• Nem Talált Eredményt

GENERALIZATION OF AN IMPULSIVE NONLINEAR SINGULAR GRONWALL-BIHARI INEQUALITY WITH DELAY

N/A
N/A
Protected

Academic year: 2022

Ossza meg "GENERALIZATION OF AN IMPULSIVE NONLINEAR SINGULAR GRONWALL-BIHARI INEQUALITY WITH DELAY"

Copied!
20
0
0

Teljes szövegt

(1)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page

Contents

JJ II

J I

Page1of 20 Go Back Full Screen

Close

GENERALIZATION OF AN IMPULSIVE NONLINEAR SINGULAR GRONWALL-BIHARI

INEQUALITY WITH DELAY

SHENGFU DENG AND CARL PRATHER

Department of Mathematics

Virginia Polytechnic Institute and State University Blacksburg, VA 24061, USA

EMail:sfdeng@vt.edu prather@math.vt.edu

Received: 25 August, 2007

Accepted: 23 May, 2008

Communicated by: S.S. Dragomir 2000 AMS Sub. Class.: 26D15, 26D20.

Key words: Gronwall-Bihari inequality, Nonlinear, Impulsive.

Abstract: This paper generalizes a Tatar’s result of an impulsive nonlinear singular Gronwall-Bihari inequality with delay [J. Inequal. Appl., 2006(2006), 1-12] to a new type of inequalities which includesndistinct nonlinear terms.

(2)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page2of 20 Go Back Full Screen

Close

Contents

1 Introduction 3

2 Main Results 5

(3)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page3of 20 Go Back Full Screen

Close

1. Introduction

In order to investigate problems of the form

x0 =f(t, x), t 6=tk,

∆x=Ik(x), t =tk,

Samoilenko and Perestyuk [6] first used the following impulsive integral inequality u(t)≤a+

Z t c

b(s)u(s)ds+ X

0<tk<t

ηku(tk), t ≥0.

Then Bainov and Hristova [2] studied a similar inequality with constant delay. In 2004, Hristova [3] considered a more general inequality with nonlinear functions in u. All of these papers treated the functions (kernels) involved in the integrals which are regular. Recently, Tatar [7] investigated the following singular inequality

u(t)≤a(t) +b(t) Z t

0

k1(t, s)um(s)ds+c(t) Z t

0

k2(t, s)un(s−τ)ds +d(t) X

0<tk<t

ηku(tk), t≥0, u(t)≤ϕ(t), t∈[−τ,0], τ >0

(1.1)

where the kernelski(t, s)are defined byki(t, s) = (t−s)βi−1sγiFi(s)forβi >0and γi >−1,i= 1,2, the pointstk(called "instants of impulse effect") are in increasing order and limk→∞tk = +∞. This inequality was called the impulsive nonlinear singular version of the Gronwall inequality with delay by Tatar [7]. In this paper, we

(4)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page4of 20 Go Back Full Screen

Close

will consider an inequality u(t)≤a(t) +

n

X

i=1

Z bi(t) 0

(t−s)βi−1srifi(t, s)wi(u(s))ds +

m+n

X

j=n+1

Z bj(t) 0

(t−s)βj−1srjfj(t, s)wj(u(s−τ))ds +d(t) X

0<tL<t

ηLu(tL), t≥0, (1.2)

u(t)≤ϕ(t), t ∈[−τ,0], τ >0,

wheren, mare positive integers,βl >0,rl >−1forl = 1, . . . , n+mandηL ≥0 and other assumptions are given in Section2. This inequality is more general than (1.1) since (1.2) hasnnonlinear terms.

