + (b−a) 2n ·

f(ti, t0, x1(t0) +R1,0, y1(t0) +ω1,0) (3.14)

+ 2

n−1

X

j=1

f(ti;tj, x1(tj) +R1,j, y1(tj) +ω1,j) +f(ti, tn, x1(tn) +R1,n, y1(tn) +ω1,n)

+R2,i

=g(ti) + (b−a) 2n ·

f(ti, t0, x1(t0), y1(t0)) + 2

n−1

X

j=1

f(ti;tj, x1(tj), y1(tj))

+f(ti, tn, x1(tn), y1(tn))

+R2,i

=x2(ti) +R2,i,

(17)

Application of a Trapezoid Inequality to Neutral Fredholm Integro-Differential Equations in

Banach Spaces

Alexandru Miahi Bica, Vasile Aurel C ˘au¸s and

Sorin Mure¸san

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of24

y2(ti) =g0(ti) + (b−a) 2n ·

"

∂f

∂t (ti, t0, x1(t0) +R1,0, y1(t0) +ω1,0) (3.15)

+ 2

n−1

X

j=1

∂f

∂t (ti;tj, x1(tj) +R1,j, y1(tj) +ω1,j) + ∂f

∂t(ti, tn, x1(tn) +R1,n, y1(tn) +ω1,n)

# +ω2,i

=g0(ti) + (b−a) 2n ·

"

∂f

∂t (ti, t0, x1(t0), y1(t0)) + 2

n−1

X

j=1

∂f

∂t (ti;tj, x1(tj), y1(tj)) + ∂f

∂t (ti, tn, x1(tn), y1(tn))

# +ω2,i

=y2(ti) +ω2,i, wheni= 0, n.

By induction, form≥3,we obtain fori= 0, nthat (3.16) xm(ti)

=g(ti) + (b−a) 2n ·

"

f ti, t0, xm−1(t0) +Rm−1,0, ym−1(t0) +ωm−1,0

(18)

Application of a Trapezoid Inequality to Neutral Fredholm Integro-Differential Equations in

Banach Spaces

Alexandru Miahi Bica, Vasile Aurel C ˘au¸s and

Sorin Mure¸san

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of24

+ 2

n−1

X

j=1

f ti;tj, xm−1(tj) +Rm−1,j, ym−1(tj) +ωm−1,j

+f ti, tn, xm−1(tn) +Rm−1,n, ym−1(tn) +ωm−1,n

#

+Rm,i

=g(ti) + (b−a) 2n ·

"

f(ti, t0, xm−1(t0), ym−1(t0))

+ 2

n−1

X

j=1

f(ti;tj, xm−1(tj), ym−1(tj))

+f(ti, tn, xm−1(tn), ym−1(tn))

#

+Rm,i

=xm(ti) +Rm,i

and

ym(ti) (3.17)

=g0(ti) + (b−a) 2n

∂f

∂t ti, t0, xm−1(t0) +Rm−1,0, ym−1(t0) +ωm−1,0

+ 2

n−1

X

j=1

∂f

∂t ti;tj, xm−1(tj) +Rm−1,j, ym−1(tj) +ωm−1,j

(19)

Application of a Trapezoid Inequality to Neutral Fredholm Integro-Differential Equations in

Banach Spaces

Alexandru Miahi Bica, Vasile Aurel C ˘au¸s and

Sorin Mure¸san

Title Page Contents

JJ II

J I

Go Back Close

Quit Page19of24

+∂f

∂t ti, tn, xm−1(tn) +Rm−1,n, ym−1(tn) +ωm−1,n

m,i

=g0(ti) + (b−a) 2n ·

"

∂f

∂t (ti, t0, xm−1(t0), ym−1(t0)) + 2

n−1

X

j=1

∂f

∂t (ti;tj, xm−1(tj), ym−1(tj)) +∂f

∂t (ti, tn, xm−1(tn), ym−1(tn))

#

m,i

=ym(ti) +ωm,i.

At the remainder estimation we have for anyi= 0, n kR1,ikX ≤ L1(b−a)2

4n , kω1,ikX ≤ L2(b−a)2

4n .

Using in (3.14) the Lipschitz property (2.1) we obtain:

R2,i

≤[1 + (b−a) (α11)]·L1(b−a)2

4n , for anyi= 0, n.

