• Nem Talált Eredményt

in rats with STZ-induced diabetes antioxidant activation distinct and of apoptotic markermolecules Gut region-specific of accumulation reactive oxygen species leads toregionally Cell Biology The International Journal of Biochemistry&

N/A
N/A
Protected

Academic year: 2022

Ossza meg "in rats with STZ-induced diabetes antioxidant activation distinct and of apoptotic markermolecules Gut region-specific of accumulation reactive oxygen species leads toregionally Cell Biology The International Journal of Biochemistry&"

Copied!
7
0
0

Teljes szövegt

(1)

ContentslistsavailableatScienceDirect

The International Journal of Biochemistry

& Cell Biology

j ou rn a l h o m ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / b i o c e l

Gut region-specific accumulation of reactive oxygen species leads to regionally distinct activation of antioxidant and apoptotic marker molecules in rats with STZ-induced diabetes

Zsanett Jancsó

a

, Nikolett Bódi

b

, Barbara Borsos

a

, Éva Fekete

b

, Edit Hermesz

a,∗

aDepartmentofBiochemistryandMolecularBiology,FacultyofScienceandInformatics,UniversityofSzeged,Szeged,Hungary

bDepartmentofPhysiology,AnatomyandNeuroscience,FacultyofScienceandInformatics,UniversityofSzeged,Szeged,Hungary

a r t i c l e i n f o

Articlehistory:

Received19December2014 Receivedinrevisedform3March2015 Accepted9March2015

Availableonline18March2015

Keywords:

Apoptosis Diabetes Digestivetract Peroxynitrite Necrosis

a b s t r a c t

Theaimofthisstudywastoseekpossiblelinksbetweentheregionalityalongthedigestivetractand theaccumulationofreactiveoxygenspecies,theeffectivenessoftheantioxidantdefensesystemandthe sensitivitytothetypesofdemiseindifferentgutregionsofratswithstreptozotocin-induceddiabetes.

Significantchangeswereobservedintheoxidativestatusandintheactivityoftheantioxidantdefense systeminthediabeticcolon;theperoxynitriteproductionwasdoubled,thelevelofhemoxygenase- 2proteinwasincreased11-foldandtheexpressionofanti-apoptoticbcl-2wasalso increased.The segment-specificvulnerabilityofthegastrointestinaltractinducedbyhyperglycemiawasalsoconfirmed byelectronmicroscopy,demonstratingthepresenceofseverenecrosisinthecolonofthediabeticrats.No remarkablehistopathologicalalterationswereseenintheduodenumofthediabeticanimalsandthere werelikewisenosignificantchangesintheproductionofperoxynitriteintheirduodenum,whereasthe levelofthefreeradicalscavengermetallothionein-2wasincreased∼300-fold.

Conclusion:Thespatiallyrestrictedvulnerabilityobservedalongthedigestivetractcouldoriginatefrom ahighlevelofoxidativestressviaperoxynitriteproduction.

©2015ElsevierLtd.Allrightsreserved.

1. Introduction

Type 1 diabetes mellitus (T1D) results in severe metabolic imbalancesandpathological changesinmanytissues,and com- monly affects the entire gastrointestinal (GI) tract, from the esophagustotheanorectalregion(WolosinandEdelman,2000;

Zhaoet al.,2002).T1D involvesastateof highoxidativestress generated as a result of hyperglycemia-induced reactive oxy- genspecies(ROS)(Wolff,1993).Oxidativestressisanimbalance betweentheproductionofROS,andtheabilityofabiologicalsys- temtoachieve theready detoxification ofROSor torepairthe resultingdamage. WhileROS areimportant secondmessengers atlowconcentrationsandareinvolvedintheregulationofapo- ptosisandtheactivationoftranscriptionfactors,theycancause significantcellulardamagewhenpresentinexcess.Theycaninflict damage on all classes of cellular macromolecularcomponents,

Correspondingauthorat:DepartmentofBiochemistryandMolecularBiology, FacultyofScienceandInformatics,UniversityofSzeged,P.O.Box533,H-6701 Szeged,Hungary.Tel.:+3662544887;fax:+3662544887.

E-mailaddress:hermesz@bio.u-szeged.hu(E.Hermesz).

eventually leading to tissue injury or even cell death, which canoccuressentiallyby twomechanisms,necrosisandapopto- sis (Bergamini et al., 2004). Although numerous reports have provideddetailsofthemolecularmechanismsresponsibleforROS- inducedapoptosis,littleisknownconcerningthemechanismsand signaltransductionpathwaysunderlyingROS-mediatednecrotic cell death. Necrosis has long been considered to be a passive modeofcelldeath(Kanducetal.,2002)andmuchmoreharmful thanapoptosisbecauseitcausesarobustinflammatoryresponse (Proskuryakovetal.,2003).

Toeliminatetheharmfuleffectsofreactivespecies,cellsare equippedwithanefficientantioxidantdefensesystem,including enzymessuchassuperoxidedismutase(SOD),catalase(CAT),and hemeoxygenases(HOs),andlow-molecularweightantioxidants suchasglutathione(GSH)andmetallothioneins(MTs)(Kruidenier et al.,2003; Inoueet al.,2008).SOD catalyzesthereduction of thesuperoxideanion(O2)tohydrogenperoxide(H2O2),which isthendetoxifiedtowaterbyCATinthelysosomes(Wangand Ballatori,1998).TheHOsplayrolesinhemedegradation,yield- ingequimolaramountsofbiliverdin,andcarbonmonoxidewith importantfreeradical-scavengingpropertiesandfreeiron.HO-2is expressedconstitutively,contributingtocellhomeostasis,whereas http://dx.doi.org/10.1016/j.biocel.2015.03.005

1357-2725/©2015ElsevierLtd.Allrightsreserved.

