• Nem Talált Eredményt

ARTICLE IN PRESS

N/A
N/A
Protected

Academic year: 2022

Ossza meg "ARTICLE IN PRESS"

Copied!
8
0
0

Teljes szövegt

(1)

Contents lists available atScienceDirect

Catalysis Today

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / c a t t o d

Transformation of Z-thiacloprid by three advanced oxidation processes: Kinetics, intermediates and the role of reactive species

Georgina Rózsa

a,b

, Zsuzsanna Kozmér

a,b

, Tünde Alapi

a

, Krisztina Schrantz

a,∗

, Erzsébet Takács

b

, László Wojnárovits

b

aDepartmentofInorganicandAnalyticalChemistry,UniversityofSzeged,H-6720Szeged,Dómtér7,Hungary

bRadiationChemistryDepartment,CentreforEnergyResearch,HungarianAcademyofSciences,H-1121Budapest,Konkoly-ThegeMiklósút29-33, Hungary

a r t i c l e i n f o

Articlehistory:

Received14July2016

Receivedinrevisedform5October2016 Accepted25November2016

Availableonlinexxx

Keywords:

Thiacloprid AOPs

Hydroxylradical Hydratedelectron Intermediates Electricenergyperorder

a b s t r a c t

Threeadvancedoxidationprocesses(AOPs),heterogeneousphotocatalysis,vacuumultraviolet(VUV) photolysisand␥radiolysiswereusedforthegenerationofreactiveprimaryfreeradicalstoinduce thetransformationofZ-thiaclopridinaqueoussolution.Theeffectsofdissolvedoxygenandtheinitial concentration(from106to104molL1)wereinvestigated.Theinitialreactionratesincreasedwiththe initialconcentrationofthiacloprid,bothinoxygensaturatedandoxygenfreesolutions.Dissolvedoxygen hadsignificanteffectonthetransformationrateonlyincaseofheterogeneousphotocatalysis.Threemain intermediatesandtheE-thiachlopridweredetectedusingallthreemethods.Oneoftheseintermediates couldberelatedtothereactionwitheaq,whiletheothertwocouldberelatedtotheOH-initiated reactions.Heterogeneousphotocatalysisshowedthehighestefficiencyregardingthetransformationof intermediatesinpresenceofdissolvedoxygen,whilethiaclopridtransformedwiththehighestinitial reactionrateduringVUVphotolysis.However,accordingtotheElectricenergyperorder(EEO)data␥ radiolysiswasfoundtobetheeconomicallymostfeasiblemethod,requiringseveralordersofmagnitude lessenergythanVUVphotolysisandheterogeneousphotocatalysisforreductionofthetargetcompound concentrationbyoneorderofmagnitudeinaunitvolume.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Largenumberofmethodshavebeensuggestedinthelitera- tureforthedegradationofharmfulorganicmolecules,forinstance pesticideresidues,inwaterandwastewater[1].Inthesestudies moreandmoreattentionisfocusedontheneonicotinoidfamily (imidacloprid,thiamethoxam,acetamiprid,clothianidin,dinotefu- ran,nitenpyramandthiacloprid),thefastestgrowinggroupamong theinsecticides.Thesecompoundshavelongtermimpactonthe ecosystem,especiallytheyhaveharmfuleffectsonbees,weakening theirimmunesystem,andincreasingtheirsensitivitytopathogenic viruses[2]. The name neonicotinoidssuggests similarityin the

Correspondingauthor.

E-mailaddresses:rozsa.georgina@chem.u-szeged.hu(G.Rózsa), kozmerzs@chem.u-szeged.hu(Z.Kozmér),alapi@chem.u-szeged.hu(T.Alapi), sranc@chem.u-szeged.hu(K.Schrantz),erzsebet.takacs@energia.mta.hu (E.Takács),wojnarovits.laszlo@energia.mta.hu(L.Wojnárovits).

chemical structurewithnicotineandacetylcholine,for exerting theireffectsontheacetylcholinereceptors[3].

One of the representative members of neonicotinoides is Z-thiacloprid({3-[(6-Chloropyridin-3-yl)methyl]-1,3-thiazolidin- 2-ylidene}cyanamide)(Fig.1).Ithasveryhighstabilityandgood solubilityinwater(184mgL1 at20C)[4].Thiscompoundcan beaccumulatedintheenvironmentthroughthetrophicnetwork [5],andtherefore,itisdetectedinanincreasingamountinsurface waters.

Due to the three biologically active groups in its structure, chloropyridineandthiazolidinerings,andthecyanoiminogroup, thiaclopridisstronglytoxicwithlethaldoseofLD50=444mgkg1 forrats.Inagricultureitisusedagainstsuckingandchewingpests [6]incrops,suchasrapeseed,sunflower,potatoes,apple,aswellas forcornseeddressing.Stabilitytestsshowedthatthiaclopridwas lesspersistentinacidicsolution,butinalkalinemedia,itwasstable forabout30days[7].

Thedecompositionofneonicotinoidshasbeenexaminedbysev- eraladvancedoxidationprocesses(AOP)[8].Zbilji ´cetal.showed, that the removalof acetamiprid using photo-Fenton process is http://dx.doi.org/10.1016/j.cattod.2016.11.055

0920-5861/©2016ElsevierB.V.Allrightsreserved.

