• Nem Talált Eredményt

255–270 DOI: 10.18514/MMN.2019.2702 LOGARITHMIC MEANS OF WALSH-FOURIER SERIES USHANGI GOGINAVA Received 11 October, 2018 Abstract

N/A
N/A
Protected

Academic year: 2022

Ossza meg "255–270 DOI: 10.18514/MMN.2019.2702 LOGARITHMIC MEANS OF WALSH-FOURIER SERIES USHANGI GOGINAVA Received 11 October, 2018 Abstract"

Copied!
16
0
0

Teljes szövegt

(1)

Vol. 20 (2019), No. 1, pp. 255–270 DOI: 10.18514/MMN.2019.2702

LOGARITHMIC MEANS OF WALSH-FOURIER SERIES

USHANGI GOGINAVA Received 11 October, 2018

Abstract. In this paper we discuss some convergence and divergence properties of subsequences of logarithmic means of Walsh-Fourier series. We give necessary and sufficient conditions for the convergence regarding logarithmic variation of numbers.

2010Mathematics Subject Classification: 42C10

Keywords: Walsh-Fourier series, N¨orlund Logarithmic means, almost everywhere converges, convergence in norm

1. WALSHFUNCTIONS

We shall denote the set of all non-negative integers byN, the set of all integers byZand the set of dyadic rational numbers in the unit intervalIWDŒ0; 1/byQ. In particular, each element ofQhas the form 2pn for somep; n2N; 0p2n.

Denote the dyadic expension ofn2Nandx2Iby nD

1

X

jD0

"j.n/ 2j; "j.n/D0; 1

and

xD

1

X

jD0

xj

2jC1; xj D0; 1:

In the case ofx2Qchose the expension which terminates in zeros. Define the dyadic additionCas

xCyD

1

X

kD0

jxk ykj2 .kC1/:

The setsIn.x/WD fy2IWy0Dx0; :::; yn 1Dxn 1gforx2I; InWDIn.0/ for 0 < n2NandI0.x/WDI are the dyadic intervals ofI. For0 < n2Ndenote by jnj WDmax˚

j2NWnj ¤0 ;that is,2jnjn < 2jnjC1:

The author supported by Shota Rustaveli National Science Foundation grant 217282 (Operators of Fourier analysis in some classical and new function spaces ).

c 2019 Miskolc University Press

(2)

The Rademacher system is defined by

n.x/WD. 1/xn .x2I; n2N/ :

The Walsh-Paley system is defined as the sequence of the Walsh-Paley functions:

wn.x/WD

1

Y

kD0

.k.x//nk D. 1/

jnj

P

kD0

nkxk

.x2I; n2N/ :

The Walsh-Dirichlet kernel is defined by Dn.x/D

n 1

X

kD0

wk.x/ .n2N/ ; D0D0:

Recall that (see [20])

D2n.x/D

2n;ifx2In.0/

0; ifx2InIn.0/ : (1.1) As usual, denote byL1.I/the set of measurable functions defined onI, for which

kfk1WD Z

I

jf .t /jdt <1.

Letf 2L1.I/. The partial sums of the Walsh-Fourier series are defined as follows:

SM.x; f /WD

M 1

X

iD0

f .i / wb i.x/ ;

where the number

bf .i /D Z

I

f .t / wi.t / dt

is said to be the ith Walsh-Fourier coefficient of the functionf: Set En.x; f /D S2n.x; f / :The maximal function is defined by

E.x; f /Dsup

n2N

En.x;jfj/ :

The notiation a.b in the proofs stands for a < cb, where c is an absolute constant.

(3)

2. LOGARITHMIC MEANS

In the literature, there is the notion of Riesz’s logarithmic means of a Fourier series.

Then-th Riesz’s logarithmic means of the Fourier series of an integrable functionf is defined by

Rn.x; f /WD 1 ln

n

X

kD1

Sk.x; f /

k ;

wherelnWDPn

kD1.1=k/.

Riesz’s logarithmic means with respect to the trigonometric system was studied by a lot of authors. This means with respect to the Walsh and Vilenkin systems was discussed by Simon [21], Blahota, G´at [1], G´at [4], G´at, Goginava [8].

