• Nem Talált Eredményt

A NOTE ON THE UPPER BOUNDS FOR THE DISPERSION

N/A
N/A
Protected

Academic year: 2022

Ossza meg "A NOTE ON THE UPPER BOUNDS FOR THE DISPERSION"

Copied!
13
0
0

Teljes szövegt

(1)

Upper Bounds for the Dispersion Yu Miao and Guangyu Yang vol. 8, iss. 3, art. 83, 2007

Title Page

Contents

JJ II

J I

Page1of 13 Go Back Full Screen

Close

A NOTE ON THE UPPER BOUNDS FOR THE DISPERSION

YU MIAO GUANGYU YANG

College of Mathematics and Information Science Department of Mathematics

Henan Normal University Zhengzhou University

453007 Henan, China. 450052 Henan, China.

EMail:yumiao728@yahoo.com.cn EMail:study_yang@yahoo.com.cn

Received: 08 January, 2007

Accepted: 24 July, 2007

Communicated by: N.S. Barnett 2000 AMS Sub. Class.: 60E15, 26D15.

Key words: Dispersion.

Abstract: In this note we provide upper bounds for the standard deviation(σ(X)),for the quantity σ2(X) + (xE(X))2and for theLpabsolute deviation of a random variable. These improve and extend current results in the literature.

Acknowledgements: The authors wish to thank the referee for his suggestions in improving the presentation of these results.

(2)

Upper Bounds for the Dispersion Yu Miao and Guangyu Yang vol. 8, iss. 3, art. 83, 2007

Title Page Contents

JJ II

J I

Page2of 13 Go Back Full Screen

Close

Contents

1 Introduction 3

2 Standard Deviation 4

3 LpAbsolute Deviation 9

(3)

Upper Bounds for the Dispersion Yu Miao and Guangyu Yang vol. 8, iss. 3, art. 83, 2007

Title Page Contents

JJ II

J I

Page3of 13 Go Back Full Screen

Close

1. Introduction

Letf : [a, b] ⊂ R→ R+ be the probability density function (p.d.f.) of the random variableXandE(X)andσ(X)the mean and standard deviatin respectively.

In [2], the authors gave upper bounds for the dispersionσ(X)and forσ2(X) + (x− E(X))2 in terms of the p.d.f. for a continuous random variable. Recently, Agbeko [1] also obtained some upper bounds for the same two quantities, namely, (1.1) σ(X)≤min{max{|a|,|b|},(b−a)},

and

(1.2) p

σ2(X) + (x−E(X))2 ≤2 min{max{|a|,|b|},(b−a)}, for allx∈[a, b].

Both the work of Barnett et al. [2] and Agbeko [1] exclude the discrete case. In this present note, we remove this exclusion and improve the bounds of (1.1) and (1.2) in Section 2. In Section 3, we consider theLp absolute deviation. The symbolism 1Adenotes the indicator function on the setA.

(4)

Upper Bounds for the Dispersion Yu Miao and Guangyu Yang vol. 8, iss. 3, art. 83, 2007

Title Page Contents

JJ II

J I

Page4of 13 Go Back Full Screen

Close

2. Standard Deviation

LetPbe the distribution of the random variableX, then the expectation ofX can be denoted by

E(X) = Z b

a

xdP(x) and the dispersion or standard deviation ofXby

σ(X) = Z b

a

x2dP(x)− Z b

a

xdP(x) 2

.

Theorem 2.1. LetX be a random variable witha ≤X ≤b. Then we have (2.1) σ(X)≤min{max{|a|,|b|}, M(a, b,E(X))(b−a)},

where

M(a, b,E(X)) = 1

√2 s

2−exp

−2(b−E(X))2 (b−a)2

−exp

−2(E(X)−a)2 (b−a)2

.

Proof. Sinceσ2(X) = E(X−E(X))2, by the Fubini’s theorem, we have E(X−E(X))2 =E

Z (XE(X))2

0

(2.2) ds

=E Z

0

1{(X−E(X))2≥s}ds

= Z

0

P (X−E(X))2 ≥s ds

(5)

Upper Bounds for the Dispersion Yu Miao and Guangyu Yang vol. 8, iss. 3, art. 83, 2007

Title Page Contents

JJ II

J I

Page5of 13 Go Back Full Screen

Close

=

Z (b−E(X))2

0

P(X−E(X)≥√ s)ds +

Z (E(X)−a)2

0

P −(X−E(X))≥√ s

ds.

