• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
15
0
0

Teljes szövegt

(1)

volume 3, issue 4, article 51, 2002.

Received 30 March, 2002;

accepted 30 April, 2002.

Communicated by:S.S. Dragomir

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

ON MODULI OF EXPANSION OF THE DUALITY MAPPING OF SMOOTH BANACH SPACES

PAVLE M. MILI ˇCI ´C

Faculty of Mathematics University of Belgrade YU-11000, Yugoslavia.

EMail:pmilicic@hotmail.com

c

2000Victoria University ISSN (electronic): 1443-5756 050-02

(2)

On Moduli of Expansion of the Duality Mapping of Smooth

Banach Spaces Pavle M. Miliˇci´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of15

J. Ineq. Pure and Appl. Math. 3(4) Art. 55, 2002

http://jipam.vu.edu.au

Abstract

Let X be a Banach space which is uniformly convex and uniformly smooth.

We introduce the lower and upper moduli of expansion of the dual mapping J of the spaceX.Some estimation of certain well-known moduli (convexity, smoothness and flatness) and two new moduli introduced in [5] are described with this new moduli of expansion.

Let(X,k·k)be a real normed space,Xits conjugate space,X∗∗the second conjugate ofXandS(X)the unit sphere inX (S(X) = {x∈X| kxk= 1}).

Moreover, we shall use the following definitions and notations.

The sign (S)denotes that X is smooth, (R)that X is reflexive, (U S) that X is uniformly smooth, (SC) that X is strictly convex, and (U C) that X is uniformly convex.

The mapJ : X → 2X is called the dual map ifJ(0) = 0and forx ∈ X, x6= 0,

J(x) ={f ∈X|f(x) =kfk kxk,kfk=kxk}.

The dual map of X into 2X∗∗ we denote by J. The map τ is canonical linear isometry ofX intoX∗∗.

It is well known that functional (1) g(x, y) := kxk

2

t→−0lim

kx+tyk − kxk

t + lim

t→+0

kx+tyk − kxk t

(3)

On Moduli of Expansion of the Duality Mapping of Smooth

Banach Spaces Pavle M. Miliˇci´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of15

J. Ineq. Pure and Appl. Math. 3(4) Art. 55, 2002

http://jipam.vu.edu.au

always exists onX2.IfXis(S),then (1) reduces to g(x, y) =kxklim

t→0

kx+tyk − kxk

t ;

the functionalgis linear in the second argument,J(x)is a singleton andg(x,·)∈ J(x).In this case we shall writeJ(x) =J x=fx.Then[y, x] :=g(x, y),de- fines a so called semi-inner product[·,·](s.i.p) onX2which generates the norm of X, [x, x] =kxk2

, (see [1]). If X is an inner-product space (i.p. space) theng(x, y)is the usual i.p. of the vectorxand the vectory.

By the use of functionalg we define the angle between vectorxand vector y(x6= 0, y 6= 0)as

(2) cos (x, y) := g(x, y) +g(y, x) 2kxk kyk (see [3]). If(X,(·,·))is an i.p. space, then (2) reduces to

cos (x, y) = (x, y) kxk kyk.

We say thatX is a quasi-inner product space (q.i.p space) if the following equality holds

(3) kx+yk4− kx−yk4 = 8

kxk2g(x, y) +kyk2g(y, x)

, (x, y ∈X)1

1If(·,·)is an i.p. onX2 theng(x, y) = (x, y)and the equality (3) is the parallelogram equality.

(4)

On Moduli of Expansion of the Duality Mapping of Smooth

Banach Spaces Pavle M. Miliˇci´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of15

J. Ineq. Pure and Appl. Math. 3(4) Art. 55, 2002

http://jipam.vu.edu.au

The equality (3) holds in the spacel4,but does not hold in the space l1.A q.i.p. spaceXis(SC)and(U S)(see [6] and [4]).