(2)

Fig.1.Chemicalstructureofthiacloprid.

twiceaseffective(∼10min)asusingFentonprocessesonly[9].Imi- daclopridtransformationneeded∼60minusingbothFentonand photo-Fentonprocessescombinedwithhydrodynamiccavitation [10].Malatoetal.reportedthatthedegradationofimidacloprid usingtitaniumdioxide(TiO2)photocatalystunderUV-Airradia- tionis a relatively slowprocess (∼0.61mgL−1min−1)[11]. The photocatalytic degradation of imidacloprid, thiamethoxam and clothianidinonimmobilisedTiO2hasalsobeenstudied.Within2h ofphotocatalysis,allthreeneonicotinoidsweredegradedfollow- ingfirstorderkinetics[12].Thiamethoxams’transformationswere investigatedalsousingUVphotolysis,ozonationandtheircombi- nations[13].Theeffectofdissolvedozoneandferricionsonthe intermediatesofthiaclopridformedduringTiO2-basedheteroge- neousphotocatalysiswasinvestigatedinsuspensions[14–16]and usingimmobilizedcatalyst[17].

Toourbestknowledgenoresultshavebeenpublishedyetonthe vacuumultraviolet(VUV)photolysisand␥radiolysisofthiacloprid.

To understand themechanism of transformation of organic compounds,oneofthemostimportantstepsis gatheringinfor- mationaboutthenatureofreactionsofthetargetcompoundwith thereactivespeciesgeneratedbyAOPs.

Among the AOP methods VUV photolysis and ␥ radiolysis are good candidatesto investigatethe role of hydroxyl radical (OH)andhydratedelectron(eaq)inthedegradationoforganic molecules.IncontrasttotheVUVphotolysis,during␥radiolysis indissolvedoxygen(DO)freesolutionsbesidetheOH,therole oftheeaqisalsorelevant.Althoughthebasicmechanismofthe TiO2-basedheterogeneousphotocatalysishadbeeninvestigatedby agreatnumberofresearchgroups[18,19]theidentitiesofreactive speciesarestillunderintensivediscussion.Duringtheillumina- tionofphotocatalystsbyUVlight(max=365nmforTiO2)valence bandholes(h+,alocalizedoxidizingstate)andconductionband electrons(e)form(Eq.(1)).Theoxidationoforganicsolutes(OS) isassumedtotakeplacedirectlybythesurfacehole,orthrougha

OHonthesurface(Eq.(4))formedinthereactionoftheholewith ahydroxylanionorwatermolecule(Eq.(2)).Itisanopenquestion iftheOScanreactdirectlywiththeeatthesurfaceofthecatalyst.

InthepresenceofDOitsreactionwithe(Eq.(3))producessuper- oxideradicalanion(O2•−).InfurtherreactionsO2•−yieldsH2O2, whichfinallytransformsintoOH(Eq.(3),[19,20]).

TiO2+UVphoton=365nm→ e+h+ (1) h++OH(H2O) →OHsurf(OHsurf+H+) (2) e+O2→ O2•−→HO2 → HO2→H2O2→ 2OH (3) h+(orOHsurf)+OS →oxidizedproducts (4) DuringtheVUVphotolysisofaqueoussolutions,usingacom- mercialXe2*excimerlamp(=172nm),homolyticdissociationof watermolecules resultsin OH andhydrogenradical(H)with quantumyieldof0.42(Eq.(5))[21,22].Withlowyieldionization alsotakesplace.Theso-calleddryelectronreleasedinionization maystabilizeintheformofeaq(Eq.(6))[22,23]:

H2O+VUVphoton=172nm→H+OH

˚172nm(OH,H)=0.42 (5)

H2O+VUVphoton=172 nm→H++eaq+OH

˚172nm(eaq)< 0.05 (6)

InVUVphotolysisat172nmthephotonsareabsorbedinavery thinlayerofafew␮m.Inthisreactionzonethereisastrongcompe- titionbetweenthereactionsofreactivespecies(OHandH)with eachotherandwiththiaclopridanditsintermediates.

During␥radiolysisofaqueoussolutionsthedecompositionof watermoleculesresultsinOH,eaqand(inloweryield)H,as primaryradicals(Eq.(7))withyields(so-calledG-values)of0.280, 0.280and0.062␮molJ1,respectively[24,25].

H2O+␥photon→ OH+eaq(+H) (7) InthepresenceofDOthereductiveprimaryspecies(H/eaq) transformtolessreactivehydroperoxylradical/superoxideradical anion(HO2/O2•−)(Eqs.(8)and(9))[26].

H+O2→HO2 k8=1.2×1010Lmol1s1 (8)

eaq+O2→O2•− k9=1.9×1010Lmol1s1 (9) Inheterogeneousphotocatalysis, VUV photolysisand␥radi- olysis OH are assumed to play a key role in the pollutants’

degradations,mainlyinthepresenceofDO.However,theirdistri- butionsinspacearesignificantlydifferent:i)inTiO2photocatalysis thereactivespeciesareonthecatalystsurface,ii)inVUVphotolysis theyareproducedclosetothewindow,withinhomogenousdistri- bution,andiii)in␥radiolysisthereactivespecies,withtheyields mentionedabove,aremore-or-lesshomogeneouslydistributedin thesolutionbulk.

ThiaclopridhasthreesensitivepartsfortheOH-inducedoxi- dation: 2-cloropyridine, thiazolidine and the cyanoimino part.