For anyλ >0, we have

Eeλ(XE(X))≤e−λE(X)

b−E(X)

b−a eλa+E(X)−a b−a eλb

=eλ(a−E(X))

1− E(X)−a

b−a + E(X)−a b−a eλ(b−a)

,eL(λ), where

L(λ) =λ(a−E(X)) + log

1− E(X)−a

b−a + E(X)−a b−a eλ(b−a)

.

The first two derivatives ofL(λ)are

L0(λ) = a−E(X) + (E(X)−a)eλ(b−a)

1− E(X)−ab−a +E(X)−ab−a eλ(b−a)

=a−E(X) + E(X)−a

(1− E(X)−ab−a )e−λ(b−a)+E(X)−ab−a , L00(λ) = (b−E(X))(E(X)−a)e−λ(b−a)

(1− E(X)−ab−a )e−λ(b−a)+ E(X)−ab−a 2.

(6)

Upper Bounds for the Dispersion Yu Miao and Guangyu Yang vol. 8, iss. 3, art. 83, 2007

Title Page Contents

JJ II

J I

Page6of 13 Go Back Full Screen

Close

Noting that

L00(λ)≤ (b−a)2

4 ,

then by Taylor’s formula, we have

L(λ)≤L(0) +L0(0)λ+ (b−a)2

8 λ2 = (b−a)2 8 λ2. Therefore from Markov’s inequality, we have

P X−E(X)≥√ s

≤ inf

λ>0e

Eeλ(X−E(X)) (2.3)

≤ inf

λ>0exp

−√

sλ+(b−a)2 8 λ2

= exp

− 2s (b−a)2

.

Similarly,

P(−(X−E(X))≥√

s)≤exp

− 2s (b−a)2

.

From (2.2), it follows that E(X−E(X))2 (2.4)

=

Z (b−E(X))2

0

P (X−E(X))≥√ s

ds +

Z (E(X)−a)2

0

P −(X−E(X))≥√ s

ds

(7)

Upper Bounds for the Dispersion Yu Miao and Guangyu Yang vol. 8, iss. 3, art. 83, 2007

Title Page Contents

JJ II

J I

Page7of 13 Go Back Full Screen

Close

Z (b−E(X))2

0

exp

− 2s (b−a)2

ds+

Z (E(X)−a)2

0

exp

− 2s (b−a)2

ds

= (b−a)2 2

2−exp

−2(b−E(X))2 (b−a)2

−exp

−2(E(X)−a)2 (b−a)2

.

Furthermore,

E(X−E(X))2 =E(X2)−(E(X))2 ≤E(X2)≤max{|a|2,|b2|}, which, by (2.4), implies the result.

Remark 1. In fact, by,

M(a, b,E(X)) = 1

√2 s

2−exp

−2(b−E(X))2 (b−a)2

−exp

−2(E(X)−a)2 (b−a)2

≤ 1

√2

2−e−2 <1,

min{max{|a|,|b|}, M(a, b,E(X))(b−a)} ≤min{max{|a|,|b|},(b−a)}, and is, therefore, a tighter bound than (1.1). IfE(X) = (b+a)/2, then

M(a, b,E(X)) = 1

√2 s

2−exp

−2(b−E(X))2 (b−a)2

−exp

−2(E(X)−a)2 (b−a)2

=p

1−e−1/2 < 1

√2,

which means that under some assumptions, this bound is better than the result of [2]

for the casef ∈L1([a, b]).

(8)

Upper Bounds for the Dispersion Yu Miao and Guangyu Yang vol. 8, iss. 3, art. 83, 2007

Title Page Contents

JJ II

J I

Page8of 13 Go Back Full Screen

Close

Corollary 2.2. LetXbe a random variable witha≤X ≤b, then for anyx∈[a, b], (2.5) p

σ2(X) + (x−E(X))2 ≤min{2 max{|a|,|b|}, N(a, b,E(X))(b−a)}, where

N2(a, b,E(X)) = 2−1 2

exp

−2(b−E(X))2 (b−a)2

+ exp

−2(E(X)−a)2 (b−a)2

. Proof. It is clear that(x−E(X))2 ≤ (b−a)2 and from the proof of Theorem 2.1, we know that

σ2(X) + (x−E(X))2

2−1 2

exp

−2(b−E(X))2 (b−a)2

+ exp

−2(E(X)−a)2 (b−a)2

(b−a)2. Furthermore,

σ2(X) + (x−E(X))2 =E(X−x)2 ≤max{(x−y)2, x, y ∈[a, b]}.