Alongside the modulus of convexity ofX, δX,and the modulus of smooth- ness ofX, ρX,defined by

δX(ε) = inf

1−

x+y 2

x, y ∈S(X) ; kx−yk ≥ε

; ρX(ε) = sup

1−

x+y 2

x, y ∈S(X) ; kx−yk ≤ε

;

we have defined in [5] the angle modulus of convexity ofX, δX0 , and the angle modulus of smoothness ofX, ρ0X by:

δ0X(ε) = inf

1−cos (x, y) 2

x, y ∈S(X) ; kx−yk ≥ε

; ρ0X(ε) = sup

1−cos (x, y) 2

x, y ∈S(X) ; kx−yk ≤ε

.

We also recall the known definition of modulus of flatness of X, ηX (Day’s modulus):

ηX(ε) = sup

2− kx+yk kx−yk

x, y ∈S(X) ; kx−yk ≤ε

. We now quote three known results.

Lemma 1. (Theorem 6 in [7] and Theorem 6 in [1]). LetX be a real normed space which is (S),(SC)and(R).Then for allf ∈ X there exists a unique x∈X such that

f(y) = g(x, y), (y∈X).

(5)

On Moduli of Expansion of the Duality Mapping of Smooth

Banach Spaces Pavle M. Miliˇci´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of15

J. Ineq. Pure and Appl. Math. 3(4) Art. 55, 2002

http://jipam.vu.edu.au

Lemma 2. (Theorem 7 in [1]). LetX be a Banach space which is (U S) and (U C)and let[·,·]be an s.i.p. onX2which generates the norm onX (see [1]).

Then the dual spaceXis(U S)and(U C)and the functional hJ x, J yi:= [y, x], (x, y ∈X), is an s.i.p on(X)2.

Lemma 3. (Proposition 3 in [2]). LetXbe a real normed space. Then forJ, J andτ on their respective domains we have

J−1−1J and J =J∗−1τ.

Remark 1. Under the hypothesis of Lemma 2, the mappings J, J and τ are bijective mappings. Then, by Lemma 3, Lemma 2 and Lemma 1, in this case, we have

hJ x, J yi=g(x, y) =g(fy, fx), (x, y ∈X).

Lemma 4. Let X be a real normed space which is(S), (SC)and(R). Then forx, y ∈S(X)we have

(4) 1−

x+y 2

≤ 1−cos (x, y)

2 ≤ kx−yk kfx−fyk

4 .

Proof. Under the hypothesis of Lemma4, using Lemma1, we havefx =g(x,·) (x∈X).Consequently,

kfx−fyk= sup{|g(x, t)−g(y, t)| |t∈S(X)}

≥g(x, t)−g(y, t) (t∈S(X)).

(6)

On Moduli of Expansion of the Duality Mapping of Smooth

Banach Spaces Pavle M. Miliˇci´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of15

J. Ineq. Pure and Appl. Math. 3(4) Art. 55, 2002

http://jipam.vu.edu.au

Fort= kx−ykx−y ,(x6=y),we obtain

(5) g

x, x−y kx−yk

−g

y, x−y kx−yk

≤ kfx−fyk.

SinceX is(S),the functionalg is linear in the second argument. Hence, from (5) we get

(6) 1−g(x, y)−g(y, x) + 1≤ kx−yk kfx−fyk. Using the inequality

1−

x+y 2

≤ 1−cos (x, y)

2 ≤ kx−yk

2

(see Lemma 1 in [5]) and the inequality (6) we obtain the inequality (4).

Lemma 5. LetX be a Banach space which is(U S)and(U C).LetδX be the modulus of convexity ofX.Then for eachε > 0and for allx, y ∈ S(X)the following implications hold

kx−yk ≤2δX(ε) =⇒ kfx−fyk ≤ε, (7)

kfx−fyk ≥ε=⇒ kx−yk ≥2δX(ε). (8)

Proof. By Lemma2,X is a Banach space which is(U C)and(U S).SinceX is(U C),for eachε >0,we haveδX(ε)>0and, for allx, y ∈S(X), (9) kfx+fyk>2−2δX(ε) =⇒ kfx−fyk< ε.