LetfqkWk0gbe a sequence of nonnegative numbers. Then-th N¨orlund means for the Fourier series off is defined by

1 Qn

n 1

X

kD0

qn kSk.f /;

where

QnWD

n

X

kD1

qk:

Ifqk Dk, then we get the N¨orlund logarithmic means tn.x; f /WD 1

ln n 1

X

kD0

Sk.x; f /

n k :

In this paper we call it logarithmic mean altough, it is a kind of ”reverse” Reisz’s logarithmic mean.

It is easy to see that

tn.x; f /D Z

I

f .t / Fn.xCt / dt;

where byFn.t /we denotenth logarithmic kernel, i. e.

Fn.t /WD 1 ln

n 1

X

kD0

Dk.t / n k :

and Fej´er kernel is defined by

Kn.t /WD 1 n

n

X

kD1

Dk.t / :

(4)

3. L1-ESTIMATION FOR LOGARITHMIC KERNEL

FornD P1

jD0

"j.n/ 2j; "j.n/D0; 1we define

n .k/WD

k

X

jD0

"j.n/ 2j:

It is easy to see thatn .jnj/Dn. In this paper forL1-norm of logarithmic means we prove the following two sides estimation.

Theorem 1. Letn2N. Then

1 ln

n

X

jD1

Dn j

j 1

1 jnj

jnj

X

kD1

j"k.n/ "kC1.n/jln.k 1/: Proof. We can write

n

X

jD1

Dn j.t / j

D

n.jnj 1/

X

jD1

Dn j.t /

j C

n

X

jDn.jnj 1/C1

Dn j.t / j

D

n.jnj 1/

X

jD1

D"

jnj.n/2jnjCn.jnj 1/ j.t /

j C

n

X

jDn.jnj 1/C1

Dn j.t /

j :

(3.1)

Since D"

jnj.n/2jnjCn.jnj 1/ j.t /D"jnj.n/ D2jnj.t /C w2jnj.t /"jnj.n/

Dn.jnj 1/ j.t / ; from (3.1) we have

n

X

jD1

Dn j.t / j

D"jnj.n/ D2jnj.t / ln.jnj 1/

C w2jnj.t /"jnj.n/

n.jnj 1/

X

jD1

Dn.jnj 1/ j.t / j

C"jnj.n/

2jnj 1

X

jD1

D2jnj j.t / jCn .jnj 1/:

(5)

Iterating this equality we obtain

n

X

jD1

Dn j.t / j

D 0

@

jnj

X

jD2

"j.n/ D2j.t / ln.j 1/

1 A

jnj

Y

kDjC1

.k.t //"k.n/

C 0

@

jnj

X

jD2

"j.n/

2j 1

X

kD1

D2j k.t / kCn .j 1/

1 A

jnj

Y

sDjC1

.s.t //"s.n/

C 0

@

n.1/

X

jD1

Dn.1/ j.t / j

1 A

jnj

Y

kD2

.k.t //"k.n/:

(3.2)

Since

"j.n/ D2j.t /

j

Y

kD0

.k.t //"k.n/D"j.n/ D2j.t / j.t /

we have

0

@

jnj

X

jD2

"j.n/ D2j.t / ln.j 1/

1 A

jnj

Y

kDjC1

.k.t //"k.n/

Dwn.t / 0

@

jnj

X

jD2

"j.n/ D2j.t / ln.j 1/

1 A

j

Y

kD0

.k.t //"k.n/

Dwn.t / 0

@

jnj

X

jD2

"j.n/ D2j.t / j.t / ln.j 1/

1 A:

(3.3)

(6)

Combining (3.2) and (3.3) we conclude that

n

X

jD1

Dn j.t / j

Dwn.t / 0

@

jnj

X

jD2

"j.n/ D2j.t / j.t / ln.j 1/

1 A

C 0

@

jnj

X

jD2

"j.n/

2j 1

X

kD1

D2j k.t / kCn .j 1/

1 A

jnj

Y

sDjC1

.s.t //"s.n/

C 0

@

n.1/ 1

X

jD1

Dn.1/ j.t / j

1 A

jnj

Y

kD2

.k.t //"k.n/

DWHn.1/.t /CHn.2/.t /CHn.3/.t / :

