• Nem Talált Eredményt

M N M N N N M N M M M M N N M N N H H M N M N H M N F -CONTRACTIONS OPTIMIZATIONTHROUGHBESTPROXIMITYPOINTSFORMULTIVALUED

N/A
N/A
Protected

Academic year: 2022

Ossza meg "M N M N N N M N M M M M N N M N N H H M N M N H M N F -CONTRACTIONS OPTIMIZATIONTHROUGHBESTPROXIMITYPOINTSFORMULTIVALUED"

Copied!
9
0
0

Teljes szövegt

(1)

Vol. 22 (2021), No. 1, pp. 143–151 DOI: 10.18514/MMN.2021.3355

OPTIMIZATION THROUGH BEST PROXIMITY POINTS FOR MULTIVALUEDF-CONTRACTIONS

PRADIP DEBNATH Received 18 May, 2020

Abstract. Best proximity point theorems ensure the existence of an approximate optimal solution to the equations of the typef(x) =xwhenfis not a self-map and a solution of the same does not necessarily exist. Best proximity points theorems, therefore, serve as a powerful tool in the theory of optimization and approximation. The aim of this article is to consider a global optimization problem in the context of best proximity points in a complete metric space. We establish an existence of best proximity result for multivalued mappings using Wardowski’s technique.

2010Mathematics Subject Classification: 47H10; 54H25; 54E50

Keywords: best proximity point, fixed point,F-contraction, complete metric space, multivalued map, optimization

1. INTRODUCTION ANDPRELIMINARIES

Nadler [9] defined a Hausdorff concept by considering the distance between two arbitrary sets as follows.

Let(Ω,η)be a complete metric space (in short, MS) and letCB(Ω)be the family of all nonempty closed and bounded subsets of the nonempty set Ω. For

M

,

N

CB(Ω), define the map

H

:CB(Ω)×CB(Ω)[0,∞)by

H

(

M

,

N

) =max{sup

ξ∈N

∆(ξ,

M

),sup

δ∈M

∆(δ,

N

)},

where∆(δ,

N

) =infξ∈N η(δ,ξ). Then(CB(Ω),

H

)is an MS induced byη.

Let

M

,

N

be any two nonempty subsets of the MS(Ω,η). The following notations will be used throughout:

M

0={µ∈

M

:η(µ,ν) =η(

M

,

N

)for someν

N

},

N

0={ν∈

N

:η(µ,ν) =η(

M

,

N

)for someµ

M

}, whereη(

M

,

N

) =inf{η(µ,ν):µ

M

N

}.

This research is supported by UGC (Ministry of HRD, Govt. of India) through UGC-BSR Start-Up Grant vide letter No. F.30-452/2018(BSR) dated 12 Feb 2019.

© 2021 Miskolc University Press

(2)

For

M

,

N

CB(Ω), we have

η(

M

,

N

)

H

(

M

,

N

).

We say thatµ∈

M

is a best proximity point (in short, BPP) of the multivalued map Γ:

M

CB(

N

) if∆(µ,Γµ) =η(

M

,

N

). υis said to be a fixed point of the multivalued mapΓ:Ω→CB(Ω)ifυ∈Γυ.

Remark1.

(1) In the MS(CB(Ω),

H

),υis a fixed point ofΓif and only if∆(υ,Γυ) =0.

(2) Ifη(

M

,

N

) =0, then a fixed point and a BPP are identical.

(3) The metric function η:Ω×Ω→[0,∞) is continuous in the sense that if {υn},{ξn}are two sequences inΩwith(υnn)→(υ,ξ)for someυ,ξ∈Ω, asn→∞, thenη(υnn)→η(υ,ξ)asn→∞. The function∆is continuous in the sense that ifυn→υ asn→∞, then ∆(υn,

M

)∆(υ,

M

)asn for any

M

Ω.

The following Lemmas are noteworthy.

Lemma 1([2,4]). Let(Ω,η)be an MS and

M

,

N

CB(Ω). Then (1) ∆(µ,

N

)η(µ,γ)for anyγ

N

and µΩ;

(2) ∆(µ,

N

)

H

(

M

,

N

)for any µ

M

.