(2)

HO-1isaninducibleenzymeexpressedatarelativelylowlevelin mosttissues(Maines,1997),recentlyidentifiedasanimportantcel- lulardefensemechanismagainstoxidativestress(Abrahametal., 2009).HO-1andHO-2areregulatedbystrikinglydifferentmech- anisms,whichmayreflectdifferentphysiologicalandpathological roles(GibbonsandFarrugia,2004).

GSHalso plays a critical role in this system, as an antioxi- dant,enzymecofactorandmajorredoxbuffer(WangandBallatori, 1998).TheMTsarepresentinallcellsthroughoutthebody.They haveacardinalroleinmetalhomeostasisandheavymetaldetox- ificationthroughtheirhighmetal-bindingcapacity, theyplay a roleintheimmunefunction,andtheyareinvolved inavariety ofGItractfunctions(Thirumoorthyetal.,2011).Theyalsoplayan importantpartinthepreventionofdevelopmentofT1D,thecom- plicationsandthesubsequentpathogenictoxicity(Cai,2004).The overexpressionofMTsinvariousmetabolicorganshasbeenshown toreducehyperglycemia-inducedoxidativestress,organ-specific diabeticcomplications,andDNAdamageinexperimentaldiabetes (IslamandLoots,2007).

Inanearlierstudy,wedemonstratedspatially-restricteddam- ageofthegutcapillaryendotheliuminratswithstreptozotocin (STZ)-induceddiabetesincomparisonwithcontrolanimals(Bódi etal.,2012).Metagenomicanalysisoftheluminalcontentsofduo- denum,ileumandcolonofdiabeticratsalsofurnishesevidence oftheregionalityofthegutmicrobiota(Wirthetal.,2014).The twostudiesareingoodagreementasconcernstheadvantageous statusoftheduodenumofthediabeticratascomparedwiththe colon.

Thoseresultsledustofocusinthepresentstudyonthespatially- restricted differences in ROS production and activation of the antioxidantdefensesystemintheduodenumandcolonofratswith STZ-induceddiabetes.Theaimof thestudywastocharacterize thepossiblelinksbetweentheantioxidantstatusandthemacro- moleculardamageinselectedgutsegmentsinthediabeticrat.We reportdataontheaccumulationofapowerfuloxidant,peroxyni- trite(ONOO),theactivitiesofantioxidantenzymes(SODandCAT), andtheexpressionsofasetofgenescodingformembersofantiox- idantdefensesystem(mt-1,mt-2,ho-1andho-2),togetherwiththe detectionofpro-apoptoticandanti-apoptoticmarkers(bax,bcl-2 andcaspase-9).

2. Materialsandmethods 2.1. Animalmodel

AdultmaleWistarratsweighing300–400g,keptonstandard laboratorychow(BioplanKft.,Hungary)and withfreeaccessto drinkingwater,wereusedthroughouttheexperiments.Therats weredividedrandomlyintothreegroups:STZ-induceddiabetics (n=14),insulin-treateddiabetics(n=12)andsex-andage-matched controls(n=6).

Hyperglycemiawas induced as described previously (Izbéki et al.,2008).The animalswere considereddiabetic ifthe non- fastingbloodglucoseconcentrationwashigherthan18mM.From thistimeon,onegroupofhyperglycemicratsreceivedasubcuta- neousinjectionofinsulin(HumulinM3,EliLillyNederland)each morning(4U)andafternoon(2U).Thenon-fastingbloodglucose concentrationandweightofeachanimalweremeasuredweekly.

Thececumsizeofthesacrificedratwasanalyzedbymeansofthe ImageJ1.48vprogram(http://imagej.nih.gov/ij/).Inallprocedures involvingexperimentalanimals,theprinciplesoflaboratoryanimal care(NIHpublicationno.85-23,revised1985)werefollowedand alltheexperimentsreceivedapprovalinadvancefromtheLocal EthicsCommitteeforAnimalResearchStudiesattheUniversityof Szeged.

2.2. Tissuehandling

Tenweeksaftertheonsetofdiabetes,theanimalswerekilledby cervicaldislocationunderchloralhydrateanesthesia(375mg/kg i.p.).The gutsegmentsof thecontrol,STZ-induceddiabeticand insulin-treateddiabeticratsweredissectedandrinsedin0.05M phosphatebuffer, pH7.4.Samplesweretakenfromtheduode- num(1cmdistaltothepylorus)andthemiddlepartofthecolon andprocessedforbiochemical,molecularbiologicalandelectron microscopystudy.

2.3. Biochemicalassays

0.5gduodenumandcolonofeachindividualrats,tissueswere homogenizedin4volumeofice-cold0.9%serumphysiologicby meansofaglasshomogenizerimmersedinanicewaterbath,cen- trifugedat17,000×gfor15minat4C,andtheclearsupernatants usedforGSH,ONOO,proteinanalysis,andmeasuringtheactivities ofantioxidantenzymes.

TotalproteinlevelsmeasuredbythemethodofLowryetal.

(1951)usingbovineserum albuminasa standard.The concen- trationsoftotal andreducedGSHin thetissuesweremeasured asdescribed by SedlakandLindsay(1968). Spectrophotometric measurementswerecarriedoutbyGENESYS10SUV-Vis(Thermo Scientific)spectrophotometer.