(3.4)

Since (see [9])

D2j k.t /DD2j.t / w2j 1.t / Dk.t / ; kD1; 2; :::; 2j 1 forHn.2/.t /we can write

Hn.2/.t /

D 0

@

jnj

X

jD2

"j.n/ D2j.t /

2j 1

X

kD1

1 kCn .j 1/

1 A

jnj

Y

sDjC1

.s.t //"s.n/

0

@

jnj

X

jD2

"j.n/ w2j 1.t /

2j 1

X

kD1

Dk.t / kCn .j 1/

1 A

jnj

Y

sDjC1

.s.t //"s.n/

DWHn.21/.t /CHn.22/.t / :

(3.5)

Since

Hn.21/.t /D 0

@

jnj

X

jD2

"j.n/ D2j.t / ln.j / 1 ln.j 1/

1 A

jnj

Y

sDjC1

.s.t //"s.n/

from (1.1) we get Hn.21/

1

jnj

X

jD2

"j.n/ ln.j / ln.j 1/

cjnj: (3.6)

(7)

Usin Abel’s transformation we obtain

2j 1

X

kD1

Dk.t / kCn .j 1/

D

2j 2

X

kD1

1

kCn .j 1/

1

kC1Cn .j 1/

kKk.t /

C 2j 1

2j 1Cn .j 1/K2j 1.t / : Since (see [20]) sup

n kKnk1<1forHn.22/.t /we can write

Hn.22/

1

.

jnj

X

jD2

"j.n/

2j 1

X

kD1

1

kCn .j 1/

1

kC1Cn .j 1/

k

C

jnj

X

jD2

"j.n/ 2j 1 2j 1Cn .j 1/

.

jnj

X

jD2

"j.n/

2j 1

X

kD1

1 .kCn .j 1//

C

jnj

X

jD2

"j.n/

2j 1

X

kD1

n .j 1/

.kCn .j 1//2C

jnj

X

jD2

"j.n/ 2j 1 2j 1Cn .j 1/

.

jnj

X

jD2

"j.n/ ln.j / ln.j 1/

C jnj.jnj:

(3.7)

Combining (3.5)-(3.7) we conclude that Hn.2/

1cjnj: (3.8)

It is easy to see that

sup

n

Hn.3/

1c: (3.9)

First, we find upper estimation for Hn.1/

1. We can write Hn.1/.t /Dwn.t /

0

@

jnj

X

jD2

"j.n/ ln.j 1/.D2jC1.t / D2j.t //

1 A

(8)

Dwn.t / 0

@

jnj 1

X

jD2

"j.n/ ln.j 1/ "jC1.n/ ln.j /

D2jC1.t / 1 A Cwn.t / ln.jnj 1/D2jnjC1 wn.t / "2.n/ ln.1/D22.t / : Hence, from (1.1) we obtain

Hn.1/

1

jnj 1

X

jD2

ˇˇ"j.n/ ln.j 1/ "jC1.n/ ln.j /ˇ ˇCcjnj

jnj 1

X

jD2

ˇˇ"j.n/ "jC1.n/ˇ ˇln.j 1/

C

jnj 1

X

jD2

"jC1.n/ ln.j / ln.j 1/

Ccjnj

jnj

X

jD2

ˇ

ˇ"j.n/ "jC1.n/ˇ

ˇln.j 1/Ccjnj:

Now, we find lower estimation for Hn.1/

1. Letai andbi; i D1; :::; sbe strictly increasing sequences, i. e.

0a1b1< a2b2< < asbs< asC1D 1 for which

"j.n/D

1; ai jbi

0; bi < j < aiC1 : (3.10) Then it is evident that

bjC1 < ajC1: (3.11)

Set

AkWD 1

2akC1; 1 2ak

; BkWD 1

2bkC2; 1 2bkC1

; kD1; :::; s:

Letx2Ak. Then we can write ˇ

ˇ

ˇHn.1/.t / ˇ ˇ ˇD

ˇ ˇ ˇ ˇ ˇ ˇ

jnj

X

jD2

"j.n/ .D2jC1.t / D2j.t // ln.j 1/

ˇ ˇ ˇ ˇ ˇ ˇ

D ˇ ˇ ˇ ˇ ˇ ˇ

k 1

X

iD1 bi

X

jDai

.D2jC1.t / D2j.t // ln.j 1/

(9)

C

bk

X

jDak

.D2jC1.t / D2j.t // ln.j 1/

ˇ ˇ ˇ ˇ ˇ ˇ

D ˇ ˇ ˇ ˇ ˇ ˇ

k 1

X

iD1 bi

X

jDai

2jln.j 1/ 2akln.ak 1/

ˇ ˇ ˇ ˇ ˇ ˇ :

From (3.11) we can write

k 1

X

iD1 bi

X

jDai

2jln.j 1/ln.bk 1 1/

k 1

X

iD1

2biC1 2ai

ln.bk 1 1/

k 1

X

iD1

2biC1 2bi 1C1

2bk 1C1ln.bk 1 1/

2bk 1C1ln.ak 1/: Consequently,

ˇ ˇ

ˇHn.1/.t / ˇ ˇ

ˇ2akln.ak 1/ 2bk 1C1ln.ak 1/2ak 1ln.ak 1/: Integrating onAk we get

Z

Ak

ˇ ˇ

ˇHn.1/.t / ˇ ˇ ˇdt

Z

Ak

2ak 1ln.ak 1/dtD ln.ak 1/

4 : (3.12)

On the intervalBkwe have ˇ

ˇ

ˇHn.1/.t / ˇ ˇ ˇ D

ˇ ˇ ˇ ˇ ˇ ˇ

k

X

iD1 bi

X

jDai

.D2jC1.t / D2j.t // ln.j 1/

ˇ ˇ ˇ ˇ ˇ ˇ

D

k

X

iD1 bi

X

jDai

2jln.j 1/l.bk 1/2bk:

Hence,

Z

Bk

ˇ ˇ

ˇHn.1/.t / ˇ ˇ ˇdt

Z

Bk

l.bk 1/2bkdt Dln.bk 1/

4 : (3.13)

(10)

SinceAi; Bi; i D1; :::; sare pairwise disjoint from (3.12) and (3.13) we have Z

I

ˇ ˇ

ˇHn.1/.t / ˇ ˇ ˇdt

s

X

kD1

0 B

@ Z

Ak

ˇ ˇ

ˇHn.1/.t / ˇ ˇ ˇdtC

Z

Bk

ˇ ˇ

ˇHn.1/.t / ˇ ˇ ˇdt

1 C A

1 4

s

X

kD1

ln.ak 1/Cln.bk 1/

:

(3.14)

Since (see (3.10))

n .ak 1/Dn .ak 2/

and

ˇˇ"j.n/ "jC1.n/ˇ ˇD

1; j Dak 1orbk; kD1; 2; :::; s 0otherwise

we conclude that Z

I

ˇ ˇ

ˇHn.1/.t / ˇ ˇ ˇdt 1

4

jnj

X

kD1

j"k.n/ "kC1.n/jln.k 1/:

Combining (3.4)-(3.10) and (3.14) we complete the proof of Theorem1.

4. ALMOST EVERYWHERE CONVERGENCE OF LOGARITHMIC MEANS

For a non-negative integernlet us denote VS.n/WD

1

X

iD0

j"i.n/ "iC1.n/j C"0.n/

and

VL.n/WD 1 jnj

jnj

X

kD1

j"k.n/ "kC1.n/jln.k 1/: It is known that ifnj < njC1,

sup

j

VS nj

<1; (4.1)

then a. e.Snj.f /!f. On the other hand, Konyagin [14] proved that the condition (4.1) is not necessary for a. e. convergence of subsequence of partial sums. Moreover, he gave negative answer to the question of Balashov and proved the validity of the following theorem.