Lemma 2([9]). Let

M

,

N

CB(Ω) and letυ

M

, then for any r>0, there existsξ∈

N

such that

η(υ,ξ)≤

H

(

M

,

N

) +r.

But we may not have anyξ∈

N

such that

η(υ,ξ)≤

H

(

M

,

N

).

Further, when

N

is compact, there existsξ∈Ωsuch thatη(υ,ξ)≤

H

(

M

,

N

).

The concept of

H

-continuity for multivalued maps is listed next.

Definition 1([5]). Let(Ω,η)be an MS. We say that a multivalued mapΓ:Ω→ CB(Ω) is

H

-continuous at a point µ0, if for each sequence {µn} ⊂Ω, such that

n→∞limη(µn0) =0, we have lim

n→∞

H

(Γµn,Γµ0) =0 (i.e., ifµn→µ0, then Γµn→Γµ0 asn→∞).

Definition 2([9]). LetΓ:Ω→CB(Ω)be a multivalued map. We say thatΓis a multivalued contraction if

H

(Γµ,Γν)λη(µ,ν)for allµ,νΩ, whereλ[0,1).

Remark2.

(1) IfΓis

H

-continuous on every point of

M

Ω, then it is said to be continuous on

M

.

(2) A multivalued contractionΓis

H

-continuous.

In 2012, Wardowski [16] defined the concept ofF-contraction as follows.

(3)

Definition 3. LetF:(0,+∞)→(−∞,+∞)be a function which satisfies the fol- lowing:

(F1) Fis strictly increasing;

(F2) For each sequence{un}n∈

N⊂(0,+∞),

n→+∞lim un=0 if and only if lim

n→+∞F(un) =−∞;

(F3) There ist∈(0,1)such that lim

u→0+utF(u) =0.

Let

F

denote the class of all such functionsF. If(Ω,η) is an MS, then a self-map T :Ω→Ωis said to be anF−contraction if there existτ>0,F ∈

F

, such that for allµ,ν∈Ω,

η(T µ,Tν)>0⇒τ+F(η(T µ,Tν))≤F(η(µ,ν)).

MultivaluedF-contractions were defined by Altun et al. [1] as follows.

Definition 4([1]). Let(Ω,η)be an MS. A multivalued mapΓ:Ω→CB(Ω)is said to be a multivaluedF-contraction (MVFC, in short) if there existτ>0 andF∈

F

such that

τ+F(

H

(Γµ,Γν))F(η(µ,ν)) (1.1) for allµ,ν∈ΩwithΓµ6=Γν.

Remark3. An MVFC is

H

-continuous.

We can find the concept of P-property in [12], whereas the notion of weak P property was defined by Zhang et al. [18].

Definition 5([12]). Let(Ω,η)be an MS and

M

,

N

be two non-empty subsets of Ωsuch that

M

06=φ. The pair (

M

,

N

)is said to have theP-property if and only if η(µ11) =η(

M

,

N

) =η(µ22)impliesη(µ12) =η(ν12), whereµ12

M

0

andν12

N

.

Definition 6([18]). Let(Ω,η)be an MS and

M

,

N

be two non-empty subsets of Ωsuch that

M

06=φ. The pair(

M

,

N

)is said to have the weakP-property if and only ifη(µ11) =η(

M

,

N

) =η(µ22)impliesη(µ12)≤η(ν12), whereµ12

M

0

andν12

N

0.

BPP theorems forF-contractive non-self mappings were studied by Omidvari et al.

[11] with the help ofP-property. Later, Nazari [10] investigated BPPs for a particular type of generalized multivalued contractions by using the weakP-property.

Srivastava et al. [13,14] presented Krasnosel’skii type hybrid fixed point theorems and found their very interesting applications to fractional integral equations. Xu et al. [17] proved Schwarz lemma that involves boundary fixed point. Very recently, Debnath and Srivastava [6] investigated common BPPs for multivalued contractive pairs of mappings in connection with global optimization. Debnath and Srivastava [7] also proved new extensions of Kannan’s and Reich’s theorems in the context

(4)

of multivalued mappings using Wardowski’s technique. Further, a very significant application of fixed points ofF(ψ,ϕ)-contractions to fractional differential equations was recently provided by Srivastava et al. [15].

In this paper, we introduce a best proximity result for multivalued mappings with the help of F-contraction and the weak P property. Also we provide an example where theP-property is not satisfied but the weakP-property holds.

