• Nem Talált Eredményt

795–806 DOI: 10.18514/MMN.2019.2692 A DISCONTINUOUS q-FRACTIONAL BOUNDARY VALUE PROBLEM WITH EIGENPARAMETER DEPENDENT BOUNDARY CONDITIONS F

N/A
N/A
Protected

Academic year: 2022

Ossza meg "795–806 DOI: 10.18514/MMN.2019.2692 A DISCONTINUOUS q-FRACTIONAL BOUNDARY VALUE PROBLEM WITH EIGENPARAMETER DEPENDENT BOUNDARY CONDITIONS F"

Copied!
12
0
0

Teljes szövegt

(1)

Vol. 20 (2019), No. 2, pp. 795–806 DOI: 10.18514/MMN.2019.2692

A DISCONTINUOUS q-FRACTIONAL BOUNDARY VALUE PROBLEM WITH EIGENPARAMETER DEPENDENT BOUNDARY

CONDITIONS

F. AYCA CETINKAYA Received 01 October, 2018

Abstract. This work aims to examine a boundary value problem which consists of a second order q-differential equation and eigenvalue dependent boundary conditions. We introduce a modified inner product in a suitable direct sum space and define a symmetric operator. We investigate the properties of eigenvalues and eigenfunctions and construct the Green’s function.

2010Mathematics Subject Classification: 34B09; 34L05

Keywords: q-calculus, boundary value problems, Green function, eigenvalues and eigenfunc- tions

1. INTRODUCTION

Recently, there has been a considerable attention onq-calculus and many papers subject to the boundary value problems consisting a Jacksonq-derivative in the dif- ferential equation have appeared ([1–12,14,17,18]). In [6,8] the authors studied a q-analogue of the Sturm-Liouville eigenvalue problems and formulated a self-adjoint q-difference operator in a Hilbert space. Their results are applied and developed in different aspects. In [1,5], for instance, sampling theory associated withq-difference equations of the Sturm-Liouville type is considered. In [3,17] a regularq-fractional Sturm-Liouville problem which includes the left-sided Riemann-Liouville and right- sided Caputoq-fractional derivatives of the same order is formulated and the proper- ties of eigenvalues and eigenfunctions are investigated. In [4] a Parseval equality and an expansion formula in eigenfunctions for a singularq-Sturm-Liouville operator on the whole line are established. In [2] the eigenvalues and the spectral singularities of non-selfadjoint q-difference equations of second order are investigated. In [11]

a boundary value problem consisting a second orderq-difference equation together with Dirichlet boundary conditions is reduced to an eigenvalue problem for a second order Eulerq-difference equation by separation of variables and in [12] aq-Sturm- Liouville boundary value problem with a spectral parameter in the boundary condi- tion is considered. For further studies related to the spectral analysis ofq-differential

c 2019 Miskolc University Press

(2)

equations and the Green’s function, the readers are directed to [7,10,14,16,19–21]

and the references therein.

Enlightened by these literature, in this paper, we study the boundary value problem l./WD 1

qDq 1Dq.x/Cr.x/.x/Dw.x/.x/; (1.1) U1./WD˛1.0/C˛2Dq 1.0/C

˛3.0/C˛4Dq 1.0/

D0; (1.2) U2./WDˇ1./Cˇ2Dq 1./C

ˇ3./Cˇ4Dq 1./

D0; (1.3) whereq2.0; 1is fixed,r./is a real valued function which is continuous at zero, is a complex parameter,˛i ¤0,ˇj ¤0 .i; j D1; 2; 3; 4/are arbitrary real numbers and the functionw.x/is a positive piecewise continuous function such as

w.x/D

w1; 0x < a;

w2; a < x:

The structure of the paper is as follows. In Section 2, we introduce notations, definitions and preliminary facts which are used throughout the paper. In Section 3, we establish an operator-theoretic formulation for the boundary value problem (1.1)-(1.3) in the Hilbert spaceL2q;w.0; /˚C2 and we give some of the virtues of eigenvalues and eigenfunctions. Section 4 is devoted to construct the Green’s func- tion for the boundary value problem (1.1)-(1.3) and to mention some of its properties.