Pyridine reacts with OH, eaq and H with the rate con- stants of 3.0×109Lmol1s1, 7.7×109Lmol1s1 [27] and 6.0×108Lmol−1s−1 [28], respectively. OH reacts with nico- tinicacidwithrateconstantof5.6×109Lmol−1s−1[29].Dueto theelectronwithdrawingCl substituenttherateconstantof 2- cloropyridinewithOH(1.8×109Lmol−1s−1[29])issmallerthan thatofpyridine.OHgenerallyattacksthethioethergroupsalso withrateconstantsofabout109Lmol1s1.Thedoublebondin thecyanoiminopartofthemoleculemayalsobeinvolvedinreac- tionwiththisradical.Incaseofthiazolidinenodataareavailable aboutitsreactionswiththeseprimaryradicals.Onlyonevalueof theOHrateconstantwiththiaclopridwasdeterminedusingflash photolysis(7.5×1010Lmol−1s−1[30],howeverthisrateconstant isunrealisticsinceitishalfofanorderofmagnitudehigherthan thediffusionlimitedvalue).Thereisnoinformationavailableabout thereactionsofneonicotonoidinsecticideswitheaqandH.

Theaimofthisworkwasthecomparisonofthiaclopridtrans- formationusingheterogeneousphotocatalysis,VUVphotolysisand

␥radiolysisinthepresenceandabsenceofDO,thestudyofthe kineticpropertiesofthiaclopridreactionswiththeprimaryreac- tivespecies formedin theseprocesses,and theidentificationof theintermediatesformedduringtheappliedtreatments.Theeco- nomicfeasibilityofthethreemethodswascomparedbasedonthe Electricalenergyperorder(EEO).

(3)

0.0 0.2 0.4 0.6 0.8 1.0

0 50 100

c/c0

Irradiaon me (min) H - N H - O

a)

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40

c/c0

Irradiaon me (min) V - N V - O

b)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.5 1.0 1.5 2.0

c/c0

Doses (kGy) R - O R - N

c)

Fig.2. Kineticcurvesofthiacloprid(c0=1.0×10−4molL−1)degradationduringheterogeneousphotocatalysis(H,a),VUVphotolysis(V,b)andradiolysis(R,c)inthe presence()andabsence( )ofdissolvedO2.

0.0 0.2 0.4 0.6 0.8 1.0

0 50 100

c/c0

t/ttotal(%)

V - O R - O H - O

a)

0.0 0.2 0.4 0.6 0.8 1.0

0 50 100

c/c0

t/ttotal(%)

H - N R - N V - N

b)

Fig.3.Kineticcurvesofthiacloprid(c0=1.0×10−4molL−1)degradationduringheterogeneousphotocatalysis(H,䊉),VUVphotolysis(V, )andradiolysis(R, )inthe presence(a)andabsence(b)ofdissolvedO2.

2. Materialsandmethods 2.1. Materialsandequipment

In VUV photolytic and heterogeneous photocatalytic exper- iments 250mL thiacloprid (Sigma-Aldrich, 99.9%) solutions with initial concentrations (c0) of 1.0×10−4, 1.0×10−5 and 1.0×10−6molL−1,preparedin ultrapure MILLI-Qwater (MILLI- POREMilli-QDirect8/16),wereirradiated.Inthephotocatalytic experimentstheTiO2(DegussaP25,EvonikAeroxide)concentra- tionwas1.0gL−1;thesampleswerecentrifuged(DragonlabD2012, 2min,rpm=15000)andfilteredwithsyringefilter(SartoriusSte- dim,Ministart®-plus, 0.20␮m) after irradiation, to remove the photocatalystparticles.

During the VUV photolysis and heterogeneous photocataly- sisthesolutionsandsuspensionswerecirculated(375mLmin1) betweenthetemperaturecontrolled(T=25±0.5C)reactorand thereservoir bya HeidolphPump drive5001 peristalticpump.

Thesolutionsandsuspensionsinthetankwereconstantlystirred withamagneticstirrer,whiletheywerebubbledwithO2 orN2

gas(Messer,>99.5%purity)at aflow rateof600mLmin1.The injectionofthegaswasstarted30minbeforeeach experiment and was continued during the irradiation. For VUV photolysis a 20W Xe2* excimer lamp (Radium Xeradex TM, dimensions:

180mm×48mm) emitting at 172±14nm was used. The pho- tonflux,determinedbymethanolactinometry[31],wasfoundto be3.0×10−6molphotons−1.Theheterogeneousphotocatalysiswas performedwitha specificfluorescent UVlamp(GCL303T5/UVA, LighTech,Hungary,dimensions:360mm×30mm)emittinginthe rangeof300−400nmwithmax=365nm.Thephotonfluxofthe lightsourcewas1.2×105molphotons1,determinedbyferriox- alateactinometry[32].

In␥radiolysis experimentsthe5mLampouleswiththiaclo- pridsolution,preparedinultrapureMILLI-Qwater(ELGAoption 4),wereplacedtoequaldistancefromthe60Co-␥sourceofanSSL-

01panoramictype irradiator,tohaveadoserateof0.7kGyh1 (700Jkg1h1).Thesolutionswereirradiatedinopenampoulesor insealedampoulessaturatedwithN2.

MeasurementswererepeatedthreetimesandincasesofVUV photolysisand␥radiolysisthestandarddeviationoftheobtained valueswaslessthan±5%.Incaseofphotocatalyticmeasurements the sample preparation (filtration)slightly increasedthis value (5–8%).

2.2. Analyticalmethods

Theabsorptionspectraofthetreated samplesweredetected byspectrophotometry(Agilent8453orAgilent1200,0.5cmpath- way).Z-thiaclopridandtheformedintermediateswereseparated and detectedby Agilent 1100 type HPLC equipped withdiode array detector (DAD) and an Agilent G1956A quadrupolemass spectrometric(MS)detector.ALiChroCart® (250-4,RP-18,5␮m) reverse-phasecolumnwasutilizedfortheseparations.Amixtureof methanol(70%)andwater(30%)wasusedaseluent,at0.6mLmin−1 flowrateand25C.20␮Lsampleswasanalysedat242nm(absorp- tionmaximumofthiacloprid).TheMSanalysiswascarriedoutin positiveandnegativeionmodes,withanelectrosprayionization source(ESI)using70and90Vfragmentorvoltages.