Using in (3.15) the Lipschitz property (2.2) we obtain:

2,ik ≤[1 + (b−a) (α22)]· L2(b−a)2

4n , for eachi= 0, n.

(20)

Application of a Trapezoid Inequality to Neutral Fredholm Integro-Differential Equations in

Banach Spaces

Alexandru Miahi Bica, Vasile Aurel C ˘au¸s and

Sorin Mure¸san

Title Page Contents

JJ II

J I

Go Back Close

Quit Page20of24

By induction, we obtain form≥2andi= 0, n, Rm,i

1 + (b−a) (α11) +· · ·+ (b−a)m−111)m−1 (3.18)

· L1(b−a)2 4n

= 1−(b−a)m11)m

1−(b−a) (α11) · L1(b−a)2 4n and

m,ik ≤

1 + (b−a) (α22) +· · ·+ (b−a)m−122)m−1 (3.19)

· L2(b−a)2 4n

= 1−(b−a)m22)m

1−(b−a) (α22) · L2(b−a)2

4n .

Finally, we can state the following result:

Theorem 3.2. With the conditions (i), (2.1) – (2.7), (2.10), and if(b−a) (α11)

<1and(b−a) (α22)<1, then the solution of the system (1.2) is approxi- mated on the knots of the uniform partitiongiven in (3.3), by the sequence

{(xm(ti), ym(ti))}m∈

N, i= 0, n

obtained in (3.12) – (3.17) and the following error estimation holds:

(3.20)

kx(ti)−xm(ti)kX ky(ti)−ym(ti)kX

!

≤Qm(I2 −Q)−1d(x0, x1)

(21)

Application of a Trapezoid Inequality to Neutral Fredholm Integro-Differential Equations in

Banach Spaces

Alexandru Miahi Bica, Vasile Aurel C ˘au¸s and

Sorin Mure¸san

Title Page Contents

JJ II

J I

Go Back Close

Quit Page21of24

+

L1(b−a)2 4n[1−(b−a)(α11)]

L2(b−a)2 4n[1−(b−a)(α22)]

, for eachm∈Nandi= 0, n.

Proof. Follows from (2.14), (3.18) and (3.19) since

kx(ti)−xm(ti)kX ≤ kx(ti)−xm(ti)kX +kxm(ti)−xm(ti)kX for eachm∈N andi= 0, nand,

ky(ti)−ym(ti)kX ≤ ky(ti)−ym(ti)kX +kym(ti)−ym(ti)kX for eachm∈N and∀i= 0, n.

Remark 1. Whenf(t, s, u, v) =H(t, s)·f(s, u, v)withH1 ∈C [a, b]2, X we obtain the existence, uniqueness and approximation of the solution for Hammerstein-Fredholm integro-differential equations in Banach spaces. More- over, in the particular case H(t, s) = G(t, s), the Green function, we obtain a new approach for two point boundary value problems associated to second order differential equations in Banach spaces.

Remark 2. ForX =Rnwe obtain a new method in analysing systems of Fred- holm integro-differential equations and for X = R we obtain similar results for the approximation of the solution of a scalar Fredholm integro-differential equation.

(22)

Application of a Trapezoid Inequality to Neutral Fredholm Integro-Differential Equations in

Banach Spaces

Alexandru Miahi Bica, Vasile Aurel C ˘au¸s and

Sorin Mure¸san

Title Page Contents

JJ II

J I

Go Back Close

Quit Page22of24

References

[1] S. ANDRAS, A note on Perov’s fixed point theorem, Fixed Point Theory, 4(1) (2003), 105–108.

[2] A. AYAD, Spline approximation for first order Fredholm delay integro- differential equations, Int. J. Comput. Math., 70(3) (1999), 467–476.

[3] A. AYAD, Spline approximation for first order Fredholm integro- differential equations, Studia Univ. Babes-Bolyai Math., 41(3) (1996), 1–

8.

[4] S.H. BEHIRYANDH. HASHISH, Wavelet methods for the numerical so- lution of Fredholm integro-differential equations, Int. J. Appl. Math., 11(1) (2002), 27–35.

[5] S.R. BERNFELD AND V. LAKSHMIKANTHAM, An Introduction to Nonlinear Boundary Value Problems, Acad. Press, New York, 1974.

[6] A. BICA AND S. MURE ¸SAN, Periodic solutions for a delay integro- differential equations in biomathematics, RGMIA Res. Report Coll., 6(4) (2003), 755–761.