And, Section 5 gives the concluding remarks of the paper.

2. PRELIMINARIES

In this section, we introduce some of theq-notations which will be used throughout the paper. We use the standard notations found in [6,9,17].

The set of non-negative integers is denoted byN0, and the set of positive integers is denoted byN. Fort > 0,

Aq;tWD ft qnWn2N0g; Aq;t WDAq;t[ f0g; and

Aq;tWD ft qnWn2N0g:

WhentD1, we simply useAq,AqandAto denoteAq;1,Aq;1andAq;1, respectively.

A setS Ris called aq-geometric set if, for everyx2S,qx2S. Let be a real or complex valued function defined on a q-geometric setS. Theq-difference operator is defined by

Dq.x/WD.x/ .qx/

x.1 q/ ; x¤0:

If02S, theq-derivative of a functionat zero is defined as Dq.0/WD lim

n!1

.xqn/ .0/

xqn ; x2S;

(3)

if the limit exists and does not depend on x. Since the formulation of self-adjoint eigenvalue problems requiresDq1, we define it forx2Sto be

Dq 1.x/D

( .x/ .q 1x/

x.1 q 1/ ; x¤0;

Dq.0/; xD0

provided thatDq.0/exists. A right inverse,q-integration of theq-difference oper- atorDq is defined by Jackson [15] as

Z x 0

.t /dqtWDx.1 q/

1

X

nD0

qn.xqn/; x2S;

if the series converges. In general, the below equation is valid:

Z b a

.t /dq.t /WD Z b

0

.t /dqt Z a

0

.t /dqt; a; b2S:

There is no unique canonical choice for the q-integration over Œ0;1/. Hahn [13]

defined theq-integration for a functionoverŒ0;1/by Z 1

0

.t /dqtD.1 q/

1

X

nD 1

qn.qn/;

while Matsuo [18] definedq-integration on the intervalŒ0;1/with Z 1

0

.t /dqtWb.1 q/

1

X

nD 1

qn.bqn/; b > 0;

provided that the series converges.

Consequently, theq-integration of a function defined onRcan be defined as Z 1=b

1=b

.t /dqtD1 q b

1

X

nD 1

qn .qn=b/C. qn=b/

; b > 0 provided that the series converges absolutely.

Definition 1. Let be a function defined on aq-geometric setS. We say that isq-integrable onS if and only ifRx

0 .t /dqt exists for allx2S.

LetSbe aq-geometric set containing zero. A functiondefined onSis called q-regular at zero if

nlim!1.xqn/D.0/

holds for all2S.

LetC.S/denote the space of allq-regular at zero functions defined onSwith values inR.C.S/, associated with the norm function

kk Dsup˚

j.xqn/j Wx2S; n2N0 ;

(4)

is a normed space. Theq-integration by parts rule [8] is Z b

a

g.t /Dqf .t /dqtD.fg/jbaC Z b

a

Dqg.t /f .qt /dqt; a; b2S (2.1) asf; g2C.S/. Whilep > 0, andX is equivalent toAq;t orAq;t, the spaceLpq.X / is the normed space of all functions defined onX such that

kkpWD Z x

0 jjpdqt 1=p

<1: IfpD2, thenL2q.X /associated with the inner product

h'; i WD Z x

0

'.t / .t /dqt (2.2) is a Hilbert space. By a weightedL2q;w.X /space we mean the space of all functions 'onX such that

Z x

0 j'.t /j2w.t /dqt <1;

where w is a positive function defined on X. The space L2q;w.X / with the inner product

h'; i WD Z x

0

'.t / .t /w.t /dqt;

is a Hilbert space.

The space of all q-absolutely functions on Aq;t is denoted by ACq.Aq;t/ and defined as the space of allq-regular at zero functionssatisfying

1

X

jD0

ˇ ˇ

ˇ.t qj/ .t qjC1/ ˇ ˇ ˇK

for allt2Aq;t, andK is a constant depending on the function (c.f. [6], pg. 118, Definition 4.3.1), i. e. ACq.Aq;t/Cq.Aq;t/. The spaceACq.n/.Aq;t/ .n2N/is the space of all functions defined onSsuch that,Dq, ,Dn 1q areq-regular at zero andDqn 12ACq.Aq;t/(c.f. [6], pg. 119, Definition 4.3.2).