ONOOwasassayedbydilutingsamplesinto1MNaOH(60:1) andmeasuringtheincreaseinabsorbance at302nm.Asa con- trol,sampleswereaddedto100mMpotassiumphosphate(pH7.4) (60:1).ThedecreaseinabsorbancewasmeasuredatneutralpHas ONOOdecomposes(HuieandPadmaja,1993).

Catalase activity was determined spectrophotometrically at 240nmbythemethodofBeersandSizer(1953)andexpressedin Bergmeyerunits(1BU=decompositionof1gH2O2/minat25C).

SOD activity was determined onthe basis of the inhibition ofepinephrine–adrenochromeautoxidation(MisraandFridovich, 1972). Spectrophotometric measurement was carried out at 480nm.TheresultswereexpressedinU/mgprotein.

2.4. Post-embeddingimmunohistochemistry

Forpost-embeddingimmuno-electromicroscopy,smallpieces (2–3mm)ofthegutsegmentswerefixedovernightat4Cin2%

paraformaldehydeand2%glutaraldehydesolution,bufferedwith 0.1MPB(pH 7.4).Thesampleswerethenwashedin 0.05MPB andfurtherfixedfor1hin1%OsO4.Afterfixation,thegutseg- mentswererinsedin0.1MPB,dehydratedinincreasingalcohol concentrations (50,70, 96%and absoluteethanol) and acetone, andembeddedinEpon(ElectronMicroscopySciences,Hatfield,PA, USA).TheEponblockswereusedtoprepareultrathin(70nm)sec- tions,which weremountedonFormvar-coatednickelgridsand processedforimmunogoldlabeling.

Ultrathin sections from each block were pre-incubated in 1% bovine serum albumin in TRIS-buffered saline (TBS) for 30min, incubated overnight in the primary antibodies (heme oxygenase-2 mousemonoclonalIgG (Santa CruzBiotechnology, USA;workingdilution1:50)andcaspase-9rabbitpolyclonalIgG (Sigma–Aldrich, USA;workingdilution 1:50)),followed bypro- teinA-gold-conjugatedanti-mouse(18nmgoldparticles,Jackson ImmunoResearch,WestGrove,PA,USA;finaldilution1:20)sec- ondaryantibodiesfor3h,withextensivewashinginbetween.All stepswereperformedatroomtemperature.Thespecificityofthe immunoreactionwasassessedinallcasesbyomittingtheprimary antibodiesfromthelabelingprotocolandincubatingthesections onlyintheproteinA-gold-conjugatedsecondaryantibodies.Sec- tionswerecounterstainedwithuranylacetate(Merck,Darmstadt, Germany)andleadcitrate(Merck,Darmstadt,Germany),andwere

(3)

examinedandphotographedwithaPhilipsCM10electronmicro- scopeequipped witha MEGAVIEWII camera.The quantitative propertiesofgoldparticlescodingforHO-2 andcaspase-9were determinedinthemyentericgangliaandin theendotheliumof capillariesinthevicinityofthesegangliainallexperimentalgroup.

Countingwasperformedondigital photographsof fiveganglia, andtheentireendothelialprofileoffivewell-orientedcapillaries, whichwerecutperpendicularlytotheirlongaxisandvisualized atamagnificationof5800×,perintestinalsegmentpercondition atamagnificationof34,000×withtheAnalySIS3.2program(Soft ImagingSystemGmbH,Münster,Germany).Theintensityofthe labelingwasexpressedasthetotalnumberofgoldparticlesper unitarea.

2.5. RNAextraction,reversetranscriptionandPCRamplification

IntestinalsampleswerehomogenizedinRNABeereagent(Tel- Test Inc., Friendswood, TX, USA) and total RNA was prepared accordingtotheproceduresuggestedbythemanufacturer.Total RNAwasroutinelytreatedwith100URNAse-freeDNAseI(Thermo Scientific)toavoidanyDNAcontamination.ForassessingRNAcon- centrationandpuritytheabsorbanceofadilutedRNAsampleswere measuredat260and280nmusingNanoDrop1000UV/VISSpec- trophotometer(Thermo Scientific).The RNA concentrationwas calculatedusingtheA260=1.0isequivalentto∼40␮g/mlsingle- strandedRNAequation.TheA260/A280ratiowasusedtoassessRNA purityandratio∼2wasacceptedforpurifiedRNA.

First-strand cDNA was synthesizedby using 3␮g total RNA as template, 200pmolof each dNTP (Thermo Scientific), 200U MaximaHMinusReverseTranscriptase(Thermo Scientific)and 500pmolrandomhexamerprimers(Sigma)inafinalvolumeof 20␮L,andincubatedfor10minat37C,followedby1hat52C.

Real-timeqPCRwasdoneforgeneexpressionstudies,usingLumi- narisColorHiGreenLowROXqPCRMasterMix(ThermoScientific) in Applied Biosystems 7500 Real-Time PCR System (Life Tech- nologies).TheqPCRreactionswereperformedwithatemperature program of 10minat 95C (initialdenaturing),followed by 40 cyclesof15sat95C;1minattheannealingtemperature63Cfol- lowedbyameltingcurvestagewithtemperaturerampingfrom60 to95Candafinalcoolingfor30sat40C.Thequantitiesofexam- inedmRNAswerenormalizedtothatofˇ-actin,ahousekeeping gene,andgeneexpressionwascalculatedintermsofddCtmethod (LivakandSchmittgen,2001).

Table1

Primersequenceswithaccessionnumber.