2. BEST PROXIMITY POINT FORMVFC

In this section, with the help of the notion of F-contraction, we show that an MVFC satisfying certain conditions admits a BPP.

Theorem 1. Let(Ω,η) be a complete MS and

M

,

N

be two non-empty closed subsets ofΩsuch that

M

06=φand that the pair(

M

,

N

)has the weak P-property.

SupposeΓ:

M

CB(

N

)be a MVFC such thatΓµ is compact for each µ∈

M

and Γµ⊆

N

0for all µ∈

M

0. ThenΓhas a BPP.

Proof. Fixµ0

M

0and chooseν0∈Γµ0

N

0. By the definition of

N

0, we can selectµ1

M

0such that

η(µ10) =η(

M

,

N

). (2.1)

Ifν0∈Γµ1, then

η(

M

,

N

)∆(µ1,Γµ1)≤η(µ10) =η(

M

,

N

).

Thusη(

M

,

N

) =∆(µ1,Γµ1), i.e.,µ1is a BPP ofΓ. Therefore, assume thatν0∈/Γµ1. SinceΓµ1is compact, by Lemma2, there existsν1∈Γµ1such that

0<η(ν01)≤

H

(Γµ0,Γµ1).

SinceFis strictly increasing, the last inequality implies that F(η(ν01))≤F(

H

(Γµ0,Γµ1))

≤F(η(µ01))−τ. (2.2) Sinceν1∈Γµ1

N

0, there existsµ2

M

0such that

η(µ21) =η(

M

,

N

). (2.3)

From (2.1) and (2.3) and using weakP−property , we have that

η(µ12)≤η(ν01). (2.4) From (2.2) and (2.4), we have

F(η(µ12))≤F(η(ν01))≤F(η(µ01))−τ. (2.5) Ifν1∈Γµ2, then

η(

M

,

N

)∆(µ2,Γµ2)≤η(µ21) =η(

M

,

N

).

Thusη(

M

,

N

) =∆(µ2,Γµ2), i.e.,µ1is a BPP ofΓ. So, assume thatν1∈/Γµ2.

(5)

SinceΓµ2is compact, by Lemma2, there existsν2∈Γµ2such that 0<η(ν12)≤

H

(Γµ1,Γµ2).

Using the fact thatF is strictly increasing, we have that F(η(ν12))≤F(

H

(Γµ1,Γµ2))

≤F(η(µ12))−τ

≤F(η(µ01))−2τ(using2.5).

Sinceν2∈Γµ2

N

0, there existsµ3

M

0such that

η(µ32) =η(

M

,

N

). (2.6)

From (2.5) and (2.6) and using weak propertyP, we have that

η(µ23)≤η(ν12). (2.7) From (2.6) and (2.7), we have

F(η(µ23))≤F(η(ν12))≤F(η(µ01))−2τ. (2.8) Continuing in this manner, we obtain two sequences{µn} and{νn} in

M

0 and

N

0

respectively, satisfying (B1) νn∈Γµn

N

0,

(B2) η(µn+1n) =η(

M

,

N

),

(B3) F(η(µnn+1))≤F(η(νn−1n))≤F(η(µ01))−nτ, for eachn=0,1,2, . . ..

Putαn=η(µnn+1)for eachn=0,1,2, . . .. Taking limit on both sides of(B3)as n→∞, we have

n→∞limF(αn) =−∞.

Using(F2), we obtain

n→∞limαn=0. (2.9)

Using(F3), there existsk∈(0,1)such that

αknF(αn)→0 asn→∞. (2.10)

From(B3), for eachn∈N, we have that

F(αn)−F(α0)≤ −nτ.

This implies

αknF(αn)−αknF(α0)≤ −nαknτ≤0. (2.11) Lettingn→∞in (2.11) and using (2.9), (2.10), we obtain

n→∞limnαkn=0.

Thus there existsn0∈Nsuch thatnαkn≤1 for alln≥n0, i.e.,αn1

n1k

for alln≥n0.