Theorem K(Konyagin). SupposefnAgis an increasing sequence of natural num- bers,kAWDŒlog2nAC1;and2kA is a divider ofnAC1for allA. ThenSnA.f /!f a. e. for any functionf 2L1.I/.

(11)

For instance, a sequencefnAg; nAWD2A2

A

P

iD0

4i;such that sup

nA

V .nA/D 1;satis- fies the hypotheses of the theorem.

Almost ewerywhere convergence offt2A.f /WA1gwith respect to Walsh-Paley system was studied by author [11]. In particular, the following is proved

Theorem G. Letf 2L1.I/. Thent2A.x; f /!f .x/asA! 1a. e. x2 I.

Nagy in [18] established a similar result for the Walsh-Kaczmarz system. How- ever, a divergence on the set with positive measure for the whole sequence ftn.f /Wn1g was proved by G´at and Goginava [7]. Memi´c [16] improved The- orem G and proved that the following is true.

Theorem M. Letf 2L1.I/and sup

A

1 jmAj

jmAj

X

kD1

"k.mA/ lmA.k 1/<1: (4.2) ThentmA.x; f /!f .x/asA! 1for a. e.x2I.

In this paper we are going to replace condition (4.2) with more weaker condition sup

A

1 jmAj

jmAj

X

kD1

j"k.mA/ "kC1.mA/jlmA.k 1/<1: (4.3) It is easy to see that condition (4.2) imply condition (4.3), on other hand, for the sequence˚

2A 1WA2N condition (4.2) does not holds and condition (4.3) holds.

So, we prove that the following is valid.

Theorem 2. Letf 2L1.I/and condition (4.3) is holds. ThentmA.x; f /!f .x/

asA! 1for a. e.x2I.

Proof. From (3.4) we have

f .lmAFmA/ .x/Df Hm.1/A.x/Cf Hm.2/A.x/Cf Hm.3/A.x/ : (4.4) It is easy to see that

sup

A

ˇ ˇ

ˇf Hm.3/A ˇ ˇ ˇ 1

.kfk1: (4.5)

From (3.5) we can write

f Hm.2/A.x/Df Hm.21/A .x/Cf Hm.22/A .x/Cf Hm.22/A .x/ : (4.6) Using (1.1) we have

ˇ ˇ

ˇf Hm.21/A .x/

ˇ ˇ ˇ

jmAj 1

X

jD1

.jfj D2j.x// jmAjE.x; f / :

(12)

Hence

sup

A

ˇ ˇ

ˇf Hm.21/A .x/

ˇ ˇ ˇ

jmAj E.x; f / : (4.7)

We can write ˇ ˇ

ˇf Hm.22/

A .x/ˇ ˇ ˇ

jmAj 1

X

jD1

"j.mA/ lmA.j / lmA.j 1/

.jfj D2j.x//

.jmAjE.x; f / ;

sup

A

ˇ ˇ

ˇf Hm.22/A .x/

ˇ ˇ ˇ

jmAj .E.x; f / : (4.8)

It is proved in [7]

sup

ˇ ˇ ˇ ˇ ˇ ˇ

8

<

: sup

A

ˇ ˇ

ˇf Hm.23/A

ˇ ˇ ˇ jmAj >

9

=

; ˇ ˇ ˇ ˇ ˇ ˇ

.kfk1: (4.9)

Since sup

jfE.f / > gj.kfk1from (4.7)- (4.9) we get

sup

ˇ ˇ ˇ ˇ ˇ ˇ

8

<

: sup

A

ˇ ˇ

ˇf Hm.2/A

ˇ ˇ ˇ jmAj >

9

=

; ˇ ˇ ˇ ˇ ˇ ˇ

.kfk1: (4.10)

Now, we estimate ˇ ˇ

ˇf Hm.1/A.x/ˇ ˇ

ˇ. We have ˇ

ˇ

ˇf Hm.1/A.x/

ˇ ˇ ˇ.