Gene Primers(53)

ho-1(NM012580) GCTGCTGGTGGCCCACGCTT ACAGTCCAATGTTGAGCAGG ho-2(NM024387) GCTGCTGGTGGCCCACGCTT

AGGGTTTCTTTTGTTAGCATGGA

mt-1(M11794) ATGGACCCCAACTGCTCCTG

TGGAGGTGTACGGCAAGACT mt-2(AY341880) ATGGACCCCAACTGCTCCTG

GAAAAAAGTGTGGAGAACCG

Caspase-9(NM031632) AGCCAGATGCTGTCCCATAC

CAGGAACCGCTCTTCTTGTC

bax(RRU49729) GGAGGCGGCGGGCCCACCAG

CACGTCAGCAATCATCCTCTGC

bcl-2(NM016993) GGAAGGATGGCGCAAGCCGG

CGCAGGCCCAGCGTTGGCGAC

ˇ-Actin(M24113) GCAAGAGAGGTATCCTGACC

CCCTCGTAGATGGGCACAGT

For theamplificationofrat mRNAs,isoform-specificprimers were designed on the basis of thedata bank entries.For nor- malization of the amounts of mt, ho, caspase-9, bax and bcl-2 mRNAs, theˇ-actin mRNAlevel wasused as internal standard (Table1).

2.6. Statisticalanalysis

RT-qPCRreactionsforeachanimalwereperformedintriplicate toincreasethereliabilityofthemeasurements.Statisticalanalysis wasperformedwithone-wayANOVAandtheNewman–Keulstest.

AllanalyseswerecarriedoutwithGraphPadPrism4.0(GraphPad Software,LaJolla,CA,USA)andMedCalcStatisticalSoftwarever- sion9.4.2.0(MedCalcSoftware,Mariakerke,Belgium).Aprobability levelofp<0.05wassetasthelevelofstatisticalsignificance.Alldata wereexpressedasmeans±SD.

3. Results

3.1. Ischemicandinflammatoryhallmarksandperoxynitritelevel indifferentgutsegments10weeksaftertheonsetofdiabetes

Ratsweresacrificedandsignsofintestinalinflammationand severeischemia(bluish-purpleintestinesandanenlargedcecum (1.5–2-fold))wereobservedinthediabeticanimalsascompared withthecontrols(Fig.1AandB).Intestinalischemiawasalsovisible intheinsulin-treatedrats,but,thececumwasnotenlarged(not shown).

Tenweeksaftertheonsetofdiabetestherewasnosignificant changeinONOOlevelintheduodenuminanyoftheexamined groups.However,theONOOlevelinthecolonwassignificantly increased(1.7–2-fold)inthediabeticrats,whereasintheinsulin- treateddiabeticanimalsitwassimilartothecontrollevel(Fig.1C).

3.2. Activationoftheantioxidantdefensesystem

TheGSHlevelintheduodenumwaselevated2.5–3-foldinthe diabeticratsand1.5-foldintheinsulin-treateddiabeticratsrelative tothecontrolgroup(Fig.2A).TheelevationintheratioGSH/GSSG wasevenhigherinthisintestinalsegment:a6-foldincreasewas measuredinthediabeticanimals(datanotshown).Inthecolon, theGSHandGSSGcontentswerenotsignificantlychangedinany oftheexperimentalgroups.

TheSODactivitywasunaltered intheduodenum,regardless ofthetreatment,whileitwassignificantlydecreasedinthecolon in the diabetic groups (Fig. 2B). The activity of CAT was not significantly affectedby eithertheSTZ-induceddiabetes or the insulinreplacementinanyoftheintestinalsegmentsexamined (Fig.2C).

TenweeksaftertheSTZinjection,therewasa4-foldincreasein theexpressionoftheho-1geneintheduodenum,butnosignificant changeinthecolon.Immediateinsulinreplacementmaintainedthe mRNAlevelclosetothecontrolvalueinbothintestinalsegments (Table2).

Theexpressionofthemt-1genewasupregulatedinbothofthe examinedgutsegmentsofthediabeticanimals:themt-1mRNA levelwasincreasedby6-and7-foldintheduodenumandthecolon, respectively.However,nosignificantchangeinmt-1expression wasobservedintheseintestinalsegmentsintheinsulin-treated diabeticanimals.Themt-2mRNAcontentwasmorethan300-fold thecontrollevelintheduodenumofthediabeticanimals,while insulintreatmentkepttheexpressionlevel closetothecontrol.

Theexpressionofmt-2didnotchangeinthecoloninthediabetic andinsulin-treatedanimals(Table2).

(4)

Fig.1. Inflammatoryhallmarksofgastrointestinalsystem(A,B)andaccumulationofperoxynitrite(ONOO)indifferentgutsegments(C).Representativeimageofthefreshly dissectedintestineofratsfromcontrol(A)anddiabetic(B)animals.Bluish-purpleintestinalcolorandenlargedcecumwasobservedindiabeticanimals.Dataareexpressed asmeans±S.D.*p<0.05(relativetocontrols).C:control,n=6;D:diabetics,n=14;ID:insulin-treateddiabetics,n=12.

Fig.2.Concentrationoftheantioxidantglutathione(GSH)(A),activitiesofsuperoxidedismutase(SOD)(B)andcatalase(C)indifferentgutsegmentsinallexperimental groups.Dataareexpressedasmeans±S.D.*p<0.05(relativetocontrols).C:control,n=6;D:diabetics,n=14;ID:insulin-treateddiabetics,n=12.