(5)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page5of 20 Go Back Full Screen

Close

2. Main Results

Notation: Following [1] and [5], we say w1 ∝ w2 forw1, w2 : A ⊂ R → R\{0}

if ww2

1 is nondecreasing on A. This concept helps us to compare the monotonicity of different functions. Now we make the following assumptions:

(H1) all wi (i = 1, . . . , n +m) are continuous and nondecreasing on [0,∞) and positive on(0,∞), andw1 ∝w2 ∝ · · · ∝wn

(H2) a(t)andd(t)are continuous and nonnegative on[0,∞);

(H3) all bl : [0,∞) → [0,∞) are continuously differentiable and nondecreasing such that0 ≤ bl(t) ≤ t on[0,∞), tL ≤ bl(t) ≤ tL+τ for t ∈ [tL, tL +τ] and tL + τ ≤ bl(t) ≤ tL+1 for t ∈ [tL +τ, tL+1], l = 1, . . . , n+ m and L = 0,1,2, . . . where t0 = 0. The points tL are called instants of impulse effect which are in increasing order, andlimL→∞tL =∞;

(H4) all fl(t, s) (l = 1, . . . , n+m) are continuous and nonnegative functions on [0,∞)×[0,∞);

(H5) ϕ(t)is nonnegative and continuous;

(H6) u(t)is a piecewise continuous function fromR→R+ = [0,∞)with points of discontinuity of the first kind at the pointstL ∈ R. It is also left continuous at the pointstL. This space is denoted byP C(R,R+).

Without loss of generality, we will suppose that thetLsatisfyτ < tL+1−tL ≤2τ, L= 0,1,2, . . .. As in Remark 3.2 of [7], other cases can be reduced to this one.

(6)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page6of 20 Go Back Full Screen

Close

Theorem 2.1. Let the above assumptions hold. Suppose thatusatisfies (1.2) and is inP C([−τ,∞),[0,∞)). Then ifβα>−1p + 1andrα >−1p, it holds that

u(t)≤

















uL,0(t), t∈(tL, tL+τ], uL,1(t), t∈(tL+τ, tL+1],

uk,0(t), t∈(tk, tk+τ] iftk+τ ≤T, uk,1(t), t∈(tk+τ, T] iftk+τ < T, uk,0(t), t∈(tk, T] iftk+τ > T, wheretk≤T < tk+1and

uL,l(t) =

"

Wn−1 WnL,l,n(t)) + Z bn(t)

tL+lτ

(n+m+L+ 1)q−1cqn(t) ˜fnq(t, s)ds

!#1q ,

γL,l,j(t) = Wj−1−1

Wj−1L,l,j−1(t)) +

Z bj−1(t) tL+lτ

(n+m+L+ 1)q−1cqj−1(t) ˜fj−1q (t, s)ds

, j 6= 1,

γL,l,1(t) = (n+m+L+ 1)q−1

"

˜ aq(t) +

n

X

i=1

Z tL+lτ 0

cqi(t) ˜fiq(t, s)wiq(φ(s))ds

+

n+m

X

j=n+1

Z bj(t) 0

cqj(t) ˜fjq(t, s)wqj(ψ(s−τ))ds+

L

X

e=1

q(t)ηqeuqe−1,1(te)

# ,

(7)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page7of 20 Go Back Full Screen

Close

φ(t) =





uL,0(t), t∈(tL, tL+τ], t∈(tk, tk+τ] iftk+τ ≤T, andt∈(tk, T] iftk+τ > T,

uL,1(t), t∈(tL+τ, tL+1]andt ∈(tk+τ, T] iftk+τ < T,

ψ(t) =









ϕ(t), t ∈[−τ,0],

uL,0(t), t∈(tL, tL+τ], t∈(tk, tk+τ] iftk+τ ≤T, andt∈(tk, T] iftk+τ > T,

uL,1(t), t∈(tL+τ, tL+1]andt∈(tk+τ, T] iftk+τ < T,

˜

a(t) = max

0≤x≤ta(x), f˜α(t, s) = max

0≤x≤tfα(x, s), d(t) = max˜

0≤x≤td(x), Wi(u) =

Z u ui

dv wqi(v1q)