(7)

On Moduli of Expansion of the Duality Mapping of Smooth

Banach Spaces Pavle M. Miliˇci´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of15

J. Ineq. Pure and Appl. Math. 3(4) Art. 55, 2002

http://jipam.vu.edu.au

Under the hypothesis of Lemma5, by Remark1, we haveg(x, y) =g(fy, fx). Hence, by inequality

1− kx−yk ≤g(x, y)≤ kx+yk −1 (see Lemma 1 in [6]), we obtain

(10) 1− kx−yk ≤g(x, y) = g(fy, fx)≤ kfx+fyk −1, so that we have

(11) kx−yk+kfx+fyk ≥2.

Now, letx, y ∈S(X)andkx−yk<2δX(ε).Then, by (11) we obtain kfx+fyk>2−2δX(ε).

Thus, by (9), we conclude that

(12) kx−yk<2δX(ε) =⇒ kfx−fyk< ε.

On the other hand if kx−yk = 2δX(ε) and kfx−fyk > ε, by (9), it follows

kx−yk+kfx+fyk ≤2.

So, by (11), we get

kx−yk+kfx+fyk= 2.

Hence, using (10), we conclude thatg(x, y) = 1− kx−yk,i.e.,g(x, x−y) = kxk kx−yk.Thus, sinceXis(SC),using Lemma 5 in [1], we getx=x−y, which is impossible. So, the implication (7) is correct. The implication (8) follows from the implication (12).

(8)

On Moduli of Expansion of the Duality Mapping of Smooth

Banach Spaces Pavle M. Miliˇci´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of15

J. Ineq. Pure and Appl. Math. 3(4) Art. 55, 2002

http://jipam.vu.edu.au

We now introduce a new definition.

According to the inequality (4), to make further progress in the estimates of the moduliδX, δ0X, ρX, ρ0X,it is convenient to introduce

Definition 1. LetX be(S)andx, y ∈S(X).The functioneJ: [0,2]→[0,2], defined by

eJ(ε) := inf{kfx−fyk | kx−yk ≥ε}

will be called the lower modulus of expansion of the dual mappingJ.

The functioneJ : [0,2]→[0,2],defined as

eJ(ε) := sup{kfx−fyk | kx−yk ≤ε}

is the upper modulus of expansion of the dual mappingJ.

Now, we quote our new results. Firstly, we note some elementary properties of the modulieJ andeJ.

Theorem 6. LetXbe(S). Then the following assertions are valid.

a) The functioneJ is nondecreasing on[0,2]. b) The functioneJ is nondecreasing on[0,2]. c) eJ(ε)≤eJ(ε) (ε∈[0,2]).

d) IfX is a Hilbert space, theneJ(ε) =eJ(ε).

(9)

On Moduli of Expansion of the Duality Mapping of Smooth

Banach Spaces Pavle M. Miliˇci´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of15

J. Ineq. Pure and Appl. Math. 3(4) Art. 55, 2002

http://jipam.vu.edu.au

Proof. The assertions a) and b) follow from the implications

ε1 < ε2 =⇒ {(x, y) | kx−yk ≥ε1} ⊃ {(x, y) | kx−yk ≥ε2}

(x, y ∈S(X)),

ε1 < ε2 =⇒ {(x, y) | kx−yk ≤ε1} ⊂ {(x, y) | kx−yk ≤ε2}

(x, y ∈S(X)). c) Assume, to the contrary, i.e., that there is an ε ∈ [0,2] such that eJ(ε) >

eJ(ε).Then

inf{kfx−fyk | kx−yk=ε} ≥inf{kfx−fyk | kx−yk ≥ε}

>sup{kfx−fyk | kx−yk ≤ε}

≥sup{kfx−fyk | kx−yk=ε}, which is not possible.

d) In a Hilbert space, we have

kfx−fyk= sup{|(x, t)−(y, t)| |t ∈S(X)} ≤ kx−yk.

On the other hand, the functional fx −fy attains its maximum int = kx−ykx−y ∈ S(X).