(6)

Letm,n∈Nwithm>n≥n0. Then η(µmn)≤

m−1

i=n

η(µii+1) =

m−1 i=n

αi

i=n

αi

i=n

1 i1k . Since the series ∑i=n 1

i1k

is convergent for k∈ (0,1), we have η(µmn) → 0 as m,n→∞. Hence {µn} is Cauchy in

M

0

M

. Since(Ω,η) is complete and

M

is closed, we have lim

n→∞µn=θfor someθ∈

M

. SinceΓis

H

-continuous (for it is an MVFC), we have

n→∞lim

H

(Γµn,Γθ) =0. (2.12) Exactly in the similar manner as above, using(B3), we can prove that{νn}is Cauchy in

N

and since

N

is closed, there existsξ∈Bsuch that lim

n→∞νn=ξ.

Sinceη(µn+1n) =η(

M

,

N

)for allnN, we have

n→∞limη(µn+1n) =η(θ,ξ) =η(

M

,

N

).

We claim thatξ∈Γθ. Indeed, sinceνn∈Γµnfor alln∈N, we have

n→∞lim∆(νn,Γθ)≤ lim

n→∞

H

(Γµn,Γθ) =0.

Therefore,∆(ξ,Γθ) =0. SinceΓθis closed, we haveξ∈Γθ.

Now,

η(

M

,

N

)∆(θ,Γθ)η(θ,ξ) =η(

M

,

N

).

Hence∆(θ,Γθ) =η(

M

,

N

), i.e.,θis a BPP ofΓ.

A Geraghty type [8] result follows as a consequence of our previous theorem. Let

G

be the class of functions g:[0,∞)→[0,1) satisfying the condition: g(ξn)→1 implies ξn→0. An example of such a map is g(ξ) = (1+ξ)−1 for all ξ>0 and g(0)∈[0,1).

Definition 7. Let

M

,

N

be two non-empty subsets of a MS (Ω,η). A multival- ued mapΓ:

M

CB(

N

)is said to be a multivalued Geraghty-typeF-contraction (MVGFC, in short) if there existτ>0,F∈

F

andg

G

such that

τ+F(

H

(Γµ,Γν))g(η(µ,ν))·F(η(µ,ν)) (2.13) for allµ,ν∈ΩwithΓµ6=Γν.

Corollary 1. Let(Ω,η) be a complete MS and

M

,

N

be two non-empty closed subsets ofΩsuch that

M

06=φand that the pair(

M

,

N

)satisfies the weak P-property.

SupposeΓ:

M

CB(

N

)be a MVGFC such thatΓµ is compact for each µ∈

M

and Γµ⊆

N

0for all µ∈

M

0. ThenΓhas a BPP.

(7)

Proof. Sinceg(t)∈[0,1)for allt∈[0,∞), from (2.13), we have that

τ+F(

H

(Γµ,Γν))F(η(µ,ν)) (2.14) for allµ,ν∈

M

withΓµ6=Γν. Thus,Γis an MVFC and hence from Theorem1it

follows thatΓhas a BPP.

Remark4. Corollary1extends the results due to Caballero et al. [3] and Zhang et al. [18] to their multivalued analogues usingF-contraction.

Next, we provide some examples in support of our main result.

Example1. ConsiderΩ=Rwith usual metricη(µ,ν) =|µ−ν|for allµ,ν∈Ω.

Let

M

= [5,6]and

N

= [−6,−5]. Thenη(

M

,

N

) =10 and

M

0={5},

N

0={−5}.

Define the multivalued mapΓ:

M

CB(

N

)such that Γµ= [−µ−5

2 ,−5] for allµ∈[5,6].

ThereforeΓ(5) ={−5}(i.e.,Γµ⊆

N

0for allµ∈

M

0).

We claim thatΓis a MVFC. Let

H

(Γµ,Γν)>0. Then we have

H

(Γµ,Γν) =

H

([−µ5

2 ,−5],[−ν−5

2 ,−5])

=|(−µ−5

2 )−(−ν−5 2 )|

=|ν−µ|

2

=η(µ,ν) 2

<η(µ,ν).

From the last inequality, we have that ln(

H

(Γµ,Γν))<ln(η(µ,ν)), and further, τ+ln(

H

(Γµ,Γν)) ln(η(µ,ν)), for any τ ∈ (0,ln 2]. Therefore, we have that τ+F(

H

(Γµ,Γν))F(η(µ,ν)), for anyτ∈(0,ln 2], whereF(t) =lnt,t>0.