The following lemma which is needed in the sequel indicates that unlike the clas- sical differential operator dxd ,Dqis neither self adjoint nor skew self adjoint. Equa- tion (2.4) below shows that the adjoint ofDqis 1qDq 1.

Lemma 1. Let f ./, g./ inL2q;w.0; / be defined on Œ0; q 1. Then for x 2 .0; , we have

.Dqg/.xq 1/DDq;xq 1g.xq 1/DDq 1g.x/; (2.3)

(5)

˝Dqf; g˛

Df ./w./g.q 1/

nlim!1f .qn/w..qn/g.qn 1/C

f; 1 qDq 1g

; (2.4)

1

qDq 1f; g

D lim

n!1f .qn 1/w.qn 1/g.qn/ f .q 1/w.q 1/g./C˝

f; Dq

: (2.5)

Proof. The proof can be done similar to [8]. Indeed, relation (2.3) follows from Dq 1g.x/Dg.x/ g.q 1x/

x.1 q 1/ Dg.xq 1/ g.x/

xq 1.1 q/ D Dqg xq 1 : Using theq-integration by parts formula (2.1), we obtain

˝Dqf; g˛ D

Z 0

Dqf .x/w.x/g.x/Df ./w./g./

nlim!1f .qn/w.qn/g.qn/ Z

0

f .qt /w.qt /Dqg.t /dqt Df ./w./g./ lim

n!1f .qn/w.qn/g.qn/ Z q

0

f .t /w.t /1

qDq 1g.t /dqt Df ./w./g./ lim

n!1f .qn/w.qn/g.qn/ Cq 1.1 q/f ./w./Dq 1g./C

Z 0

f .t /w.t / 1

qDq 1g.t /dqt Df ./w./g.q 1/ lim

n!1f .qn/w.qn/g.qn/C

f; 1 qDq 1g

proving (2.4). Equation (2.5) can be proven by using (2.4).

3. OPERATOR THEORETIC FORMULATION

In this section, we introduce a modified inner product in a suitable direct sum space, we define a symmetric operator on this space and we investigate some proper- ties of eigenvalues and eigenfunctions.

In the Hilbert spaceH DL2q;w.0; /˚C2let an inner product defined by .f; g/WD

Z 0

f1.x/g1.x/w.x/dqxCf2g2

1 Cf3g3

2

(6)

where f D

0

@ f1.x/

f2

f3

1

A2H; gD 0

@ g1.x/

g2

g3

1

A2H; 1WD˛1˛4 ˛2˛3> 0;

2WDˇ1ˇ4 ˇ2ˇ3> 0:

We define the operatorA A.f /WD

0

@

1

qDq 1Dqf1.x/Cr.x/f1.x/

˛1f1.0/C˛2Dq 1f1.0/

ˇ1f1./Cˇ2Dq 1f1./

1 A

with the domainD.A/which consists all the functionsf .x/2H that satisfy (1.2), (1.3) such thatf1.x/; Dq 1f1.x/2ACqŒ0; qnandl.f1/2L2q;w.0; /. ThusAis the operator generated by the differential expressionl.f /Dw.x/f and the bound- ary conditions (1.2), (1.3).

Theorem 1. The operatorAis symmetric in the Hilbert spaceH. Proof. For eachf; g2D.A/we have

.Af; g/ .f; Ag/D Z

0

Af1.x/g1.x/w.x/dqxCAf2g2

1 CAf3g3

2

Z 0

f1.x/Ag1.x/w.x/dqx f2Ag2

1

f3Ag3

2

D Z

0

1

qDq 1Dqf1.x/Cr.x/f1.x/

g1.x/w.x/dq.x/

Z 0

f1.x/

1

qDq 1Dqg1.x/Cr.x/g1.x/

w.x/dq.x/

CAf2g2

1 CAf3g3

2

f2Ag2

1

f3Ag3

2

:

Applying equation (2.4) in Lemma 1 with f .x/DDqf1.x/, g.x/Dg1.x/ to the first integral and keeping the realness of the functionr.x/in mind gives us

.Af; g/ .f; Ag/D lim

n!1.Dqf1/.qn 1/w.qn 1/g1.qn/ .Dqf1/.q 1/r.q 1/g1./

Dqf1; Dqg1˛ Z

0

f1.x/

1

qDq 1Dqg1.x/

w.x/dqx

CAf2g2

1 CAf3g3

2

f2Ag2

1

f3Ag3

2

(3.1)

(7)

where h;i denotes the usual inner product in L2q.0; / which is defined in (2.2).

Using (2.5) withf .x/Df1.x/,g.x/DDqg1.x/to the term˝

Dqf1; Dqg1˛

in (3.1) we have

.Af; g/ .f; Ag/DŒf1; g1 ./ lim

n!1Œf1; g1 .qn/ CAf2g2

1 CAf3g3

2

f2Ag2

1

f3Ag3

2

where

Œf; g.x/WDf .x/w.x/Dq 1g.x/ Dq 1f .x/w.x/g.x/:

If we use the definition for the domain of the operatorAwe conclude that Af2g2

1 CAf3g3

2

f2Ag2

1

f3Ag3

2 D0:

Thus, we have

.Af; g/ .f; Ag/DŒf1; g1 ./ lim

n!1Œf1; g1 .qn/:

Due to the fact thatf1.x/; g1.x/2Cq2.0/satisfy the boundary conditions (1.2), (1.3) we have

˛1f1.0/C˛2Dq 1f1.0/C

˛3f1.0/C˛4Dq 1f1.0/

D0;

˛1g1.0/C˛2Dq 1g1.0/C

˛3g1.0/C˛4Dq 1g1.0/

D0: (3.2)

The continuity off1.x/; g1.x/at zero implies that

nlim!1Œf1; g1.qn/DŒf1; g1.0/

and we have

.Af; g/ .f; Ag/DŒf1; g1./ Œf1; g1.0/:

Validity of the equations below follows from the fact that the functionsf ./andg./ satisfy the boundary conditions (1.2), (1.3) and from formula (3.2):

Œf1; g1.0/Df1.0/w.0/Dq 1g1.0/ Dq 1f1.0/w.0/g1.0/D0;

Œf1; g1./Df1./w./Dq 1g1./ Dq 1f1./w./g1./D0:

Hence, the equation.Af; g/ .f; Ag/D0is satisfied and this completes the proof.

Definition 2. Anwhich the boundary value problem (1.1)-(1.3) has a nontrivial solution is called an eigenvalue, and the corresponding solution, an eigenfunction.

The multiplicity of an eigenvalue is defined to be the number of linearly independent solutions corresponding to it. In particular an eigenvalue is simple if and only if it has only one linearly independent solution.

(8)

The eigenfunctions of the operatorAare in the form of

˚.x; n/D˚nWD 0

@

'.x; n/

˛3'.0; n/C˛4Dq 1'.0; n/ ˇ3'.; n/Cˇ4Dq 1'.; n/

1 A:

Having the self-adjointness of the operatorAproven we have the following corollar- ies.

Corollary 1. The eigenfunctions˚1and˚2corresponding to the different eigen- values are orthogonal.

Corollary 2. The eigenvalues of the boundary value problem (1.1)-(1.3) are real.

Now, let us denote

./WD ˇ ˇ ˇ ˇ

U11/ U12/ U21/ U22/ ˇ ˇ ˇ ˇ where˚i.; /are determined by the initial conditions

Dqj 1˚i.; /Dıij; .iD1; 2; 2C/

asıij refers to the Kronecker delta. The function./is the characteristic function of the boundary value problem (1.1)-(1.3). It is an entire function with respect to and thus the eigenvalues of the boundary value problem (1.1)-(1.3) has an at most countable set offngwith no finite limit points.

In the following theorem, we prove that the eigenvalues of the boundary value problem (1.1)-(1.3) are the simple zeros of the characteristic function./.