The remainder of the proof follows as Theorem 1.2 in Agbeko [1], giving max{|x−y|, x, y ∈[a, b]} ≤2 min{max{|a|,|b|},(b−a)}.

(9)

Upper Bounds for the Dispersion Yu Miao and Guangyu Yang vol. 8, iss. 3, art. 83, 2007

Title Page Contents

JJ II

J I

Page9of 13 Go Back Full Screen

Close

3. L

p

Absolute Deviation

In fact by the method in Section2, we could extend the case ofLpabsolute deviation, i.e., the following quantity,

σp(X) =E(|X−E(X)|p)1/p. We have the following

Theorem 3.1. LetX be a random variable and p ≥ 1. Assume thatE|X|p < ∞, then itsLpabsolute deviation has the following estimation forp >2,

p(X))p ≤min{|b−a|p, M1(a, b, p, X)}, where

M1(a, b, p, X) = (b−a)2 2

1−exp

−2(|b−E(X)|p∧1) (b−a)2

(3.1)

+ (|b−E(X)|p− |b−E(X)|p∧1)

×exp

−2(|b−E(X)|p∧1)2/p (b−a)2

+(b−a)2 2

1−exp

−2(|a−E(X)|p∧1) (b−a)2

+ (|a−E(X)|p− |a−E(X)|p∧1)

×exp

−2(|a−E(X)|p∧1)2/p (b−a)2

. If1≤p <2, then we have

p(X))p ≤min{|b−a|p, M2(a, b, p, X)},

(10)

Upper Bounds for the Dispersion Yu Miao and Guangyu Yang vol. 8, iss. 3, art. 83, 2007

Title Page Contents

JJ II

J I

Page10of 13 Go Back Full Screen

Close

where

(3.2) M2(a, b, p, X)

=|b−E(X)|p∧1+(b−a)2 2

exp

−2|b−E(X)|p∧1 (b−a)2

−exp

−2|b−E(X)|p (b−a)2

+|a−E(X)|p∧1+(b−a)2 2

exp

−2|a−E(X)|p∧1 (b−a)2

−exp

−2|a−E(X)|p (b−a)2

. Proof. On one hand, by the Fubini’s theorem, we have

E|X−E(X)|p =E

Z |X−E(X)|p

0

ds (3.3)

=E Z

0

1{|X−E(X)|p≥s}ds

= Z

0

P(|X−E(X)|p ≥s)ds

=

Z |b−E(X)|p

0

P (X−E(X))≥s1/p ds +

Z |E(X)−a|p

0

P −(X−E(X))≥s1/p ds.

From the estimation (2.3), we have

E|X−E(X)|p =

Z |b−E(X)|p

0

P(X−E(X)≥s1/p)ds +

Z |E(X)−a|p

0

P(−(X−E(X))≥s1/p)ds

(11)

Upper Bounds for the Dispersion Yu Miao and Guangyu Yang vol. 8, iss. 3, art. 83, 2007

Title Page Contents

JJ II

J I

Page11of 13 Go Back Full Screen

Close

Z |b−E(X)|p

0

exp

− 2s2/p (b−a)2

ds+

Z |E(X)−a|p

0

exp

− 2s2/p (b−a)2

ds.

(Case:p > 2.) By simple calculating, we have Z |b−E(X)|p

0

exp

− 2s2/p (b−a)2

ds

Z |b−E(X)|p∧1

0

exp

− 2s (b−a)2

ds+

Z |b−E(X)|p

|b−E(X)|p∧1

exp

− 2s2/p (b−a)2

ds

≤ (b−a)2 2

1−exp

−2(|b−E(X)|p∧1) (b−a)2

+ (|b−E(X)|p− |b−E(X)|p∧1) exp

−2(|b−E(X)|p∧1)2/p (b−a)2

and with the same reason Z |E(X)−a|p

0

exp

− 2s2/p (b−a)2

ds ≤ (b−a)2 2

1−exp

−2(|a−E(X)|p∧1) (b−a)2

+ (|a−E(X)|p − |a−E(X)|p∧1) exp

−2(|a−E(X)|p∧1)2/p (b−a)2

.