The determination of Z-thiaclopridconcentration wasbased onthelinearregressionofcalibrationcurve(R2=0.9995)present- ingtheintegratedpeakareasofthechromatogramsmeasuredby HPLC-DAD.Kineticcurvesshowtheratiooftheactualandtheinitial Z-thiaclopridconcentrations(c/c0,c0=1.0×10−4molL−1).

ThetransformationofZ-thiaclopridwascharacterizedbythe initialrateof degradation(r0), whichwasobtainedfromlinear regressionfitsofthedecaycurvescorrespondingto10%oftrans- formation.

(4)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80

A/A0

c/c0

Irradiation time (min)

a)

0.0 0.5 1.0 1.5

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80

A/A0

c/c0

Irradiation time (min)

b)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 10 20 30 40 50

A/A0

c/c0

Irradiation time (min)

c)

0.0 0.4 0.8 1.2

0.0 0.2 0.4 0.6 0.8 1.0

0 10 20 30 40

A/A0

c/c0

Irradiation time (min)

d)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.5 1.0 1.5 2.0

A/A0

c/c0

Doses (kGy)

e)

0.0 0.5 1.0 1.5

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.5 1.0 1.5 2.0

A/A0

c/c0

Doses (kGy)

f)

Fig.4. Changeofthetwomainabsorptions(242nm ,270nm )andthekineticcurvesofthethiacloprid(c0=1.0×10−4molL−1)degradation()duringheterogeneous photocatalysis(aandb),VUVphotolysis(candd)andradiolysis(eandf)inthepresence(a,cande)andintheabsence(b,dandf)ofdissolvedO2.

3. Resultsanddiscussion

3.1. DegradationfollowedbyUV-spectrophotometry

ThetransformationofthiaclopridwasfirstinvestigatedbyUV- spectrophotometrybetween200and350nm.IntheUVspectrum ofthiacloprid there is anabsorption maximum at242nm, and two shouldersaround 220and 270nm. In theUV spectrum of 2-chloropyridinethelattertwobandsalsoappear,beingcharacter- isticforthechloro-substitutedaromaticring.Thestrongabsorption bandwithcentreat242nm(εmax=18800molL1cm1)belongsto the2-thiazolidinecyanamidepartofthemolecule.Thisabsorbance maximumslightlyshiftstolowerwavelengthswiththeincrease ofthetreatmenttime.Therecordedspectraarepresentedinthe Supplementarymaterials,inFig.S1.

3.2. Degradationkineticsofthiacloprid

In Fig. 2 degradation kinetic curves of thiacloprid (c0=1.0×10−4molL−1) are shown in presence and absence ofDO.TheresultsshownosignificantdifferenceincaseofVUV photolysis,inspiteofthefactthatinpresenceofDOtherecombi- nationoftheprimaryradicals(OHandH)ishindered.Onlyslight increaseofthetransformationrateincaseofradiolysisinabsence of DO was observed, due to the presence of eaq. The similar reactionrateofeaqandtheOHreactionsincaseofchloropyri-

dinesupportsthisobservation[33].Incaseoftheheterogeneous photocatalysiswithoutaneffectiveelectronscavenger,thereisno possibilityforanyredoxreactionatthesurface,duetothefavoured recombinationofthephotoinducedcharges.ThereforeinDO-free solutiontheroleoftheoxygencouldbetakenoverbythiacloprid, consequentlythiscreatesapossibilityforadsorbedthiaclopridto reactbothwiththeh+ande.Thedifferenceinthetransformation rates in presence and absence of DO can be explained by the differencein their concentrationin solution (2.5×10−4molL−1 (DO) and 1.0×10−4molL−1 (thiacloprid)) and in the adsorbed amountofoxygenandthiacloprid.Thisissupportedbytheresults presentedinFig.2a.

Theinitialratesofdegradation(r0)areshown inTable1.As expected,allther0 decreased significantlywiththedecreaseof theinitialconcentrationofthiacloprid.However,thereactionrate constants (k) increased significantly. For heterogeneous photo- catalysis,inpresenceofDO,thisincreasewasobservedonlyfor smallestconcentration.InVUVphotolysisthekvaluesincreased stronglyandlinearlywiththedecreasingthiaclopridconcentration reflectingtheavailabilityoftheOHfortheorganicmoleculesin theverythinreactionzone,bothinpresenceandabsenceofDO.In

␥radiolysisreactionsthekincreasedsignificantlyonlyinpresence ofDO,inthemostdilutedsolution.Thismaypartlybeduetothe higherOHstationaryconcentrationatlowersoluteconcentration.

ThisincreasewasnotobservedinabsenceofDO.

(5)

Table1

Theinitialrates(r0),theapparentreactionrateconstants(k)andElectricenergyperorder(EEO)calculatedincaseofvariousinitialthiaclopridconcentrationsandmethods.