Hencekx−yk = kfx−fyk. Because of that, we haveeJ(ε) = eJ(ε) = ε.

In the next theorems some relation between moduliδX0 , ρ0X,eJ, eJ are given.

(10)

On Moduli of Expansion of the Duality Mapping of Smooth

Banach Spaces Pavle M. Miliˇci´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of15

J. Ineq. Pure and Appl. Math. 3(4) Art. 55, 2002

http://jipam.vu.edu.au

Theorem 7. LetXbe(S),(SC)and(R).Then, forε ∈(0,2]we have a) δ0X(ε)≤ 1

2eJ(ε) b) ρ0X(ε)≤ ε

4eJ(ε), c) 2

ερX(ε)≤ηX(ε)≤ 1

2eJ(ε).

Proof. The proof of the assertions a) and b) follows immediately using the def- initions of the functionsδ0X andρ0X and the inequality (4).

c) Letx, y ∈S(X), x6=y.By Lemma4, we have 2− kx+yk

kx−yk = 2 kx−yk

1− kx+yk 2

≤ 1−cos (x, y) kx−yk

≤ kx−yk kfx−fyk 2kx−yk

= kfx−fyk

2 .

So 2− kx+yk

kx−yk ≤ kfx−fyk

2 .

Using the definition ofηX andeJ,we obtain ηX(ε)≤ 1

2eJ(ε).

(11)

On Moduli of Expansion of the Duality Mapping of Smooth

Banach Spaces Pavle M. Miliˇci´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of15

J. Ineq. Pure and Appl. Math. 3(4) Art. 55, 2002

http://jipam.vu.edu.au

On the other hand

(0<kx−yk ≤ε) =⇒

1

kx−yk ≥ 1 ε

=⇒ 2− kx+yk kx−yk ≥ 2

ε

1− kx+yk 2

. Because of that we have

ηX(ε)≥ 2

ερX(ε).

Remark 2. The last inequality is true for an arbitrary spaceX.

Corollary 8. For a q.i.p. space, it holds that

(13) eJ(ε)≥ε

2 4

(ε∈[0,2]).

Proof. By a) of Theorem 7and the inequality 32ε4 ≤ δ0X(ε)(see Corollary 2 in [5]), we get (13).

Corollary 9. IfXis(S),(SC)and(R)then a) δ0X(ε)≤ 1

2eJ(ε), b) ρ0X ≤ 1

2eJ(ε),

(12)

On Moduli of Expansion of the Duality Mapping of Smooth

Banach Spaces Pavle M. Miliˇci´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of15

J. Ineq. Pure and Appl. Math. 3(4) Art. 55, 2002

http://jipam.vu.edu.au

c) 2

X(ε)≤ηX(ε)≤ 1

2eJ(ε).

Proof. It is well-known that if X is(S),(SC)and(R)thenX is (S),(SC) and(R).Hence Theorem7is valid forX.

Theorem 10. LetX be a Banach space which is(U C)and(U S).Then, for all ε >0,we have the following estimations:

a) ρ0X(2δX(ε))≤ εδX(ε)

2 ,

b) ρ0X(2δX(ε))≤ εδX(ε) 2 , c) eJ(ε)≥2δX(ε),

d) eJ(2δX(ε))≤ε, (eJ(2δX(ε))≤ε).

Proof. a) Using, in succession, the definition of the functionρ0X,the inequal- ity (4) in Lemma2and the implication (7), we obtain:

ρ0X(2δX(ε)) = sup

1−cos (x, y) 2

kx−yk ≤2δX(ε)

≤ 1

4sup{kx−yk kfx−fyk | kx−yk ≤2δX(ε)}

≤ 1

42εδX(ε)

= εδX(ε)

2 .

(13)

On Moduli of Expansion of the Duality Mapping of Smooth

Banach Spaces Pavle M. Miliˇci´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of15

J. Ineq. Pure and Appl. Math. 3(4) Art. 55, 2002

http://jipam.vu.edu.au

b) If, in a), we setXinstead ofX (X∗∗instead ofX), we get (14) ρ0X(2δX∗∗(ε))≤ εδX∗∗(ε)

2 .