Table2

Foldofinductionoftheho-1,mt-1andmt-2genesintheduodenumandcolonof ratswithSTZ-induceddiabetes.

ho-1 mt-1 mt-2

Duodenum

C 1 1 1

D 3.93±1.49*** 5.94±2.32*** 324.74±167.21*

ID 1.28±0.06 1.41±0.51# 1.06±0.01

Colon

C 1 1 1

D 0.93±0.06 7.5±4.95* 1.4±0.02

ID 0.74±0.19 1.5±0.99 1.08±0.01

Dataaremeans±S.D.

Analysisofvariance(ANOVA):

* p<0.05(relativetocontrols).

***p<0.001(relativetocontrols).

p<0.05(relativetodiabeticanimals).

p<0.01(relativetodiabeticanimals).

#p<0.001(relativetodiabeticanimals).

3.3. MeasurementofHO-2expressionindifferentgutsegments

Theexpressionoftheho-2genewasupregulatedsignificantly onlyinthecoloninthediabeticandtheinsulin-treateddiabetic rats (Fig. 3A). The presence of HO-2 protein was followed by post-embeddingimmunohistochemistry.A∼4-foldincreasewas measuredin the number of gold particles signingHO-2 in the duodenumofthediabeticanimalsrelativetothecontrols.Inthe diabeticcolon,therewasamarked11-foldelevationintheHO-2 labelsresultingina∼5-foldhigherproteinlevelofHO-2inthecolon versusduodenum.Inbothexaminedregionsoftheinsulin-treated diabeticratsthecontrollevelofHO-2 expressionwasobserved (Fig.3B).

3.4. Effectsofdiabetesonapoptoticmarkersintheduodenum andcolon

Weexaminedthelevelsofthepro-apoptoticmarkerbaxandthe anti-apoptoticmarkerbcl-2.Intheduodenumofthediabeticrat,a 40%increasewasdetectedinthelevelofbaxmRNAascompared

(5)

Fig.3.Levelsofhemeoxygenase-2mRNA(ho-2)andprotein(HO-2).Expressionofho-2gene(A)indifferentgutsegmentsinallexperimentalgroups.Dataareexpressedas foldofinduction.mRNAsarenormalizedtothatofˇ-actin.QuantitativeevaluationofthenumberofgoldparticleslabelingHO-2intheduodenumandcolon(B).Allvalues arepresentedasmeans±S.D.**p<0.01,***p<0.001(relativetocontrols).C:control,n=6;D:diabetics,n=14;ID:insulin-treateddiabetics,n=12.

withthecontrolandinsulin-treatedgroups.However,inthecolon ofthediabeticrats,theexpressionofthebaxgenewasdownregu- latedby15–20%(datanotshown).Thediabetes-inducedalterations intheexpressionoftheanti-apoptoticmarkerblc-2weretheoppo- site of those in bax expression; nochangeor a non-significant decreaseintheduodenum,anda40–45%increaseinthecolon.As aconsequence,theratiobax/bcl-2differedevenmoredramatically inthetwointestinalsegments:a50%increaseintheduodenum, anda40%decreaseinthecolon(Fig.4A).

Theexpressionpatternofcaspase-9intheduodenumwassimi- lartothatofbax.Therewasasignificant2.5–3-foldincreaseinthe caspase-9mRNAlevelinthediabeticrats.Theexpressionpattern ofthisgenewasunchangedinthecoloninthediabeticanimalsand thelevelwasthesameasthecontrolintheanimalstreatedwith insulin(Fig.4B).Theintestinalcaspase-9proteinexpressionwas alsodemonstratedbyimmunohistochemistry.Thenumberofgold particleslabelingcaspase-9wassignificantlyhigherintheduode- numofdiabeticratsthan thecontrol(Fig.4C andD),whilethe numberoflabelsinthecolonwasunchanged.

Thesegment-specificvulnerabilityofthegastrointestinaltract induced by hyperglycemia was also confirmed by electron microscopy, demonstrating the presence of severe necrosis in thecolon ofthediabeticrats.Thehyperglycemiccolonsamples frequentlyexhibitednecrotic smoothmusclecells withabarely recognizablecytoplasm,andthestructuralintegrityoftheplasma membranewaslost(Fig.5).

4. Discussion

Thisstudyhaspresenteddataongutsegmentspecificoxidative stress,theeffectivenessoftheantioxidantdefensesystemandthe tissuedamageintheduodenumandcoloninratswithdiabetes.

Thesegment-specificvulnerabilityoftheGItractwasconfirmed byRT-qPCR,immunohistochemistryandelectronmicroscopy(EM).

EMdemonstratedthepresenceofseverenecrosisinthecolonofthe diabeticrats.ChangesinROSproduction,aspresumptivecandi- datestriggeringnecrosiswerealsodemonstratedinthecolon:the ONOOproductionwasdoubled.ElevatedlevelofONOOserves asindirectevidenceofincreasedO2andNOproductioninthe colon.AnincreasingnumberofstudieshaveimplicatedONOOin thedevelopmentofT1D-associatedcomplications(Pacheretal., 2007).Astudyofthepathogenesisofinflammatoryboweldisease yieldedevidencethatintrarectallyadministeredONOOinduced

inflammation and transmucosal necrosis in the rat colon (Rachmilewitzetal.,1993).TheactivityofSODinthediabeticcolon wassignificantlyreduced,whichstatusalsocouldbeaconsequence ofthefastdepletionofO2throughitsreactionwithNO,which is3timesfasterthantheSOD-catalyzedreductionofO2(Walsh, 1997).

Orstudyhasalsodemonstratedthattheintestinepossessessev- eraldefensemechanismsinasegment-specificmanner:maintains highconcentrationsoftheantioxidantGSHandupregulatesthe expressionsofhosandmtssoastopreservecellularintegrity.