Heterogeneousphotocatalysis VUVphotolysis radiolysis

c0(molL−1) r0(molL−1s−1)

N2 O2 N2 O2 N2 O2

1.0×10−4 8.3×10−9 6.7×10−8 2.5×10−7 2.4×10−7 4.3×10−8 3.1×10−8

1.0×10−5 1.5×10−8 6.4×10−9 1.0×10−7 䊐1.3×10−7 >1.8×10−9 䊐1.1×10−8

1.0×10−6 2.7×10−9 1.6×10−9 >4.0×10−8 䊐3.0×10−8 >1.8×10−9 䊐1.9×10−8

c0(molL−1) k(s−1)

N2 O2 N2 O2 N2 O2

1.0×10−4 8.3×10−5 6.7×10−4 2.5×10−-3 2.4×10−3 4.3×10−5 3.1×10−4

1.0×10−5 1.5×10−3 6.4×10−4 1.0×10−2 䊐1.3×10−2 >1.8×10−4 䊐1.1×10−3

1.0×10−6 2.7×10−3 1.6×10−3 >4.0×10−2 䊐3.0×10−2 >1.8×10−3 䊐1.9×10−2

EEO(kWm−3order-−1)

EEO1(10−4−10−5) 80.0 26.7 0.2

EEO2(10−5−10−6) 90.0 5.3 0.0015

EEO2/EEO1 1.1 0.2 0.008

InFig.3themethodsarecomparedinpresenceandabsenceof DO.Ontheabscissathetimescaleisnormalizedtothetimeneeded forcompleteremovalofthiacloprid(ttotal,duringheterogeneous photocatalysis,VUVphotolysisand␥radiolysisinthepresenceand absenceofDO:120and440min(estimatedbythelinearregression ofthelast3points);25and25min;1.5and1.0kGy,respectively).

Althoughthevalueofttotalisarbitrary,thiswayofplottinghelpsthe comparisonofthekineticcurves.Until∼20%t/ttotalsharpdecrease wasobservedinallthreemethods.InpresenceofDO(Fig.3a),dur- ing␥radiolysisthiaclopridconcentrationdecreasedlinearlywith thetime(dose,slope1.9×10−7molL−1J−1).Theamountofthi- aclopridtransformedislowerby∼30%thantheyieldofOHG (OH)=2.8×107molJ1,sotheefficiencyisaround70%.Thiseffi- ciencyismuchlowerwhenitiscalculatedfromthedecreaseofthe 242nmabsorbanceobservedintheUVspectroscopicstudies(Fig.

S1e).Whenthesamplewasirradiatedwithanabsorbeddoseof0.1 kGy,theabsorbancedecreasedonlyby3%.

Itmeansthat∼10%oftheOHinducesthedegradationofthe chromofor.Sothemajorityofthefirsttransformationsleavethe chromoforintact.Thelineartime (dose)dependence, shouldbe duetothelowerreactionrateofthedegradationinitiatingrad- icalswiththeproductsthanwiththestarting molecules.Above

∼80%conversionthetransformationratebecomesslowerwhichis certainlyduetothelargeconcentrationoftheaccumulatedinter- mediates(Fig.4e).Athigherintermediateconcentrationthereisa realcompetitionbetweenthestartingcompoundandtheinterme- diatesforthereactiveradicals.InpresenceofDO,thiscompetition ismoreevidentinthecasesofphotocatalysisandVUVphotolysis thanin␥radiolysis(Fig.3a).

Fig.4showstherelativeabsorbancesat242and270nm(the characteristicabsorbanceof thearomaticsystems).In thepres- enceofDOtheabsorbanceat242nmdoesnotchangeparallelwith thethiaclopridconcentration(Fig.4a,cande),confirmingthefact thatthereactivespeciesdonotreactonlywiththechromophore ortheformedintermediatesalsoabsorbatthiswavelength.The absorbancesat270nmchangesimilarlytothoseat242nm,except incaseofheterogeneousphotocatalysis,whereitfollowsthethia- clopridconcentration.Inthiscasetheopeningofthearomaticring hasthehighestprobability,thusaccumulationofaromaticproducts canbeavoided.InabsenceofDOtheaccumulationoftheinterme- diatesobservedatboth242and270nmismuchhigher(Fig.4b,d andf).

3.3. Intermediates

Forthecharacterizationoftheintermediates,thesamplesthat havebeentakenatirradiationtimes(ordose)of50%conversionof thiacloprid,namely15and150min;5and10min;0.4and0.3kGy in case of heterogeneous photocatalysis, VUV photolysis and ␥

radiolysisinthepresenceandabsenceofDO,respectively,were analysedbyHPLC–MSinpositiveandnegativeionmodes(Tables S1–S4).

Inthechromatographicseparationsthiaclopridelutedwitha retentiontime(tr)of4.58min.Threemainintermediates(twowith tr=2.13−2.33min andone with3.65min,Fig.5a–c) and theE- isomerofthiaclopid(tr=4.40min,Fig.5d)weredetectedduring allthreemethods.TheMS-spectra(negativeionmode)and the UV–visspectraoftheZ-andE-isomers,havingdifferentretention timeswerefoundtobeidentical.

Theretentiontimerelatedtothechromatographicpeakofinter- mediatesA1andA2wasbetween2.13and2.33min.AstheUV–vis spectraofthesepeaks(Fig.5aandb)show,thisisthemixtureoftwo compounds,whichcannotbeseparatedbytheappliedchromato- graphicmethod.Accordingtothespectra,duringVUVphotolysis (bothinDO-freeandDO-containingsolutions)andheterogeneous photocatalysis(onlyinDO-containingsuspension)thesameinter- mediate(A1)forms.Theformationofthiscompoundismostlikely relatedtotheOH-basedreaction,whichisthedominantreactive speciesundertheseexperimentalconditions.However,incaseof radiolysistheformationofeaqisalsodominant.Regardingthat thereactivityofpyridine(partofthiacloprid)towardeaqover- takesitsreactivitytowardOH[27],inthiscasethetransformation ofthiachlopridcanbeinitiatedbyboththeOHandeaq,resulting inthepossibilityoftheformationofdifferentintermediates(A1 andA2).AccordingtoourresultsA2formationisdominantunder theusedexperimentalconditions.In thecaseof heterogeneous photocatalysis, inDO-freesuspension thedirect chargetransfer betweentheadsorbedthiaclopridandphotogeneratedeisalso possibleandresultstheformationofA2.Consequently,thesame intermediateformsasduring␥radiolysis.Thespectraofthiscom- pound(Fig.5b)arebackgroundcorrected,duetotheincomplete chromatographicseparationfromtheotherintermediateandtheir overlappingabsorptionsinthiswavelengthrange.Theresultsof MS(TableS1)supporttheformationoftwointermediateshaving retentiontimesclosetoeachother.A1andA2intermediatesdonot containchlorineatom.WeidentifyA1asanintermediateresulted bythesubstitutionofClbyOH,whichisfrequentlyobservedinthe

OHreactionsofchlorinatedaromaticmolecules.