jmAj 1

X

jD1

"j.mA/ lmA.j 1/ "jC1.mA/ lmA.j /

.jfj D2j.x//

Cl.jmAj 1/

jfj D2jmAjC1.x/

.E.x; f / 0

@l.jmAj 1/C

jmAj 1

X

jD1

"j.mA/ lmA.j 1/ "jC1.mA/ lmA.j / 1 A

.E.x; f / 0

@l.jmAj 1/C

jmAj 1

X

jD1

ˇˇ"j.mA/ "jC1.mA

ˇlmA.j 1/

C

jmAj 1

X

jD1

"jC1.mA/ lmA.j / lmA.j 1/

1 A

(13)

.E.x; f / 0

@l.jmAj 1/C

jmAj 1

X

jD1

ˇˇ"j.mA/ "jC1.mA

ˇlmA.j 1/

1 A:

From the condition of the Theorem we can write sup

A

ˇ ˇ

ˇf Hm.1/A.x/

ˇ ˇ ˇ lmA

.E.x; f / VL.mA/

and

sup

ˇ ˇ ˇ ˇ ˇ ˇ

8

<

: sup

A

ˇ ˇ

ˇf Hm.1/A ˇ ˇ ˇ jmAj >

9

=

; ˇ ˇ ˇ ˇ ˇ ˇ

.kfk1: (4.11)

Combining (3.5), (4.5), (4.10) and (4.11) we conclude that sup

ˇ ˇ ˇ ˇ

sup

A

jf FmAj jmAj >

ˇ ˇ ˇ ˇ

.kfk1:

By the well-known density argument we complete the proof of Theorem2.

5. UNIFORM ANDL-CONVERGENCE OF LOGARITHMIC MEANS

Denote byCw.I/the space of uniformly continuous functions onI, with the su- premum norm

kfkCwWDsup

x2Ijf .x/j .f 2Cw.I// :

LetXDX .I/be either the spaceL1.I/, or the space of uniformly continuous func- tions, that is,Cw.I/. The corresponding norm is denoted bykkX.

For Walsh-Fourier series Fine [2] has obtained a sufficient condition for the uni- form convergence which is in a complete analogy with the Dini-Lipshitz condition (see also [20]). Similar results are true for the space of integrable functionsL1.I/

[19]. Gulicev [13] has estimated the rate of uniform convergence of a Walsh-Fourier series using Lebesgue constant and modulus of continuity. Uniform convergence of Walsh-Fourier series of the functions of classes of generalized bounded variation was investigated by author [10]. This problem has been considered for Vilenkin group by Fridli [3] and G´at [5]. Lukomskii [15] considered uniform andL1-convergence of subsequence of partial sums of Walsh-Fourier series. In particular, he proved that the condition sup

A

VS.mA/ <1is necessary and sufficient condition for uniform and L1-convergence of subsequence of partial sums SmA.f / of Walsh-Fourier series.

In M´oricz and Siddiqi [17] investigated approximation properties of N¨orlund means

1 Qn

n 1

P

kD0

qn kSkf. The case when we have qk WD1=k differs from the types dis- cussed by M´oricz and Siddiqi in [17]. His method is not applicable for logarithmic

(14)

means. In [6] it is proved that Theorem of M´oricz does not hold for L1; Cw and qk WD1=k:

In [12] it is investigatedX-norm convergence of subsequence of logarithmic means of Walsh-Fourier series. In particular, the following are proved.

Theorem GT. a) Letf 2X .I/and

sup

A

log

mA 2jmAjC1 logmA

1 lm

A 2jmAj

mA 2jmAj 1

X

jD1

Dn j

j 1

<1: (5.1) Then subsequence of N¨orlund logarithmic meanstmA.f / converges in the norm of spaceX .I/.

b) If the condition (5.1) does not holds then we can find a function from the space X .I/for which the convergence of logarithmic meansLmA.f /in the norm of space X .I/does not holds.