GSHispresentinhighconcentrationsinthetissuesandpar- ticipatesinthecellulardefensebyscavengingROS(Nicoteraand Orrenius,1986;Flechneret al.,1990).Ourstudyhasrevealeda markedincreaseinGSHlevelintheduodenaltissues,butnotin thecolon,indiabeticrats.HighGSHlevelsprotectcellularproteins againstoxidationthroughtheGSHredoxcycle,andalsodirectly detoxifyROSinducedbyexposuretoSTZ(Razaetal.,2000).

BesidestheGSHsystem,theMTsalsoplayanoteworthyrole inthemaintenanceofthephysiologicalthiol/redoxbalance.The MTsmayserveaspotentantioxidantspreventingdiabeticcom- plicationsthroughthesuppressionofdiabeticoxidativedamage (Dabrowiak,2009).Ourstudyrevealedtheaccumulationofahuge amountofmt-2mRNAinthediabeticduodenum.Theexpressionof mt-1wasinducedtoaboutthesamelevelinthediabeticduodenum andcolon.Inthecolon,this7-foldelevationinmt-1mRNAlevel isoneofthefewpositivesignsofanactiveantioxidantdefense.

IthasbeendocumentedthatZn-inducedmtsynthesisinratpan- creaspreventedSTZ-induceddiabetes(YangandCherian,1994).

ElevatedlevelsofMTsintheliverandkidneyofdiabeticratshave alsobeenreported(CraftandFailla,1983;FaillaandKiser,1981;

UriuHareetal.,1988),andoverexpressedmtinthemouseheart significantlypreventeddiabetes-inducedcardiomyopathy(Caiand Kang,2001;KangandCai,2001).

We also demonstrated gut segment-specific changes in the expressionoftheHOsduringdiabetes.Anumber ofinvivoand invitro studies have indicated theinduction of theHO system in response to a wide array of oxidative and cellular stresses (Applegateetal.,1991;Nath,1994;Vileetal.,1994;Otterbeinetal., 1995).HO-1andHO-2sharesimilarphysicalandkineticproper- ties,buthavedifferentphysiologicalrolesandtissuedistributions (Maines,2005).Inoursystem,hyperglycemiainducedho-1expres- sionintheduodenum,whileinthecolonincreasedamountsofho-2 mRNAandHO-2proteinweredetected.UnlikeHO-1,whichlacks

(6)

Fig.4. Expressionsofapoptoticmarkersintheduodenumandcolon.Ratiobax/bcl-2(A)andexpressionofcaspase-9gene(B)indifferentgutsegmentsofcontrol(C)n=6, diabetic(D)n=14andinsulin-treateddiabetic(ID)n=12rats.Dataareexpressedasfoldofinduction.Representativeelectronmicrographofultrathinsectionoftheenteric smoothmusclecells(smc)intheduodenumofdiabeticratafterpost-embeddingimmunohistochemistry(C),usingacaspase-9-specificprimaryantibody.Themajorityof the18nmgoldparticles(arrows)labelingcaspase-9accumulatedabovethemitochondria(m).Bar:500nm.Quantitativeevaluationofthenumberofgoldparticleslabeling caspase-9(D).Allvaluesarepresentedasmeans±S.D.*p<0.05,**p<0.01,***p<0.001(relativetocontrols).

cysteineresidues,HO-2containsthreeCys-Prosignaturemotifs, knownashemeregulatorymotifs(HRMs).Ithasbeenproposed (RagsdaleandYi,2011)thattheHRMsactasa“molecularrheo- stat”thatrespondstotheintracellularredoxpotential,controlling theHO-2activity.ThelevelofHO-2proteinincreased11-fold,and theactivitycouldbefurtherenhancedbyfreeradicalsviatheCys- Prosignaturemotifs.ThereleaseofFeionduringhemedegradation beforetheirsequestrationbyferritinmaymakethemavailablefor thecatalysisofharmfuloxidationreactions(Rouault,2009).

HOoverexpressionresultsinananti-apoptoticphenotypeasso- ciatedwithanincreasedexpressionofbcl-2indiabeticrats(Cao etal.,2008).Thesurvivalfunctionofbcl-2dependsontheextent ofbindingtoproteinssuchasBaxthat seemtoantagonizebcl- 2activity(AshkenaziandDixit,1998;Kroemer,1997).Ourstudy haspresentedevidence ofthegutregion-specificexpression of bcl-2,baxandcaspase-9thekeyelementsofapoptoticpathways (ThornberryandLazebnik,1998).Intheduodenaltissuesofthe diabeticrats,thelevelofbaxexpressionwasincreased,resultingin majorchangesintheratiobax/bcl-2mRNA.Thesechanges,along

withanincreasedlevelofcaspase-9,aninitiatorcaspaseintheapo- ptosispathway,indicateanenhancedpro-apoptoticenvironment, triggeringtheeventofprogrammedcelldeathintheduodenum.In thediabeticcolontheratiobax/bcl-2isloweredasaconsequence ofupregulationofthebcl-2expression.Theobservedincreasein bcl-2expressioncouldpossiblybeattributedtothehighlyelevated HO-2level.