Theothermajorintermediatedetectedat3.65min(intermedi- ateB)formedineachcase,withdifferentconcentrations(Figs.5c and6c).Theconcentrationofthisintermediatedecreasedinthe followingorder:radiolysis(DO-free)∼=radiolysis(DO)>VUV(DO- free)>VUV(DO)»heterogeneousphotocatalysis(DO)anddetected onlyintraceinthecaseofheterogeneousphotocatalysis(DO-free).

MSresults(TableS1)supportthatthesameintermediateformed ineachcase.TheintermediateBmostprobablyresultedfromthi- aclopridviahydroxylation.InOH-inducedreactionDell’Arciprete etal.suggestedtheformationofacompoundhydroxylatedonthe

(6)

0 5 10 15 20 25 30

210 260 310 360

mAU

Wavelength (nm) tr= 3.65 min

R - N R - O V - N V - O H - O

c) B

0 5 10 15 20 25

210 260 310 360

mAU

Wavelength (nm) tr= 4.40 min

R - O V - O H - O V - N H - N R - N

d) C

0 10 20 30 40 50

210 260 310 360

mAU

Wavelength (nm) tr~ 2.23 min

H - O V - O V - N

a)

A

1

0 10 20 30 40

210 260 310 360

mAU

Wavelength (nm) tr~ 2.17 min

R - O R - N H - N

b)

A

2

Fig.5. Spectraofthethreemainintermediates(tr2.23min(a);tr2.17min(b);tr=3.65min(c))andtheE-isomerofthiaclopid(tr=4.40min,d)thathavebeentakenat 50%conversionofthiaclopridduringheterogeneousphotocatalysis(H, ),VUVphotolysis(V, )andradiolysis(R, )inthepresence(solidlines)andabsence(dashed lines)ofdissolvedO2.

CH2group[30],whereasCernigojetal.reportedtheformationof thesulfoxidecompoundasaresultofthermaloxidation[15].

3.4. Electricenergyperorder(EEO)

Thecomparisonofthemethodsisgenerallybasedonthetrans- formation rate of the target substance or total organic carbon concentration.In thepresent workvariousmethodsandexper- imentalparameters wereapplied.EEO,which is usuallyapplied forsituationswhereinitialconcentrationofpollutantislow,gives possibilityforeconomiccomparison.Itrepresentstheamountof electricenergyrequiredforreductionofthetargetcompoundcon- centrationinaunitvolume[e.g.,1m3]byoneorderofmagnitude [34].InbatchoperationEEOvalues[kWhm3order1]canbecal- culatedusingEq.10.

EEO= P×t×1000 V×lg

ci/cf

(10)

wherePistheratedpower[kW]oftheAOPsystem,Visthevolume [L]ofwaterorairtreatedinthetimet[h],ci,cfaretheinitialand finalconcentrations[molL−1]ofthetargetcompound.Factor1000 convertsLtom3.HigherEEOvaluescorrespondtolowerremoval efficiencies.

Calculateddataare presented in Table1 and showthat the economicallymostfeasibleis␥radiolysis,followedbyVUVpho- tolysisandheterogeneousphotocatalysis.Anotherobservationcan bemade fromtheratioof theEEO calculatedat differentinitial concentrationsshowing,thatithasnoeffectontheefficiencyin caseofheterogeneousphotocatalysis, whileincase oftheother twomethodsitincreasesstronglywiththedecreaseoftheinitial concentration.

4. Conclusions

TransformationofthiaclopridwascomparedusingTiO2-based heterogeneousphotocatalysis,VUVphotolysisand␥radiolysis,in presenceandabsenceofDO.DOhassignificanteffectonlyincase ofheterogeneousphotocatalysis.Inaqueoussolutionsthetrans- formationofthiaclropidismostprobablyrelatedtoreactionswith bothOHandeaq.InTiO2-containingsuspensionsreactionswith

OHordirect chargetransferwithphotogenerated e caniniti- atethetransformation.Threemainintermediatesweredetected ineachcase. TheformationofintermediatesA1 andBcouldbe relatedtotheOH-initiatedtransformation,whiletheformationof A2ismostprobablyrelatedtothereactionofthiaclopridwitheaq

orphotogeneratede.Thiaclopridtransformedwiththehighest initialreactionrateduringVUVphotolysis,howeverregardingthe transformationoftheintermediateproductsheterogeneouspho- tocatalysis(inthepresentofDO)wasmoreefficient.

CalculatedEEOdatashow,that␥radiolysisisenergeticallymuch morefeasiblethanVUVphotolysisandheterogeneousphotocatal- ysis.

Acknowledgements

Theauthorswishtoexpresstheirdeepestandsincerestrecogni- tionofProf.AndrásDombiakeyfigureinthetopicofphotocatalytic materialsfor thedegradationofcontaminantsofenvironmental concern.