, u >0, ui >0,

cα(t) =t1pα+rα−1

Γ(1 +p(βα−1))Γ(1 +prα) Γ(2 +p(βα+rα−1))

1p ,

forL = 0,1, . . . , k−1, α = 1,2, . . . , n+m, l = 0,1, andi, j = 1, . . . , n where

1

p +1q = 1forp >0andq >1, andT is the largest number such that (2.1) WjL,l,j(t)) +

Z bj(t) tL+lτ

(n+m+L+ 1)q−1cj(t) ˜fjq(t, s)ds ≤ Z

uj

dz wjq(z1/q), for all t ∈ (tL, tL+τ], all t ∈ (tk, tk +τ] if tk +τ ≤ T and all t ∈ (tL, T] if tk+τ > T asl = 0, or allt∈[tL+τ, tL+1]and allt ∈[tk+τ, T)iftk+τ < T as l= 1wherej = 1, . . . , n,l = 0,1andL= 0,1. . . , k−1.

(8)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page8of 20 Go Back Full Screen

Close

Before the proof, we introduce a lemma which will play a very important role.

Lemma 2.2 ([1]). Suppose that

1. allwi (i= 1, . . . , n)are continuous and nondecreasing on[0,∞)and positive on(0,∞), andw1 ∝w2 ∝ · · · ∝wn.

2. a(t)is continuously differentiable intand nonnegative on[t0, t1),

3. allblare continuously differentiable and nondecreasing such thatbl(t)≤tfor t∈[t0, t1)

where t0, t1 are constants and t0 < t1. If u(t) is a continuous and nonnegative function on[t0, t1)satisfying

u(t)≤a(t) +

n

X

i=1

Z bi(t) bi(t0)

fi(t, s)wi(u(s))ds, t0 ≤t < t1, then

u(t)≤W˜n−1

"

nn(t)) + Z bn(t)

bn(t0)

n(t, s)ds

#

, t0 ≤t≤T1, where

γi(t) = ˜Wi−1−1

"

i−1i−1(t)) +

Z bi−1(t) bi−1(t0)

i−1(t, s)ds

#

, i= 2,3, . . . , n, γ1(t) =a(t0) +

Z t t0

|a0(s)|ds, W˜i(u) = Z u

ui

dz

wi(z), ui >0, T1 < t1 andT1 is the largest number such that

ii(T1)) +

Z bi(T1) bi(t0)

i(T1, s)ds ≤ Z

ui

dz

wi(z), i= 1, . . . , n.

(9)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page9of 20 Go Back Full Screen

Close

Proof of Theorem2.1. Sinceβα >−1p + 1andrα >−1p forα = 1, . . . , n+m, by Hölder’s inequality we obtain

u(t)≤a(t) +

n

X

i=1

Z t 0

(t−s)p(βi−1)sprids

1p Z bi(t) 0

fiq(t, s)wiq(u(s))ds

!1q

+

m+n

X

j=n+1

Z t 0

(t−s)p(βj−1)sprjds

1p Z bj(t) 0

fjq(t, s)wjq(u(s−τ))ds

!1q

+ X

0<tL<t

d(t)ηLu(tL)

≤a(t) +

n

X

i=1

ci(t)

Z bi(t) 0

fiq(t, s)wiq(u(s))ds

!1q

+

m+n

X

j=n+1

cj(t)

Z bj(t) 0

fjq(t, s)wqj(u(s−τ))ds

!1q

+ X

0<tL<t

d(t)ηLu(tL) where we usebα(t)≤tand the definition ofcα(t). Now we use the following result [4]:

IfA1, . . . , Anare nonnegative forn ∈N, then forq >1, (A1+· · ·+An)q≤nq−1(Aq1+· · ·+Aqn).