Allof thesedata suggest that thecolon is more vulnerable thantheduodenumtooxidativestress.Thefactthattheantioxi- dantprotectionismoreefficientintheproximalintestinalsections than in the distal sections may bea consequence of theposi- tionaland functional differences(Blázovicset al.,2004).Earlier findingssupportedthis(Sandersetal.,2004):thecolongenerates moreendogenousROSthandoesthesmallintestine,andthisbasic pro-oxidantenvironmentofthecolonmayleadtoitsinabilityto handleoxidativestressaseffectivelyasthesmallintestine.Arecent studyonintestinalbacterialpopulationsinT1Dlikewiseempha- sizedregionalityalongtheGItract;T1Daffectedthecomposition ofthemicrobiotainagutregion-specificmanner:thecomposition

(7)

Fig.5.Necrotichallmarkindiabeticrats.Representativeelectronmicrographofan ultrathinsectiononthecolonofadiabeticrat.Smoothmusclecell(smc)withlocal membraneinjuriesandleakycytoplasm(arrows)werefrequentlyseen.Bar:10␮m.

oftheduodenalmicrobiotadidnotindicatethedevelopmentofa pathologicalentericmicroenvironment.Inthediabeticcolonhow- ever,theincreasedleveloftheGram-negativeKlebsiellacouldbe associatedwithsevereintestinalinflammation(Wirthetal.,2014).

Conflictofintereststatement

Theauthorsdeclarethattherearenoconflictsofinterest.

References

AbrahamNG,CaoJ,SacerdotiD,LiX,DrummondG.Hemeoxygenase:thekeyto renalfunctionregulation.AmJPhysiol2009;297:1137–42.

Applegate LA, Luscher P, Tyrrell RM. Induction of heme oxygenase: a gen- eral response to oxidant stress in culturedmammalian cells.Cancer Res 1991;51:974–8.

Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998;281:1305–8.

BeersRF,SizerIW.Catalaseassaywithspecialreferencetomanometricmethods.

Science1953;117:710–2.

BergaminiCM,GambettiS,DondiA,CervellatiC.Oxygen,reactiveoxygenspecies andtissuedamage.CurrPharmDes2004;10:1611–26.

BlázovicsA,SzentmihályiK,FehérE.Alterationsofredox-homeostasisinbowel parts.ZGastroenterol2004:42–9.

BódiN,BattonyaiI,TalapkaP,HermeszE,JancsóZs,KatarovaZ,etal.Diabetes- relatedstructural,molecularandfunctionalalterationsincapillariessupplying themyentericplexusinthegutofthestreptozotocininduceddiabeticrats.

Microcirculation2012;19:316–26.

CaiL.Metallothioneinasanadaptiveproteinpreventsdiabetesanditstoxicity nonlinearity.BiolToxicolMed2004;2:89–103.

CaiL, KangYJ.Metallothioneinpreventsdiabeticcardiomyopathy. ToxicolSci 2001;60:13.

CaoJ, DrummondG, InoueK,SodhiK,LiXY,OmuraS.Upregulationofheme oxygenase-1combinedwithincreasedadiponectinlowersbloodpressurein diabeticspontaneouslyhypertensiveratsthroughareductioninendothelial celldysfunction,apoptosisandoxidativestress.IntJMolSci2008;9:2388–406.

CraftNE,FaillaML.Zinc,iron,andcopperabsorptioninthestreptozotocin-diabetic rat.AmJPhysiol1983;244:E122–8.

Metallo-drugsandtheiraction.In:Metalsinmedicine.1sted.Chicheste,UK:Wiley

&Sons;2009.p.49–72.

FaillaML,KiserRA.Alteredtissuecontentandcytosoldistributionoftracemetals inexperimentaldiabetes.JNutr1981;11:1900–9.

FlechnerI,MarutaK,BurkartV,KawaiK,KolbH,KieselU.Effectsofradicalscavengers onthedevelopmentofexperimentaldiabetes.DiabetesRes1990;13:67–73.

GibbonsSJ,FarrugiaG.Theroleofcarbonmonoxideinthegastrointestinaltract.J Physiol2004;556:325–36.

HuieRE,PadmajaS.ThereactionofNOandsuperoxide.FreeRadicResCommun 1993;18:195–9.

InoueK,TakahashiT,UeharaK,ShimuzuH,IdoK,MorimatsuH,etal.Protectiverole ofhemeoxygenase1intheintestinaltissueinjuryinhemorrhagicshockinrats.

Shock2008;29:252–61.

IslamMS,LootsduT.Diabetes,metallothionein,andzincinteractions:areview.

Biofactors2007;29:203–12.

IzbékiF,WittmanT,RosztóczyA,LinkeN,BódiN,FeketeE,etal.Immediateinsulin treatmentpreventsgutmotilityalterationsandlossofnitrergicneuronsinthe ileumandcolonofratswithstreptozotocin-induceddiabetes.DiabetesResClin Pract2008;80:192–8.

KanducD,MittelmanA,SerpicoR,SinigagliaE,SinhaAA,NataleC,etal.Celldeath:

apoptosisversusnecrosis.IntJOncol2002;21:165–70.

KangYJ,CaiL.Metallothioneinsuppressionofdiabeticcardiomyopathybyinhibition ofhyperglycemiainducedoxidativestress.FreeRadicBiolMed2001;31:S33.

KroemerG.Theproto-oncogeneBcl-2anditsroleinregulatingapoptosis.NatMed 1997;3:614–20.

KruidenierL,KuiperI,VanDuijnW,Mieremet-OomsMA,vanHogezandRA,Lamers CB,etal.Imbalancedsecondarymucosalantioxidantresponseininflammatory boweldisease.JPathol2003;201:17–27.

LivakKJ,SchmittgenTD.Analysisofrelativegeneexpressiondatausingrealtime quantitativePCRandthe2-[delta][delta]CTmethod.Methods2001;25:402–8.