(Case1≤p <2) In this case, we have Z |b−E(X)|p

0

exp

− 2s2/p (b−a)2

ds

Z |b−E(X)|p∧1

0

exp

− 2s2/p (b−a)2

ds+

Z |b−E(X)|p

|b−E(X)|p∧1

exp

− 2s (b−a)2

ds

(12)

Upper Bounds for the Dispersion Yu Miao and Guangyu Yang vol. 8, iss. 3, art. 83, 2007

Title Page Contents

JJ II

J I

Page12of 13 Go Back Full Screen

Close

≤ |b−E(X)|p∧1 + (b−a)2 2

exp

−2|b−E(X)|p∧1 (b−a)2

−exp

−2|b−E(X)|p (b−a)2

and with the same reason Z |E(X)−a|p

0

exp

− 2s2/p (b−a)2

ds ≤ |a−E(X)|p ∧1 +(b−a)2

2

exp

−2|a−E(X)|p∧1 (b−a)2

−exp

−2|a−E(X)|p (b−a)2

.

On the other hand, for anyp≥1, it is clear that

E|X−E(X)|p ≤(b−a)p. From the above discussion, the desired results are obtained.

Remark 2. M1(a, b, p, X)andM2(a, b, p, X)are sometimes better than(b−a)p, e.g., ifp > 2, takingE(X) = (a+b)/2and letting1/2<(b−a)/2<1, then

M1(a, b, p, X) = (b−a)2 1−exp

−21−p(b−a)p−2

<(b−a)p 1−exp

−21−p(b−a)p−2

<(b−a)p.

Further, if1≤p <2, takingE(X) = (a+b)/2and letting(b−a)/2<1, then M2(a, b, p, X) = 2

(b−a)p 2p

= 21−p(b−a)p ≤(b−a)p.

(13)

Upper Bounds for the Dispersion Yu Miao and Guangyu Yang vol. 8, iss. 3, art. 83, 2007

Title Page Contents

JJ II

J I

Page13of 13 Go Back Full Screen

Close

References

[1] N.K. AGBEKO, Some p.d.f.-free upper bounds for the dispersionσ(X)and the quantityσ2(X) + (x−E(X))2, J. Inequal. Pure and Appl. Math., 7(5) (2006), Art. 186. [ONLINE:http://jipam.vu.edu.au/article.php?sid=

803].

[2] N.S. BARNETT, P. CERONE, S.S. DRAGOMIRANDJ. ROUMELIOTIS, Some inequalities for the dispersion of a random variable whose pdf is defined on a finite interval, J. Inequal. Pure and Appl. Math., 2(1) (2001), Art. 1. [ONLINE:

http://jipam.vu.edu.au/article.php?sid=117].

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Abstract: In this note we show how to improve some recent upper and lower bounds for the elements of the inverse of diagonally dominant tridiagonal matrices.. In par- ticular,

In this note we show how to improve some recent upper and lower bounds for the elements of the inverse of diagonally dominant tridiagonal matrices.. In particular, a technique

In Section 3, on utilising the classical results of Boas-Bellman and Bombieri as well as some recent similar results obtained by the author, we give various upper bounds for

In Section 3, on utilising the classical results of Boas-Bellman and Bombieri as well as some recent similar results obtained by the author, we give various upper bounds for

Acknowledgements: The authors thank the referee for making several suggestions for improving the presentation of this paper.... Open Question Regarding an Integral

In this note we present exact lower and upper bounds for the integral of a product of nonnegative convex resp.. concave functions in terms of the product of

An Askey type inequality for the function λ p and the Grünbaum inequality for the modified Bessel functions of the first kind are derived in Section 3.. The lower and upper bounds

An Askey type inequality for the function λ p and the Grünbaum inequality for the modified Bessel functions of the first kind are derived in Section 3.. The lower and upper bounds