Sincetk ≤t≤T < tk+1, we have uq(t)≤(1 +n+m+k)q−1

"

aq(t) +

n

X

i=1

cqi(t) Z bi(t)

0

fiq(t, s)wiq(u(s))ds

+

m+n

X

j=n+1

cqj(t) Z bj(t)

0

fjq(t, s)wqj(u(s−τ))ds+

k

X

L=1

dq(t)ηqLuq(tL)

# .

(10)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page10of 20 Go Back Full Screen

Close

We note that˜a(t)≥a(t),d(t)˜ ≥d(t)andf˜α(t, s)≥fα(t, s)and they are continuous and nondecreasing int. The above inequality becomes

uq(t)≤(1 +n+m+k)q−1

"

˜ aq(t) +

n

X

i=1 k−1

X

L=0

cqi(t) Z tL+1

tL

iq(t, s)wiq(u(s))ds

+ cqi(t) Z bi(t)

tk

iq(t, s)wiq(u(s))ds

!

+

m+n

X

j=n+1 k−1

X

L=0

cqj(t) Z tL+1

tL

jq(t, s)wjq(u(s−τ))ds

+ cqj(t) Z bj(t)

tk

jq(t, s)wqj(u(s−τ))ds

! +

k

X

L=1

q(t)ηqLuq(tL)

# . (2.2)

In the following, we apply mathematical induction with respect tok.

(1)k = 0. We note thatt0 = 0and we have for any fixed˜t∈[0, t1] (2.3) uq(t)≤(n+m+ 1)q−1

"

˜ aq(˜t) +

n

X

i=1

cqi(˜t) Z bi(t)

0

iq(˜t, s)wiq(u(s))ds

+

m+n

X

j=n+1

cqj(˜t) Z bj(t)

0

jq(˜t, s)wjq(u(s−τ))ds

#

fort ∈[0,˜t]sincecα(t)are nondecreasing.

Now we considert˜∈ [0, τ] ⊂ [0, t1] andt ∈ [0,˜t]. Note that 0 ≤ bj(t) ≤ t so

−τ ≤bj(t)−τ ≤0fort ∈[0,˜t]. Sinceu(t)≤ϕ(t)fort∈[−τ,0], we have uq(t)≤z0,0(t), t∈[0,˜t],

(11)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page11of 20 Go Back Full Screen

Close

where

(2.4) z0,0(t) = (n+m+ 1)q−1

"

˜ aq(˜t) +

n

X

i=1

cqi(˜t) Z bi(t)

0

iq(˜t, s)wiq(u(s))ds

+

m+n

X

j=n+1

cqj(˜t) Z bjt)

0

jq(˜t, s)wjq(ϕ(s−τ))ds

# . It implies that

(2.5) u(t)≤z0,0(t)1/q, t ∈[0,t].˜ Thus, (2.4) becomes

(2.6) z0,0(t)≤(n+m+ 1)q−1

"

˜ aq(˜t) +

n

X

i=1

cqi(˜t) Z bi(t)

0

iq(˜t, s)wqi(z0,01/q(s))ds

+

m+n

X

j=n+1

cqj(˜t) Z bjt)

0

jq(˜t, s)wjq(ϕ(s−τ))ds

# . By Lemma2.2, (2.6) and (2.1), we have

z0,0(t)≤Wn−1

"

Wn(˜γ0,0,n(t)) + Z bn(t)

0

(n+m+ 1)q−1cn(˜t) ˜fnq(˜t, s)ds

# ,

˜

γ0,0,j(t) = Wj−1−1

Wj−1(˜γ0,0,j−1(t)) +

Z bj−1(t) 0

(n+m+ 1)q−1cj−1(˜t) ˜fj−1q (˜t, s)ds

#

, j 6= 1,

(12)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page12of 20 Go Back Full Screen

Close

˜

γ0,0,1(t) = (n+m+ 1)q−1

"

˜ aq(˜t) +

n+m

X

j=n+1

Z bjt) 0

cqj(˜t) ˜fjq(˜t, s)wqj(ψ(s−τ))ds

#

sinceψ(t) = ϕ(t)fort ∈[−τ,0].