Finally, it is easy to check that(

M

,

N

)satisfies weakP-property. Thus, all condi- tions of Theorem1are satisfied and we observe thatµ=5 is a BPP ofΓ.

In fact, in Example1, the pair(

M

,

N

) satisfiesP-property (and hence the weak P-property as well). Next, we present an example in which the pair(

M

,

N

)satisfies only the weakP-property but not theP-property.

Example2. ConsiderΩ=R2with the Euclidean metricη.

Let

M

={(−5,0),(0,1),(5,0)}and

N

={(µ,ν):ν=2+p2µ2[−2,2]}. Thenη(

M

,

N

) =3 and

M

0={(0,1)},

N

0={(√

2,2),(−√ 2,2)}. Define the multivalued mapΓ:

M

CB(

N

)such that

Γ(−5,0) ={(−√

2,2),(−1,3)},Γ(0,1) ={(√

2,2)},Γ(5,0) ={(√

2,2),(1,3)}.

(8)

It is easy to check thatΓis a MVFC withτ=ln 2 andF(t) =lnt,t>0.

Finally, we observe that η((0,1),(

2,2)) =η((0,1),(−√

2,2)) =√

3=η(

M

,

N

), but

η((0,1),(0,1)) =0<η((

2,2),(−√

2,2)) =2

√ 2.

Thus, (

M

,

N

) satisfies weak P-property, but not the P-property. Therefore, all conditions of Theorem1are satisfied and since∆((0,1),Γ(0,1)) =√

3=η(

M

,

N

), we conclude that(0,1)is a BPP ofΓ.

3. CONCLUSION

We have proved our main result with a strong condition that images of the MVFC are compact sets. Relaxation of this compactness criterion is a suggested future work. We have shown the non-triviality of the assumption of the weak P-property by presenting an example which does not satisfy theP-property but satisfies only the weakP-property. The results due to Caballero et al. [3] and Zhang et al. [18] are also extended to their multivalued analogues as a consequence of our results.

ACKNOWLEDGEMENT

The author expresses his hearty gratitude to the learned referees for their construct- ive comments which have improved the manuscript considerably.

REFERENCES

[1] I. Altun, G. Minak, and H. Dag, “MultivaluedF-contractions on complete metric spaces,” J.

Nonlinear Convex Anal., vol. 16, no. 4, pp. 659–666, 2015.

[2] M. Boriceanu, A. Petrusel, and I. Rus, “Fixed point theorems for some multivalued generalized contractions inb-metric spaces,”Internat. J. Math. Statistics, vol. 6, pp. 65–76, 2010.

[3] J. Caballero, J. Harjani, and K. Sadarangani, “A best proximity point theorem for Geraghty- contractions,”Fixed Point Theory Appl., vol. 2012, no. 231, pp. 1–9, 2012, doi: 10.1186/1687- 1812-2012-231.

[4] S. Czerwik, “Nonlinear set-valued contraction mappings inb-metric spaces,”Atti Sem. Mat. Univ.

Modena, vol. 46, pp. 263–276, 1998.

[5] P. Debnath and M. de La Sen, “Fixed points of eventually ∆-restrictive and ∆(ε)-restrictive set-valued maps in metric spaces,” Symmetry, vol. 12, no. 1, pp. 1–7, 2020, doi:

10.3390/sym12010127.

[6] P. Debnath and H. M. Srivastava, “Global optimization and common best proximity points for some multivalued contractive pairs of mappings,” Axioms, vol. 9, no. 3, pp. 1–8, 2020, doi:

10.3390/axioms9030102.

[7] P. Debnath and H. M. Srivastava, “New extensions of Kannan’s and Reich’s fixed point theor- ems for multivalued maps using Wardowski’s technique with application to integral equations,”

Symmetry, vol. 12, no. 7, pp. 1–9, 2020, doi:10.3390/sym12071090.

[8] M. A. Geraghty, “On contractive mappings,”Proc. Amer. Math. Soc., vol. 40, pp. 604–608, 1973.

[9] S. B. Nadler, “Multi-valued contraction mappings,”Pac. J. Math., vol. 30, no. 2, pp. 475–488, 1969, doi:10.2140/pjm.1969.30.475.