This researchwas supported by OTKA, NK 105802. T. Alapi acknowledgesthesupportoftheEuropeanUnionandtheStateof Hungary,co-financedbytheEuropeanSocialFundintheframe- workof TÁMOP-4.2.4. A/2-11/1-2012-0001‘NationalExcellence Program’.K.SchrantzacknowledgestheEuropeanUnionandthe StateofHungary,co-financedbytheEuropeanSocialFundinthe frameworkofTÁMOP4.2.4.A/1-11-1-2012-0001‘NationalExcel-

(7)

Fig.6.Relativeamountsofthemainintermediatesdetectedatretentiontimesof∼2.23min(a),∼2.17min(b),3.65min(c)and4.40min(d)at242nmversustheconversion ofthiacloprid(c0=1.00×10¬4molL−1)duringheterogeneousphotocatalysis(H,and),VUVphotolysis(V, and )andradiolysis(R, and )inthepresence(filled symbols)andintheabsence(emptysymbols)ofdissolvedO2.

lenceProgram’.ThesupportoftheSwissContribution(SH7/2/20) isalsoacknowledged.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,athttp://dx.doi.org/10.1016/j.cattod.2016.11.

055.

References

[1]F.Sánchez-Bayo,R.V.Hyne,Detectionandanalysisofneonicotinoidsinriver waters–developmentofapassivesamplerforthreecommonlyused insecticides,Chemosphere99(2014)143–151.

[2]N.Bacandritsos,A.Granato,G.Budge,I.Papanastasiou,E.Roinioti,M.Caldon, C.Falcaro,A.Gallina,F.Mutinelli,Suddendeathsandcolonypopulation declineinGreekhoneybeecolonies,J.Invertebr.Pathol.105(2010)335–340.

[3]P.Jeschke,R.Nauen,M.Schindler,A.Elbert,Overviewofthestatusandglobal strategyforneonicotinoids,J.Agric.FoodChem.59(2011)2897–2908.

[4]C.A.Morrissey,P.Mineau,J.H.Devries,F.Sanchez-Bayo,M.Liess,M.C.

Cavallaro,K.Liber,Neonicotinoidcontaminationofglobalsurfacewatersand associatedrisktoaquaticinvertebrates:areview,Environ.Int.74(2015) 291–303.

[5]M.Arias-Estévez,E.López-Periago,E.Martínez-Carballo,J.Simal-Gándara, J.-C.Mejuto,L.García-Río,Themobilityanddegradationofpesticidesinsoils andthepollutionofgroundwaterresources,Agric.Ecosyst.Environ.123 (2008)247–260.

[6]K.Paranjape,V.Gowariker,V.N.Krishnamurthy,S.Gowariker,ThePesticide Encyclopedia,CABInternational,Boston,USA,2014.

[7]V.Guzsvány,J.Csanádi,F.Gaál,NMRstudyoftheinfluenceofpHonthe persistenceofsomeneonicotinoidsinwater,ActaChim.Slov.53(2006) 52–57.

[8]M.Pera-Titus,V.Garcı´ıa-Molina,M.A.Ba ˜nos,J.Giménez,S.Esplugas, Degradationofchlorophenolsbymeansofadvancedoxidationprocesses:a generalreview,Appl.Catal.B:Environ.47(2004)219–256.

[9]J.Zbilji ´c,V.Guzsvány,O.Vajdle,B.Prlina,J.Agbaba,B.Dalmacija,Z.Kónya,K.

Kalcher,DeterminationofH2O2byMnO2modifiedscreenprintedcarbon electrodeduringFentonandvisiblelight-assistedphoto-Fentonbased removalofacetamipridfromwater,J.Electroanal.Chem.755(2015)77–86.

[10]P.N.Patil,S.D.Bote,P.R.Gogate,Degradationofimidaclopridusingcombined advancedoxidationprocessesbasedonhydrodynamiccavitation,Ultrason.

Sonochem.21(2014)1770–1777.

[11]S.Malato,J.Blanco,J.Cáceres,A.R.Fernández-Alba,A.Agüera,A.Rodrı´ıguez, Photocatalytictreatmentofwater-solublepesticidesbyphoto-Fentonand TiO2usingsolarenergy,Catal.Today76(2002)209–220.

[12]R.Zabar,T.Komel,J.Fabjan,M.B.Kralj,P.Trebse,Photocatalyticdegradation withimmobilisedTiO2ofthreeselectedneonicotinoidinsecticides:

imidacloprid,thiamethoxamandclothianidin,Chemosphere89(2012) 293–301.

[13]D. ˇSoji ´c,V.Despotovi ´c,D.Orˇci ´c,E.Szabó,E.Arany,S.Armakovi ´c,E.Illés,K.

Gajda-Schrantz,A.Dombi,T.Alapi,E.Sajben-Nagy,A.Palágyi,C.Vágvölgyi,L.

Manczinger,L.Bjelica,B.Abramovi ´c,Degradationofthiamethoxamand metoprololbyUV,O3andUV/O3hybridprocesses:kinetics,degradation intermediatesandtoxicity,J.Hydrol.472–473(2012)314–327.

[14]U.Cernigoj,U.L.Stangar,J.Jirkovsky,Effectofdissolvedozoneorferricionson photodegradationofthiaclopridinpresenceofdifferentTiO2catalysts,J.

Hazard.Mater.177(2010)399–406.

[15]U. ˇCernigoj,U.L. ˇStangar,P.Trebˇse,Degradationofneonicotinoidinsecticides bydifferentadvancedoxidationprocessesandstudyingtheeffectofozoneon TiO2photocatalysis,Appl.Catal.B:Environ.75(2007)229–238.