Since (2.5) is true for anyt∈[0,t]˜ and˜γ0,0,j(˜t) = γ0,0,j(˜t), we have u(˜t)≤z0,0(˜t)1/q ≤u0,0(˜t).

We know that˜t∈[0, τ]is arbitrary so we replace˜tbytand get (2.7) u(t)≤u0,0(t), fort∈[0, τ].

This implies that the theorem is true fort∈[0, τ]andk = 0.

For t ∈ [τ,t]˜ and ˜t ∈ [τ, t1], use the assumption (H3) and then we know that bα(τ) =τ andτ ≤bα(t)≤t1fort∈[τ, t1]andα= 1, . . . , n+m. Thus,

0≤bα(t)−τ ≤t1−τ ≤τ

sinceτ < t1−t0 =t1 ≤2τ. Using this fact, (2.3) and (2.7), we get uq(t)≤(n+m+ 1)q−1

"

˜ aq(˜t) +

n

X

i=1

cqi(˜t) Z τ

0

iq(˜t, s)wiq(u(s))ds

+

n

X

i=1

cqi(˜t) Z bi(t)

τ

iq(˜t, s)wqi(u(s))ds

+

m+n

X

j=n+1

cqj(˜t) Z τ

0

jq(˜t, s)wjq(ψ(s−τ))ds

+

m+n

X

j=n+1

cqj(˜t) Z bjt)

τ

jq(˜t, s)wqj(u(s−τ))ds

#

(13)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page13of 20 Go Back Full Screen

Close

≤(n+m+ 1)q−1

"

˜ aq(˜t) +

n

X

i=1

cqi(˜t) Z τ

0

iq(˜t, s)wiq(u0,0(s))ds

+

n

X

i=1

cqi(˜t) Z bi(t)

τ

iq(˜t, s)wqi(u(s))ds

+

m+n

X

j=n+1

cqj(˜t) Z τ

0

jq(˜t, s)wjq(ψ(s−τ))ds

+

m+n

X

j=n+1

cqj(˜t) Z bjt)

τ

jq(˜t, s)wqj(u0,0(s−τ))ds

#

≤(n+m+ 1)q−1

"

˜ aq(˜t) +

n

X

i=1

cqi(˜t) Z τ

0

iq(˜t, s)wiq(φ(s))ds

+

n

X

i=1

cqi(˜t) Z bi(t)

τ

iq(˜t, s)wqi(u(s))ds

+

m+n

X

j=n+1

cqj(˜t) Z bjt)

0

jq(˜t, s)wqj(ψ(s−τ))ds

#

:=z0,1(t),

where we use the definitions ofφandψ. Thus,

(2.8) u(t)≤z0,11/q(t), t ∈[τ,˜t].

(14)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page14of 20 Go Back Full Screen

Close

Therefore,

z0,1 ≤(n+m+ 1)q−1

"

˜ aq(˜t) +

n

X

i=1

cqi(˜t) Z τ

0

iq(˜t, s)wqi(φ(s))ds

+

n

X

i=1

cqi(˜t) Z bi(t)

τ

iq(˜t, s)wqi(z0,11/q(s))ds

+

m+n

X

j=n+1

cqj(˜t) Z bjt)

0

jq(˜t, s)wjq(ψ(s−τ))ds

# . Using Lemma2.2, (2.1) andbα(τ) =τ, we obtain fort∈[τ,˜t]

z0,1(t)≤Wn−1

"

Wn(˜γ0,1,n(t)) + Z bn(t)

τ

(n+m+ 1)q−1cqn(˜t) ˜fnq(˜t, s)ds

# ,

˜

γ0,1,j(t) = Wj−1−1

Wj−1(˜γ0,1,j−1(t)) +

Z bj−1(t) τ

(n+m+ 1)q−1cqj−1(˜t) ˜fj−1q (˜t, s)ds

#

, j6= 1,

˜

γ0,1,1(t) = (n+m+ 1)q−1

"