Theorem 2. The eigenvalues of the boundary value problem (1.1)-(1.3) coincide with the simple zeros of./.

Proof. The proof follows similar steps as shown in Theorem 3.6 in [6] (pg. 83).

Indeed, let us define the functions1.; /and2.; /as

1.x; /WDU1.1/1.x; / U1.1/2.x; /;

2.x; /WDU2.2/1.x; / U2.1/2.x; /: (3.3) Hence it can easily be seen that the functions1.; /and2.; /are the two solutions of equation (1.1) which satisfy the initial conditions

1.0; /D˛24; Dq 11.0; /D .˛13/ ;

2.; /Dˇ24; Dq 12.; /D .ˇ13/ : (3.4) Now, let0be an eigenvalue of the boundary value problem (1.1)-(1.3). The equation below

Wq.1.; /; 2.; //D./Wq.1.; /; 2.; // .x/D./

leads us to the fact that the real valued functions i.x; 0/ .i D1; 2/ are linearly dependent:

1.x; 0/Dk02.x; 0/; .k0¤0/: (3.5)

(9)

Using (3.4) and (3.5) implies

1.; 0/Dk02.; 0/Dk024/;

Dq 11.; /Dk0Dq 12.; 0/D k013/:

By applyingq-Lagrange identity to the functions1.x; /and1.x; 0/we obtain . 0/

Z 0

1.x; /1.x; 0/dqx

D1.; /Dq 11.; 0/ Dq 11.; /1.; / Dk0 1.; /Dq 12.; 0/ 2.; 0/Dq 11.; / Dk0Wq.1.; /; 2.; 0// .q 1/

Dk0./:

Since./is an entire function ofwe have the opportunity to write the expression below:

d

d./D lim

!0

./ 0./

0 D 1

k0

Z 0

12.x; 0/dqx¤0: (3.6) The simplicity of the zeros of the function./is the direct result of (3.6).

4. CONSTRUCTION OF THEq-TYPEGREENS FUNCTION

Theq-type Green’s function arises when we pursue a solution of the inhomogen- eous boundary value problem

l./WD 1

qDq 1Dq.x/C f w.x/Cr.x/g.x/Df .x/; x2Œ0;  (4.1) U1./WD˛1.0/C˛2Dq 1y.0/C

˛3.0/C˛4Dq 1.0/

Df2; (4.2) U2./WDˇ1./Cˇ2Dq 1./C

ˇ3./Cˇ4Dq 1./

Df3; (4.3) wheref .x/2L2q;w.0; /.

Theorem 3. Assume thatis not an eigenvalue of the boundary value problem (1.1)-(1.3). Let.; /satisfy theq-difference equation (4.1) and the boundary con- ditions (4.2)-(4.3) wheref .x/2L2q;w.0; /. Then

.x; /D Z

0

G.x; t; /f .t /dqtCf2 ˛3G.0;; /C˛4Dq 1G.0;; / 1

Cf3 ˇ3G.;; /Cˇ4Dq 1G.;; / 2

(4.4) whereG.x; tI/is the Green’s function of the inhomogeneous boundary value prob- lem (4.1)-(4.3) defined by

G.x; tI/D 1 ./

2.x; /1.t; /; t x;

1.x; /2.t; /; xt:

(10)

Conversely, the function.x; /defined by (4.4) satisfies (4.1) and (4.2), (4.3).

Proof. We shall search the solution of the inhomogeneous boundary value problem (4.1)-(4.3) as

.x; /Dc1.x/1.x; /Cc2.x/2.x; / (4.5) where the functionsc1.x/andc2.x/are the solutions of the system of equations

Dq;xc1.x/1.x; /CDq;xc2.x/2.x; /D0;

Dq;xc1.x/Dq;x1.x; /CDq;xc2.x/Dq;x2.x; /Df .x/: (4.6) If the functionsDq;xci.x/(iD1; 2) areq-integrable onŒ0; t then

nlim!1t qni t qnC1;

f .t qnC1/D0; .iD1; 2/:

Now, let us define theq-geometric setSf by Sf WDn

x2Œ0; W lim

n!1xqnjf .xqn/j2D0o :

Since, f 2L2q;w.0; / the setSf is a q-geometric set containing fqmWm2N0g. Hence,Dqci./,.iD1; 2/areq-integrable onŒ0; xfor allx2Sf and the solutions of (4.6) are

( c1.x/D Qc1C./q Rx

0 2.qt; /f .qt /w.qt /dqt;

c2.x/D Qc2C./q R

x 1.qt; /f .qt /w.qt /dqt; (4.7) where cQ1, cQ2 are unknown constants andx 2Sf. Substituting (4.7) into (4.5) and taking (4.2), (4.3) into consideration leads us to (4.4). Conversely, if.x; /is given by (4.4), then it is a solution of (4.1) which satisfies the boundary conditions (4.2),

(4.3) and this completes the proof.

The following theorem lists a number of properties of the Green’s function.

Theorem 4. Green’s function has the following properties:

(1) G.x; t; /is continuous at the point.0; 0/.

(2) G.x; t; /DG.t; x; /.

(3) For each fixedt 2.0; q,G.x; t; /satisfies theq-difference equation (4.1) in the intervalsŒ0; t /,.t; and it also satisfies the boundary conditions (4.2)- (4.3).

Proof. The proof can easily be obtained by using a similar procedure to [6].

5. CONCLUSION

In this work we investigate a boundary value problem which consists of a second orderq-differential equation and eigenvalue dependent boundary conditions. We in- troduce a modified inner product in a suitable direct sum spaceL2q;w.0; /˚C2. We define the operatorAon this space and prove that it is symmetric. We provide some

(11)

of the properties of eigenvalues and eigenfunctions and we construct the Green’s function.

ACKNOWLEDGEMENTS

We would like to thank the reviewers for their valuable suggestions and comments, which improved the completeness of the paper.

REFERENCES

[1] L. Abreu, “Sampling theory associated withq-difference equations of the Sturm-Liouville type,”

J. Phys. A, vol. 38, no. 48, pp. 10 311–10 319, 2005, doi:10.1088/0305-4470/38/48/005.

[2] M. Adivar and M. Bohner, “Spectral analysis of a q-difference equations with spec- tral singularities,” Math. Comput. Model., vol. 43, no. 7-8, pp. 695–703, 2006, doi:

10.1016/j.mcm.2005.04.014.

[3] M. A. Al-Towaib, “Aq-fractional approach to the regular Sturm-Liouville problems,”Electron. J.

Differential Equations, vol. 2017, no. 88, pp. 1–13, 2017.

[4] B. P. Allahverdiev and H. Tuna, “An expansion theorem forq-Sturm-Liouville operators on the whole line,”Turkish J. Math., vol. 42, no. 3, pp. 1060–1071, 2018, doi:10.3906/mat-1705-22.

[5] M. H. Annaby, J. Bustoz, and M. Ismail, “On sampling theory and basic Sturm-Liouville systems,”

J. Comput. Appl. Math., vol. 206, pp. 73–85, 2007, doi:10.1016/j.cam.2006.05.024.

[6] M. H. Annaby and Z. S. Mansour, “Basic Sturm-Liouville problems,”J. Phys. A: Math. Gen., vol. 38, pp. 3775–3797, 2005, doi:10.1088/0305-4470/38/17/005.

[7] M. H. Annaby and Z. S. Mansour, “Asymptotic formulae for eigenvalues and eigenfunc- tion ofq-Sturm-Liouville problems,” Math. Nachr., vol. 284, no. 4, pp. 443–470, 2011, doi:

10.1002/mana.200810037.

[8] M. H. Annaby and Z. S. Mansour,q-fractional calculus and equations. New York: Springer, 2012.

[9] M. H. Annaby, Z. S. Mansour, and I. A. Soliman, “q-Titchmarsh-Weyl theory:Series expansion,”

Nagoya Math. J., vol. 205, pp. 67–118, 2012, doi:10.1215/00277630-1543787.