(9)

[10] E. Nazari, “Best proximity point theorems for generalized multivalued contractions in metric spaces,” Miskolc Math. Notes, vol. 16, no. 2, pp. 1055–1062, 2015, doi:

10.18514/MMN.2015.1329.

[11] M. Omidvari, S. M. Vaezpour, and R. Saadati, “Best proximity point theorems for F- contractive non-self mappings,” Miskolc Math. Notes, vol. 15, no. 2, pp. 615–623, 2014, doi:

10.18514/MMN.2014.1011.

[12] V. Sankar Raj, “A best proximity point theorem for weakly contractive non-self-mappings,”Non- linear Anal., vol. 74, no. 14, pp. 4804–4808, 2011, doi:10.1016/j.na.2011.04.052.

[13] H. M. Srivastava, S. V. Bedre, S. M. Khairnar, and B. S. Desale, “Krasnosel’skii type hybrid fixed point theorems and their applications to fractional integral equations,” Abstr. Appl. Anal., vol.

2014, no. Article ID: 710746, pp. 1–9, 2014, doi:10.1155/2014/710746.

[14] H. M. Srivastava, S. V. Bedre, S. M. Khairnar, and B. S. Desale, “Corrigendum to ”Krasnosel’skii type hybrid fixed point theorems and their applications to fractional integral equations”,”Abstr.

Appl. Anal., vol. 2015, no. Article ID: 467569, pp. 1–2, 2015, doi:10.1155/2015/467569.

[15] H. M. Srivastava, A. Shehata, and S. I. Moustafa, “Some fixed point theorems for f(ψ,ϕ)- contractions and their application to fractional differential equations,”Russian J. Math. Phys., vol. 27, pp. 385–398, 2020, doi:10.1134/S1061920820030103.

[16] D. Wardowski, “Fixed points of a new type of contractive mappings in complete metric space,”

Fixed Point Theory Appl., vol. 2012, no. 94, pp. 1–6, 2012, doi:10.1186/1687-1812-2012-94.

[17] Q. Xu, Y. Tang, T. Yang, and H. M. Srivastava, “Schwarz lemma involving the boundary fixed point,” Fixed Point Theory Appl., vol. 2016, no. Article ID: 84, pp. 1–8, 2016, doi:

10.1186/s13663-016-0574-8.

[18] J. Zhang, Y. Su, and Q. Cheng, “A note on ’A best proximity point theorem for Geraghty- contractions’,”Fixed Point Theory Appl., vol. 2013, no. 99, pp. 1–4, 2013, doi:: 10.1186/1687- 1812-2013-83.

Author’s address

Pradip Debnath

Department of Applied Science and Humanities, Assam University, Silchar, Cachar, Assam - 788011, India

E-mail address:debnath.pradip@yahoo.com

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

The aim of this study was to investigate the molecular detection of MLSB resistance genes (ermA, ermB, ermC, mecA, and.. msrA) and antibiotic resistance pro fi les in MRSA

Let M n,sa be the set of observables of the n-level quantum system, in other words the set of n × n self adjoint matrices, and M n,sa (0) stands for the set observables with zero

s a XIII. CXXXVIIL és CXLIX. számokat Verancsics Antalnak sajátkezü- leg írt fogalmazványai után közöltem, melyek a nem- zeti múzeum „1681. A többi maga Verancsics Antal

3*.. Instálják aztán ő kegyelmek, igy értvén ő kegyelme is mi felőlünk, afféle dolgokkal ben- nünket ne terheljen s ne is szomorítson. Jóllehet penig az elmult télen,

m számú ismeretlen meghatározására n számú mérést végzünk. A kiegyenlítésnek csak az m &gt; n feltétel teljesülése esetén van értelme, m=n esetén nincs

r(n,m) igaz, ha az n-nek megfelelő individuumból mutat r-nek megfelelő nyíl az m-nek megfelelő individuumba.. • FELTÉTEL: a módosított logikai nyelv továbbra is

Investigating this question we have same result by using the method of [1].. Our main result is to prove

Legyen (M, g) és (N, h) két kompakt, n− dimenziós Riemann sokaság. Tegyük fel, hogy az adaptált komp- lex struktúra létezik T M -en ill. Tétellel ellentétben) lényeges