˜ aq(˜t) +

n

X

i=1

Z τ 0

cqi(˜t) ˜fiq(˜t, s)wiq(φ(s))ds +

n+m

X

j=n+1

Z bjt) 0

cqj(˜t) ˜fjq(˜t, s)wjq(ψ(s−τ))ds

# .

(15)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page15of 20 Go Back Full Screen

Close

Since (2.8) is true for anyt ∈[τ, t1]andγ˜0,1,1(˜t) = γ0,1,1(˜t), we have u(˜t)≤z0,11/q(˜t)≤u0,1(˜t).

We know that˜t∈[τ, t1]is arbitrary so we replace˜tbytand get (2.9) u(t)≤u0,1(t), t∈[τ, t1].

This implies that the theorem is valid fort ∈[τ, t1]andL= 0.

(2)L = 1. First we considert ∈(t1,˜t],wheret˜∈(t1, t1+τ]is arbitrary. Note that τ < t2−t1 ≤2τ. (H3) givesbα(t1) = t1 andt1 ≤bα(t)≤t1+τfort∈(t1, t1+τ] so t1 −τ ≤ bα(t)−τ ≤ t1 for t ∈ (t1, t1 +τ]. By (2.7) and (2.9), (2.2) can be written as

uq(t)≤(n+m+ 2)q−1

"

˜ aq(˜t) +

n

X

i=1

cqi(˜t) Z τ

0

+ Z t1

τ

iq(˜t, s)wqi(u(s))ds

+

n

X

i=1

cqi(˜t) Z bi(t)

t1

iq(˜t, s)wqi(u(s))ds

+

m+n

X

j=n+1

cqj(˜t) Z τ

0

+ Z t1

τ

jq(˜t, s)wjq(u(s−τ))ds

+

n

X

j=1

cqj(˜t) Z bjt)

t1

jq(˜t, s)wqj(u(s−τ))ds+ ˜dq(˜t)ηq1uq(t1)

#

≤(n+m+ 2)q−1

"

˜ aq(˜t) +

n

X

i=1

cqi(˜t) Z t1

0

iq(˜t, s)wqi(φ(s))ds

+

n

X

i=1

cqi(˜t) Z bi(t)

t1

iq(˜t, s)wqi(u(s))ds

(16)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page16of 20 Go Back Full Screen

Close

+

m+n

X

j=n+1

cqj(˜t) Z bjt)

0

jq(˜t, s)wjq(ψ(s−τ))ds+ ˜dq(˜t)ηq1uq0,1(t1)

#

:=z1,0(t),

where we use the definitions ofφandψ so

(2.10) u(t)≤z1,01/q(t), t∈(t1,t].˜ Thus,

z1,0(t)≤(n+m+ 2)q−1

"

˜ aq(˜t) +

n

X

i=1

cqi(˜t) Z t1

0

iq(˜t, s)wiq(φ(s))ds

+

n

X

i=1

cqi(˜t) Z bi(t)

t1

iq(˜t, s)wiq(z1/q1,0(s))ds

+

m+n

X

j=n+1

cqj(˜t) Z bjt)

0

jq(˜t, s)wqj(ψ(s−τ))ds+ ˜dq(˜t)ηq1uq0,1(t1)

# . By Lemma2.2, (2.1) andbα(t1) =t1, we obtain fort∈(t1,˜t]

z1,0(t)≤Wn−1

"

Wn(˜γ1,0,n(t)) + Z bn(t)

t1

(n+m+ 2)q−1cqn(˜t) ˜fnq(˜t, s)ds

# ,

˜

γ1,0,j(t) = Wj−1−1

Wj−1(˜γ1,0,j−1(t)) +

Z bj−1(t) t1

(n+m+ 2)q−1cqj−1(˜t) ˜fj−1q (˜t, s)ds

#

, j6= 1,

(17)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page17of 20 Go Back Full Screen