[10] M. B. Bekker, M. J. Bohner, A. N. Herega, and H. Voulov, “Spectral analysis of aq-difference equation and its applications,” Appl. Math. Lett., vol. 22, no. 4, pp. 521–527, 2009, doi:

10.1088/1751-8113/43/14/145207.

[11] M. Bohner and T. Hudson, “Euler-type boundary value problems in quantum calculus,”IJAMAS, vol. 9, no. J07, pp. 19–23, 2007.

[12] A. Eryilmaz, “Spectral analysis of aq-Sturm-Liouville problem with the spectral parameter in the boundary condition,”J. Funct. Spaces, vol. 2012, p. 17 pages, 2012, doi:10.1155/2012/736437.

[13] W. Hahn, “Beitrage zur theorie der heineschen reihen,”Math. Nachr., vol. 2, pp. 340–379, 1949, doi:10.1002/mana.19490020604.

[14] A. Huseynov and E. Bairamov, “An eigenvalue problem for quadratic pencils of q-difference equation and its applications,” Appl. Math. Lett., vol. 22, no. 4, pp. 521–527, 2009, doi:

10.1016/j.aml.2008.07.003.

[15] F. H. Jackson, “Onq-definite integrals,”Quart. J. Pure Appl. Math., vol. 41, pp. 193–203, 1910, doi:10.1017/S00805800002751.

[16] F. F. Liao, “Periodic solutions of second order differential equations with vanishing Green’s functions,” Electron. J. Qual. Theory Differ. Equ., vol. 55, pp. 1–8, 2017, doi:

10.14232/ejqtde.2017.1.55.

[17] Z. S. Mansour, “On fractionalq-Sturm-Liouville problems,”J. Fixed Point Theory Appl., vol. 19, pp. 1591–1612, 2017, doi:10.1007/s11784-016-0331-y.

(12)

[18] A. Matsuo, “Jackson integrals of Jordan-Pochhammer type and quantum Knizhnik- Zamolodchikov equations,”Comm. Math. Phys., vol. 151, pp. 263–273, 1993.

[19] S. Polidoro and M. A. Ragusa, “H¨older regularity for solutions of ultraparabolic equa- tions in divergence form,” Potential Analysis, vol. 14, no. 4, pp. 341–350, 2001, doi:

10.1023/A:1011261019736.

[20] S. Polidoro and M. A. Ragusa, “Harnack inequality for hypoelliptic ultraparabolic equations with singular lower order term,”Rev. Mat. Iberoamericana, vol. 24, no. 3, pp. 1011–1046, 2008.

[21] A. Samoilenko, A. Boichuk, and S. Chuiko, “Hybrid difference-differential boundary value problems,” Miskolc Mathematical Notes, vol. 18, no. 2, pp. 1015–1031, 2017, doi:

10/18514/MMN.2017.2280.

Author’s address

F. Ayca Cetinkaya

Mersin University, Department of Mathematics, 33343 Mersin, Turkiye E-mail address:faycacetinkaya@mersin.edu.tr

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Williams fixed point theorem, commonly referred to as an Avery type fixed point theo- rem, to a second order boundary value problem with antiperiodic boundary conditions.. Under

Kang, Existence of monotone positive solutions to a third-order two- point generalized right focal boundary value problem, Comput. Ma, Multiplicity results for a third order

Multiple positive solutions of nonlinear singular m-point boundary value problem for second-order dynamic equations with sign changing coefficients on..

Ge, Nonlocal boundary value problem of higher order ordinary differential equations at resonance, Rocky Mountain J.. Kong, Solutions of second order multi-point boundary value

Yang, Existence of solutions for second-order nonlinear impulsive differential equations with periodic boundary value conditions, Boundary Value Problems, (2007), Article

The Fuˇc´ık spectra have been investigated for the second order equation with different two-point boundary conditions..

The obtained abstract result is applied to a non regular boundary value problem for a second order partial differential equation of an elliptic type in a cylindrical domain.. It

ON NONNEGATIVE SOLUTIONS OF A CERTAIN BOUNDARY VALUE PROBLEM FOR FIRST ORDER LINEAR FUNCTIONAL..