[16]N.Bani ´c,B.Abramovi ´c,J.Krsti ´c,D. ˇSoji ´c,D.Lonˇcarevi ´c,Z.Cherkezova-Zheleva, V.Guzsvány,PhotodegradationofthiaclopridusingFe/TiO2asa

heterogeneousphoto-Fentoncatalyst,Appl.Catal.B:Environ.107(2011) 363–371.

[17]N.Miranda-García,M.I.Maldonado,J.M.Coronado,S.Malato,Degradation studyof15emergingcontaminantsatlowconcentrationbyimmobilized TiO2inapilotplant,Catal.Today151(2010)107–113.

[18]Y.Nosaka,A.Y.Nosaka,Identificationandrolesoftheactivespeciesgenerated onvariousphotocatalysts,in:P.Pichat(Ed.),PhotocatalysisandWater Purification:FromFundamentalstoRecentApplications,Wiley-VCHVerlag GmbH&Co.KGaA,2013,pp.3–24.

[19]P.Pichat,PhotocatalysisandWaterPurification,fromFundamentalstoRecent Applications,Wiley-VCHVerlagGmbH&Co.KGaA,2013.

(8)

[20]B.H.J.Bielski,D.E.Cabelli,R.L.Arudi,A.B.Ross,ReactivityofHO2/O2radicals inaqueoussolution,J.Phys.Chem.Ref.Data14(1985)1041.

[21]N.Getoff,G.O.Schenck,Primaryproductsofliquidwaterphotolysisat1236Å, 1470Åand1849Å,J.Photochem.Photobiol.A:Chem.8(1968)167–178.

[22]G.Heit,A.Neuner,P.Y.Saugy,A.M.Braun,Vacuum-UV(172nm)actinometry.

Thequantumyieldofthephotolysisofwater,J.Phys.Chem.A102(1998) 5551–5561.

[23]E.J.Hart,M.Anbar,TheHydratedElecrton,Wiley-Interscience,NewYork, 1970.

[24]G.V.Buxton,Theradiationchemistryofliquidwater:principlesand applications.,in:A.Mozumder,Y.Hatano(Eds.),ChargedParticleandPhoton InteractionwithMatter,MarcelDekker,NewYork,2004,pp.331–365.

[25]J.W.T.Spinks,R.J.Woods,AnIntroductiontoRadiationChemistry,3rded., NewYork,USA(1990).

[26]G.V.Buxton,C.L.Greenstock,W.P.Helman,A.B.Ross,Critical-reviewofrate constantsforreactionsofhydratedelectrons,hydrogen-atomsandhydroxyl radicals(OH/O)inaqueous-solution,J.Phys.Chem.Ref.Data17(1988) 513–886.

[27]S.Solar,N.Getoff,K.Sehested,J.Holcman,Pulseradiolysisofpyridineand methylpyridinesinaqueoussolutions,Radiat.Phys.Chem.41(1993)825–834.

[28]P.Neta,R.H.Schuler,Effectofionicdissociationoforganiccompoundsontheir rateofreactionwithhydrogenatoms,J.Phys.Chem.76(1972)2673–2679.

[29]K.Kosno,I.Janik,M.Celuch,J.Mirkowski,J.Kisała,D.Pogocki,TheroleofpH inthemechanismofOHradicalinducedoxidationofnicotine,Isr.J.Chem.54 (2014)302–315.

[30]M.L.Dell’Arciprete,L.Santos-Juanes,A.A.Sanz,R.Vicente,A.M.Amat,J.P.

Furlong,D.O.Martire,M.C.Gonzalez,Reactivityofhydroxylradicalswith neonicotinoidinsecticides:mechanismandchangesintoxicity,Photochem.

Photobiol.Sci.8(2009)1016–1023.

[31]T.Oppenländer,R.Schwarzwälder,Vacuum-UVoxidation(H2O-VUV)witha xenonexcimerflow-throughlampat172nm:useofmethanolasactinometer forVUVintensitymeasurementandasreferencecompoundforOH-radical competitionkineticsinaqueoussystems,J.Adv.Oxid.Technol.5(2002) 155–163.

[32]C.G.Hatchard,C.A.Parker,Anewsensitivechemicalactinometer.II.

Potassiumferrioxalateasastandardchemicalactinometer,Proc.R.Soc.A Math.Phys.Eng.Sci.235(1956)518–536.

[33]L.G.Shevchuk,V.S.Zhikharev,N.A.Vysotskaya,Kineticsofthereactionsof hydroxylradicalswithbenzeneandpyridinederivatives,J.Org.Chem.USSR5 (1969)1606–1608.

[34]J.R.Bolton,K.G.Bircher,W.Tuman,C.A.Tolman,Figure-of-meritforthe technicaldevelopementandapplicationofadvancedoxidationtechnologies forbothelectric-andsolar-drivensystems,PureAppl.Chem.73(2001) 627–637.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Open Access Article. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence... their combination, and heterogeneous photocatalysis) in the transformation

I examine the structure of the narratives in order to discover patterns of memory and remembering, how certain parts and characters in the narrators’ story are told and

Although, a positive effect of oxygen was expected in both cased, using UV photolysis, the transformation rate was slightly decreased with increase of the dissolved

Tomato plants inoculated with Rhizophagus irregularis showed both the highest colonization and the highest induced resistance to Cmm after 21 days of bacterial

Although, a positive effect of oxygen was expected in both cased, using UV photolysis, the transformation rate was slightly decreased with increase of the dissolved

Originally based on common management information service element (CMISE), the object-oriented technology available at the time of inception in 1988, the model now demonstrates

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the

In this article, I discuss the need for curriculum changes in Finnish art education and how the new national cur- riculum for visual art education has tried to respond to