[7] A. BICAANDS. MURE ¸SAN, Applications of the Perov’s fixed point the- orem to delay integro-differential equations, Chap. 3 in Fixed Point Theory and Applications (Y.J. Cho, et al., Eds), Vol. 7, Nova Science Publishers Inc., New York, 2006.

(23)

Application of a Trapezoid Inequality to Neutral Fredholm Integro-Differential Equations in

Banach Spaces

Alexandru Miahi Bica, Vasile Aurel C ˘au¸s and

Sorin Mure¸san

Title Page Contents

JJ II

J I

Go Back Close

Quit Page23of24

[8] C. BU ¸SE, S.S. DRAGOMIR, J. ROUMELIOTIS AND A. SOFO, Gener- alized trapezoid type inequalities for vector-valued functions and applica- tions, Math. Inequal. Appl., 5(3) (2002), 435–450.

[9] V.A. C ˘AU ¸S, Numerical solution of the n-th order Fredholm delay integro- differential equations by spline functions, Proc. of the Int. Sympos. on Num. Analysis and Approx. Theory, Cluj-Napoca, Romania, May 9-11, 2002, Cluj Univ. Press, 114–127.

[10] G. DEZSO, Fixed point theorems in generalized metric spaces, PUMA Pure Math. Appl., 11(2) (2000), 183–186.

[11] L.A. GAREYANDC.J. GLADWIN, Direct numerical methods for first or- der Fredholm integro-differential equations, Int. J. Comput. Math., 34(3/4) (1990), 237–246.

[12] S.M. HOSSEINIANDS. SHAHMORAD, Tau numerical solution of Fred- holm integro-differential equations with arbitrary polynomial base, Appl.

Math. Modelling, 27(2) (2003), 145–154.

[13] HU QIYA, Interpolation correction for collocation solutions of Fredholm integro-differential equations, Math. Comput., 67(223) (1998), 987–999.

[14] L.M. LIHTARNIKOV, Use of Runge-Kutta method for solving Fredholm type integro-differential equations, Zh. Vychisl. Mat. Fiz., 7 (1967), 899–

905.

[15] G. MICULA ANDG. FAIRWEATHER, Direct numerical spline methods for first order Fredholm integro-differential equations, Rev. Anal. Numer.

Theor. Approx., 22(1) (1993), 59–66.

(24)

Application of a Trapezoid Inequality to Neutral Fredholm Integro-Differential Equations in

Banach Spaces

Alexandru Miahi Bica, Vasile Aurel C ˘au¸s and

Sorin Mure¸san

Title Page Contents

JJ II

J I

Go Back Close

Quit Page24of24

[16] A.I. PEROV AND A.V. KIBENKO, On a general method to study the boundary value problems, Iz. Acad. Nauk., 30 (1966), 249–264.

[17] J. POUR MAHMOUD, M.Y. RAHIMI-ARDABILI AND S. SHAH- MORAD, Numerical solution of the system of Fredholm integro- differential equations by the tau method, Appl. Math. Comput., 168(1) (2005), 465–478.

[18] I.A. RUS, Fiber Picard operators on generalized metric spaces and an ap- plication, Scripta Sci. Math., 1(2) (1999), 355–363.

[19] I.A. RUS, A fiber generalized contraction theorem and applications, Math- ematica, 41(1) (1999), 85–90.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point

In this paper we study the existence of mild solutions for a class of abstract partial neutral integro-differential equations with state-dependent delay1. Keywords:

The theory of nonlinear functional integro-differential equa- tions with resolvent operators serves as an abstract formulation of partial integro- differential equations which arises

M¨ onch, Boundary-Value Problems for Nonlinear Ordinary Differential Equations of Second Order in Banach Spaces, Nonlinear Analysis 4(1980) 985-999..

Until today, the application of method of lines includes only those nonlinear differential and Volterra integro-differential equations (VIDEs) in which bounded, though

Volterra integro–differential equations, Itˆo–Volterra integro–differential equations, stochastic Volterra integro–differential equations, as- ymptotic stability, almost sure

Raffoul, Stability in neutral nonlinear differential equations with functional delays using fixed point theory, Mathematical and Computer Modelling 40 (2004), 691-700.

Key words: Volterra integral and integrodifferential equations, Banach fixed point theorem, Bielecki type norm, integral inequalities, existence and uniqueness, estimates on