Since sup

A

log

mA 2jmAjC1 logmA

1 lm

A 2jmAj

mA 2jmAj 1

X

jD1

Dn j

j 1

sup

A

log

mA 2jmAjC1

logmA

1 ˇˇmA 2jmAjˇ

ˇ

ˇ ˇ

ˇmA 2jmAjˇ ˇ ˇ

X

kD1

j"k.n/ "kC1.n/jln.k 1/

sup

A

1 jmAj

jmAj

X

kD1

j"k.n/ "kC1.n/jln.k 1/;

from Theorem GT and Theorem1we can prove necessary and sufficint condition for norm convergence of subsequence of N¨orlund logarithmic means

Theorem 3. Letf 2X .I/. Then the conditionsup

A

VL.mA/ <1is neccessary and sufficient for convergence subsequence of N¨orlund logarithmic means of Walsh- Fourier series in norm of spaceX .I/ :

REFERENCES

[1] I. Blahota and G. G´at, “Norm summability of N¨orlund logarithmic means on unbounded Vilenkin groups,”Anal. Theory Appl., vol. 24, no. 1, pp. 1–17, 2008, doi: 10.1007/s10496-008-0001-z.

[Online]. Available:https://doi.org/10.1007/s10496-008-0001-z

[2] N. J. Fine, “On the Walsh functions,”Trans. Amer. Math. Soc., vol. 65, pp. 372–414, 1949, doi:

10.2307/1990619. [Online]. Available:https://doi.org/10.2307/1990619

(15)

[3] S. Fridli, “Approximation by Vilenkin-Fourier sums,” Acta Math. Hungar., vol. 47, no. 1-2, pp. 33–44, 1986, doi: 10.1007/BF01949122. [Online]. Available: https:

//doi.org/10.1007/BF01949122

[4] G. G´at, “Investigations of certain operators with respect to the Vilenkin system,” Acta Math.

Hungar., vol. 61, no. 1-2, pp. 131–149, 1993, doi: 10.1007/BF01872107. [Online]. Available:

https://doi.org/10.1007/BF01872107

[5] G. G´at, “Best approximation by Vilenkin-like systems,”Acta Math. Acad. Paedagog. Nyh´azi.

(N.S.), vol. 17, no. 3, pp. 161–169, 2001.

[6] G. G´at and U. Goginava, “Uniform and L-convergence of logarithmic means of Walsh- Fourier series,” Acta Math. Sin. (Engl. Ser.), vol. 22, no. 2, pp. 497–506, 2006, doi:

10.1007/s10114-005-0648-8. [Online]. Available:https://doi.org/10.1007/s10114-005-0648-8 [7] G. G´at and U. Goginava, “On the divergence of N¨orlund logarithmic means of Walsh-

Fourier series,” Acta Math. Sin. (Engl. Ser.), vol. 25, no. 6, pp. 903–916, 2009, doi:

10.1007/s10114-009-7013-2. [Online]. Available:https://doi.org/10.1007/s10114-009-7013-2 [8] G. G´at and U. Goginava, “Norm convergence of logarithmic means on unbounded Vilenkin

groups,”Banach J. Math. Anal., vol. 12, no. 2, pp. 422–438, 2018, doi:10.1215/17358787-2017- 0031. [Online]. Available:https://doi.org/10.1215/17358787-2017-0031

[9] G. G´at, U. Goginava, and G. Tkebuchava, “Convergence of logarithmic means of multiple Walsh- Fourier series,”Anal. Theory Appl., vol. 21, no. 4, pp. 326–338, 2005, doi:10.1007/BF02836855.

[Online]. Available:https://doi.org/10.1007/BF02836855

[10] U. Goginava, “On the uniform convergence of Walsh-Fourier series,” Acta Math. Hungar., vol. 93, no. 1-2, pp. 59–70, 2001, doi: 10.1023/A:1013865315680. [Online]. Available:

https://doi.org/10.1023/A:1013865315680

[11] U. Goginava, “Almost everywhere convergence of subsequence of logarithmic means of Walsh- Fourier series,”Acta Math. Acad. Paedagog. Nyh´azi. (N.S.), vol. 21, no. 2, pp. 169–175, 2005.

[12] U. Goginava and G. Tkebuchava, “Convergence of subsequences of partial sums and logarithmic means of Walsh-Fourier series,”Acta Sci. Math. (Szeged), vol. 72, no. 1-2, pp. 159–177, 2006.