Close

˜

γ1,0,1(t) = (n+m+ 2)q−1

"

˜ aq(˜t) +

n

X

i=1

Z t1

0

cqi(˜t) ˜fiq(˜t, s)wqi(φ(s))ds +

n+m

X

j=n+1

Z bjt) 0

cqj(˜t) ˜fjq(˜t, s)wqj(ψ(s−τ))ds+ ˜dq(˜t)ηq1uq0,1(t1)

# . Since (2.10) is true for anyt ∈(t1,˜t]and˜γ1,0,1(˜t) =γ1,0,1(˜t), we have

u(˜t)≤z1,01/q(˜t)≤u1,0(˜t).

We know that˜t∈(t1, t1+τ]is arbitrary so we replace˜tbytand get (2.11) u(t)≤u1,0(t), t∈(t1, t1+τ].

This implies that the theorem is valid fort ∈(t1, t1+τ]andL= 1.

We now consider t ∈ [t1 +τ,˜t], where ˜t ∈ [t1 +τ, t2] is arbitrary. Again, by (H3) we havet1 +τ ≤ bα(t) ≤ t2 fort ∈ [t1 +τ, t2]andbα(t1 +τ) = t1+τ so t1 ≤bα(t)−τ ≤t2−τ ≤t1+τ sinceτ < t2−t1 ≤2τ. Obviously, by (2.7), (2.9) and (2.11), (2.2) becomes

uq(t)≤(n+m+ 2)q−1

"

˜ aq(˜t) +

n

X

i=1

cqi(˜t) Z t1

0

iq(˜t, s)wqi(u(s))ds

+

n

X

i=1

cqi(˜t) Z bi(t)

t1

iq(˜t, s)wiq(u(s))ds

+

m+n

X

j=n+1

cqj(˜t) Z t1

0

jq(˜t, s)wjq(u(s−τ))ds

(18)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page18of 20 Go Back Full Screen

Close

+

m+n

X

j=n+1

cqj(˜t) Z bjt)

t1

jq(˜t, s)wjq(u(s−τ))ds+ ˜dq(˜t)η1quq1,0(t1)

#

≤(n+m+ 2)q−1

"

˜ aq(˜t) +

n

X

i=1

cqi(˜t) Z t1

0

iq(˜t, s)wqi(φ(s))ds

+

n

X

i=1

cqi(˜t) Z bi(t)

t1

iq(˜t, s)wiq(u(s))ds

+

m+n

X

j=n+1

cqj(˜t) Z bjt)

0

jq(˜t, s)wqj(ψ(s−τ))ds+ ˜dq(˜t)η1quq0,1(t1)

#

:=z1,1(t), that is,

(2.12) u(t)≤z1,11/q(t), t∈[t1+τ,˜t].

Thus,

z1,1(t)≤(n+m+ 2)q−1

"

˜ aq(˜t) +

n

X

i=1

cqi(˜t) Z t1

0

iq(˜t, s)wiq(φ(s))ds

+cqi(˜t) Z bi(t)

t1

iq(˜t, s)wqi(z1,11/q(s))ds +

m+n

X

j=n+1

cqj(˜t) Z bjt)

0

jq(˜t, s)wqj(ψ(s−τ))ds+ ˜dq(˜t)ηq1uq0,1(t1)

# .

(19)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page19of 20 Go Back Full Screen

Close

Using Lemma2.2, (2.1) andbα(t1+τ) =t1+τ, we obtain fort∈(t1,t]˜ z1,1(t)≤Wn−1

"

Wn(˜γ1,1,n(t)) + Z bn(t)

t1

(n+m+ 2)q−1cqn(˜t) ˜fnq(˜t, s)ds

# ,

˜

γ1,1,j(t) = Wj−1−1 h

Wj−1(˜γ1,1,j−1(t)) +

Z bj−1(t) t1

(n+m+ 2)q−1cqj−1(˜t) ˜fj−1q (˜t, s)ds

#

, j6= 0,

˜

γ1,1,1(t) = (n+m+ 2)q−1

"