LowryOH,RosebroughNJ,FarrAL,RandallRJ.ProteinmeasurementwiththeFolin phenolreagent.JBiolChem1951;193:265.

MainesMD.Thehemeoxygenasesystem:aregulatorofsecondmessengergases.

AnnRevPharmacol1997;37:517–54.

MainesMD.Thehemeoxygenasesystem:update2005.AntioxidRedoxSignal 2005;7:1761–6.

MisraHP,FridovichI.Theroleofsuperoxideanionintheautoxidationofepinephrine andasimpleassayforsuperoxidedismutase.JBiolChem1972;247:3170–5.

NathKA.Thefunctionalsignificanceofinductionofhemeoxygenasebyoxidant stress.JLabClinMed1994;123:461–3.

NicoteraP,OrreniusS.Roleofthiolsinprotectionagainstbiologicalreactiveinter- mediates.AdvExpMedBiol1986;197:41–51.

OtterbeinL,SylvesterSL,ChoiAM.Hemoglobinprovidesprotectionagainstlethal endotoxemiainrats:theroleofhemeoxygenase-1.AmJRespirCellMolBiol 1995;13:595–601.

PacherP,BeckmanJS,LiaudetL.Nitricoxideandperoxynitriteinhealthanddisease.

PhysiolRev2007;87:315–424.

ProskuryakovSY,KonoplyannikovAG,GabaiVL.Necrosis:aspecificformofpro- grammedcelldeath.ExpCellRes2003;283:1–16.

RachmilewitzD,StamlerJS,KarmeliF,MullinsME,SingelDJ,LoscalzoJ,etal.

Peroxynitrite-inducedratcolitisanewmodelofcolonicinflammation.Gas- troenterology1993;105:1681–8.

RagsdaleSW,YiL.Thiol/disulfideredoxswitchesintheregulationofhemebinding toproteins.AntioxidRedoxSignal2011;14:1039–47.

Raza H, AhmedI, JohnA, SharmaAK. Modulation of xenobiotic metabolism andoxidativestressinchronicstreptozotocin-induceddiabeticratsfedwith Momordicacharantiafruitextract.JBiochemMolToxicol2000;14:131–9.

RouaultTA.Cellbiology.Anancientgaugeforiron.Science2009;326:676–7.

SandersLM,HendersonCE,HongMY,BarhoumiR,BurghardtRC,CarrollRJ,etal.

Pro-oxidantenvironmentofthecoloncomparedtothesmallintestinemay contributetogreatercancersusceptibility.CancerLett2004;208:155–61.

SedlakJ,LindsayRH.Estimationoftotal,protein-bound,andnonproteinsulfhydryl groupsintissuewithEllman’sreagent.AnalBiochem1968;25:192–205.

ThirumoorthyN,SunderAS,KumarKTM,KumarMS,GaneshGNK,ChatterjeeM.A reviewofmetallothioneinisoformsandtheirroleinpathophysiology.WorldJ SurgOncol2011;9:54.

ThornberryNA,LazebnikY.Caspases:enemieswithin.Science1998;281:1312–6.

UriuHareJY,StemJS,KeenCL.Theeffectofdiabetesonthemolecularlocalization ofmaternalandfetalzincandcoppermetalloproteinintherat.BiolTraceElem Res1988;18:71–9.

VileGF,Basu-ModakS,WaltnerC,TyrrellRM.Hemeoxygenase1mediatesanadap- tiveresponsetooxidativestressinhumanskinfibroblasts.ProcNatlAcadSciU SA1994;91:2607–10.

WalshSW.Theroleofoxidativestressandantioxidantsinpreeclampsia.Contem- poraryOB/GYN1997;42:113–24.

WangW,BallatoriN.Endogenousglutathioneconjugates:occurrenceandbiological functions.PharmacolRev1998;50:335–56.

WirthR,BódiN,MarótiG,BagyánszkiM,TalapkaP,FeketeE,etal.Regionallydistinct alterationsinthecompositionofthegutmicrobiotainratswithstreptozotocin- induceddiabetes.PLOSONE2014;9:e110440.

WolffSP.Diabetesmellitusandfreeradicals.BrMedBull1993;49:642–52.

WolosinJD,EdelmanSV.Diabetesandthegastrointestinaltract.ClinDiabetes 2000;18(4):148–51.

YangJ,CherianMG.Protectiveeffectsofmetallothioneinonstreptozotocin-induced diabetesinrats.LifeSci1994;55:43–51.

ZhaoJ,ShaH,ZhouS,TongX,ZhuangFY,GregersenH.Remodellingofzero-stress stateofsmallintestineinstreptozotocin-induceddiabeticrats.Effectofgli- clazide.DigLiverDis2002;34:707–16.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

I examine the structure of the narratives in order to discover patterns of memory and remembering, how certain parts and characters in the narrators’ story are told and

Keywords: folk music recordings, instrumental folk music, folklore collection, phonograph, Béla Bartók, Zoltán Kodály, László Lajtha, Gyula Ortutay, the Budapest School of

Originally based on common management information service element (CMISE), the object-oriented technology available at the time of inception in 1988, the model now demonstrates

Major research areas of the Faculty include museums as new places for adult learning, development of the profession of adult educators, second chance schooling, guidance

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the

In this article, I discuss the need for curriculum changes in Finnish art education and how the new national cur- riculum for visual art education has tried to respond to

By examining the factors, features, and elements associated with effective teacher professional develop- ment, this paper seeks to enhance understanding the concepts of

Usually hormones that increase cyclic AMP levels in the cell interact with their receptor protein in the plasma membrane and activate adenyl cyclase.. Substantial amounts of