[13] N. V. Guliˇcev, “Approximation to continuous functions by Walsh-Fourier sums,” Anal.

Math., vol. 6, no. 4, pp. 269–280, 1980, doi: 10.1007/BF02053633. [Online]. Available:

https://doi.org/10.1007/BF02053633

[14] S. V. Konyagin, “On a subsequence of Fourier-Walsh partial sums,” Mat. Zametki, vol. 54, no. 4, pp. 69–75, 158, 1993, doi: 10.1007/BF01210421. [Online]. Available:

https://doi.org/10.1007/BF01210421

[15] S. F. Lukomski˘ı, “Multiple Walsh series. Convergence in measure and almost everywhere,”Dokl.

Akad. Nauk, vol. 358, no. 4, pp. 459–460, 1998.

[16] N. Memi´c, “Almost everywhere convergence of some subsequences of the N¨orlund logarithmic means of Walsh-Fourier series,” Anal. Math., vol. 41, no. 1-2, pp. 45–54, 2015, doi:

10.1007/s10476-015-0104-7. [Online]. Available:https://doi.org/10.1007/s10476-015-0104-7 [17] F. M´oricz and A. H. Siddiqi, “Approximation by N¨orlund means of Walsh-Fourier series,”

J. Approx. Theory, vol. 70, no. 3, pp. 375–389, 1992, doi: 10.1016/0021-9045(92)90067-X.

[Online]. Available:https://doi.org/10.1016/0021-9045(92)90067-X

[18] K. Nagy, “Almost everywhere convergence of a subsequence of the N¨orlund logarithmic means of Walsh-Kaczmarz-Fourier series,” J. Math. Inequal., vol. 3, no. 4, pp. 499–510, 2009, doi:

10.7153/jmi-03-49. [Online]. Available:https://doi.org/10.7153/jmi-03-49

[19] C. W. Onneweer, “On L1-convergence of Walsh-Fourier series,” Internat. J. Math. Math.

Sci., vol. 1, no. 1, pp. 47–56, 1978, doi: 10.1155/S016117127800006X. [Online]. Available:

https://doi.org/10.1155/S016117127800006X

[20] F. Schipp, W. R. Wade, and P. Simon,Walsh series. Adam Hilger, Ltd., Bristol, 1990, an intro- duction to dyadic harmonic analysis, With the collaboration of J. P´al.

(16)

[21] P. Simon, “Strong convergence of certain means with respect to the Walsh-Fourier series,”

Acta Math. Hungar., vol. 49, no. 3-4, pp. 425–431, 1987, doi: 10.1007/BF01951006. [Online].

Available:https://doi.org/10.1007/BF01951006

Author’s address

Ushangi Goginava

U. Goginava, I. Vekua Institute of Applied Mathematics and Faculty of Exact and Natural Sciences of I. Javakhishvili Tbilisi State University, Tbilisi 0186, 2 University str., Georgia

E-mail address:zazagoginava@gmail.com

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Ideal time series Supporting demand planning process with Walsh-Fourier based techniques... Acknowledgement The authors would like to acknowledge the financial support of

Comparing character of convergence of the given sequence and the se- quence of partial sums of the exemplary series (Table 1) we assume the par- ticular type of the

In the following, our goal is to extend the well-known Denjoy–Luzin theorem presented below (see [3, p... We follow the proof of the Denjoy–Luzin theorem as in

S forza , Multidimensional controllability problems with memory, in: Mod- ern aspects of the theory of partial differential equations (eds. Wirth), Op- erator Theory: Advances

FRASIN, Partial sums of certain analytic and univalent functions, Acta Math.. FRASIN, Generalization of partial sums of certain analytic and univalent

CHANDRA, On the degree of approximation of a class of functions by means of Fourier series, Acta Math. CHANDRA, A note on the degree of approximation of continuous function,

CHANDRA, On the degree of approximation of a class of functions by means of Fourier series, Acta Math.. CHANDRA, A note on the degree of approximation of continuous function,

CHANDRA, On the degree of approximation of a class of functions by means of Fourier series, Acta Math. CHANDRA, A note on the degree of approximation of continuous function,