˜ aq(˜t) +

n

X

i=1

Z t1 0

cqi(˜t) ˜fiq(˜t, s)wqi(φ(s))ds +

n+m

X

j=n+1

Z bjt) 0

cqj(˜t) ˜fjq(˜t, s)wqj(ψ(s−τ))ds+ ˜dq(˜t)ηq1uq0,1(t1)

# . Since (2.12) is true for anyt ∈(t1,˜t]and˜γ1,1,1(˜t) =γ1,1,1(˜t), we have

u(˜t)≤z1,11/q(˜t)≤u1,1(˜t).

We know that˜t∈[t1 +τ, t2]is arbitrary so we replacet˜bytand get u(t)≤u1,1(t), t∈[t1+τ, t2].

This implies that the theorem is valid fort ∈[t1+τ, t2]andL= 1.

(3) Finally, suppose that the theorem is valid fork, then fork+ 1we redefineφand ψ by replacingkwithk+ 1. In a similar manner as in steps (1) and (2), we can see that the theorem holds fort∈(tk+1, T]⊂(tk+1, tk+2].

The proof is now completed.

(20)

Gronwall-Bihari Inequality Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page Contents

JJ II

J I

Page20of 20 Go Back Full Screen

Close

References

[1] R.P. AGARWAL, S. DENG AND W. ZHANG, Generalization of a retarded Gronwall-like inequality and its applications, Appl. Math. Comput., 165 (2005), 599–612.

[2] D.D. BAINOV AND S.G. HRISTOVA, Impulsive integral inequalities with a deviation of the argument, Math. Nachr., 171 (1995), 19–27.

[3] S.G. HRISTOVA, Nonlinear delay integral inequalities for piecewise continuous functions and applications, J. Inequal. Pure Appl. Math., 5(4) (2004), Art. 88.

[ONLINE:http://jipam.vu.edu.au/article.php?sid=441].

[4] M. MEDVED, A new approach to an analysis of Henry type integral inequalities and their Bihari type versions, J. Math. Anal. Appl., 214 (1997), 349–366.

[5] M. PINTO, Integral inequalities of Bihari-type and applications, Funkcial. Ek- vac., 33 (1990), 387–403.

[6] A.M. SAMOILENKO AND N.A. PERESTJUK, Stability of the solutions of differential equations with impulsive action, Differential Equations, 13 (1977), 1981–1992 (Russian).

[7] N.E. TATAR, An impulsive nonlinear singular version of the Gronwall-Bihari inequality, J. Inequal. Appl., 2006 (2006), 1–12.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Abstract: In this paper, the global exponential stability of dynamical systems with distributed delays and impulsive effect is investigated.. By establishing an

Key words: Fundamental triangle inequality, Equivalent form, Garfunkel-Bankoff inequality, Leuenberger’s inequality.. Abstract: An equivalent form of the fundamental triangle

Abstract: We present a generalization of Newton’s inequality, i.e., an inequality of mixed form connecting symmetric functions and weighted means.. Two open problems are

This paper generalizes a Tatar’s result of an impulsive nonlinear singular Gronwall- Bihari inequality with delay [J.. Appl., 2006(2006), 1-12] to a new type of inequalities

Abstract: In this paper, an integral inequality and an application of it, that imply the Cheby- shev functional for two 3-convex (3-concave) functions, are given.... Integral

ROHDE, Error estimates for finite volume approxima- tions of classical solutions for nonlinear systems of balance laws,

The most powerful integral inequalities applied frequently in the literature are the famous Gronwall-Bellman inequality [1] and its first nonlinear generalization due to Bihari

Namely, we will see how to establish (global) existence results and determine the decay rates of solutions to abstract semilinear problems, reaction diffu- sion systems with