LetF, G∈S(X∗∗).Under the hypothesis of Theorem10, we have δX∗∗(ε) = inf

1− kF +Gk 2

kF −Gk ≥ε

= inf

1− kτ x+τ yk 2

kτ x−τ yk ≥ε

= inf

1− kτ(x+y)k 2

kτ(x−y)k ≥ε

= inf

1− kx+yk 2

kx−yk ≥ε

X(ε).

Consequently the inequality (14) is equivalent to the inequality b).

c) Using, in succession, the definition of eJ, Lemma3, and the implication (8), we get

eJ(ε) = inf{kJfx−Jfyk | kfx−fyk ≥ε}

= inf{kτ x−τ yk | kfx−fyk ≥ε}

≥2δX(ε).

(14)

On Moduli of Expansion of the Duality Mapping of Smooth

Banach Spaces Pavle M. Miliˇci´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of15

J. Ineq. Pure and Appl. Math. 3(4) Art. 55, 2002

http://jipam.vu.edu.au

d) Using the definition ofeJ and the implication (7), we get

eJ(2δX(ε)) = sup{kfx−fyk | kx−yk ≤2δX(ε)} ≤ε.

Replacing, here,XwithX∗∗andJwithJ,we get the second inequality.

Since in a Banach spaceXwe have δX(ε)≤1−

r 1− ε2

4 and δX(ε)≤δX0 (ε) (see Theorem 1 in [5]), using b) and a) of Theorem10, we obtain Corollary 11. Under the hypothesis of Theorem10, we have

a) 2

ερ0X(2δX(ε))≤δX(ε)≤ 2

εδ0X(ε), b) ρ0X(2δX(ε))≤ ε

2 1− r

1− ε2 4

! .

(15)

On Moduli of Expansion of the Duality Mapping of Smooth

Banach Spaces Pavle M. Miliˇci´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of15

J. Ineq. Pure and Appl. Math. 3(4) Art. 55, 2002

http://jipam.vu.edu.au

References

[1] J.R. GILES, Classes of semi-inner product spaces, Trans. Amer. Math. Soc., 129 (1967), 436–446.

[2] C.R. De PRIMAANDW.V. PETRYSHYN, Remarks on strict monotonicity and surjectivity properties of duality mapping defined on real normed linear spaces, Math. Z., 123 (1971), 49–55.

[3] P.M. MILI ˇCI ´C, Sur le g−angle dans un espace normé, Mat. Vesnik, 45 (1993), 43–48.

[4] P.M. MILI ˇCI ´C, A generalization of the parallelogram equality in normed spaces, J. Math. of Kyoto Univ., 38(1) (1998), 71–75.

[5] P.M. MILI ˇCI ´C, The angle modulus of the deformation of a normed space, Riv. Mat. Univ. Parma, (6) 3(2002), 101–111.

[6] P.M. MILI ˇCI ´C, On the quasi inner product spaces, Mat. Bilten, (Skopje), 22(XLVIII) (1998), 19–30.

[7] P.M. MILI ˇCI ´C, Sur la géometrie d’un espace normé avec la proprieté (G), Proceedings of the International Workshop in Analysis and its Applications, Institut za Matematiku, Univ. Novi Sad (1991), 163–170.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Dans un second temps, nous prendrons en considération les éléments qui captent l’attention du héros tout comme l’attention qui est portée sur celui-ci pár

Ce qui est c o m m u n dans le lisse de Gilles Deleuze, dans l'espace intime de Gaston Bachelard et l'espace-temps de Naissance des fantômes, c'est le dé- ploiement d'un

and Yang C.-C., Some further results on the zeros and growths of entire solutions of second order linear differential equations, Kodai Math.. and Yang C.-C., On the zeros

None but this differentiation can lead us to the correct questions as regards reversibility: we should consider that the questions pertain to the exemplars of logical states,

ZAMANI ESKANDANI, Stability of a mixed additive and cubic functional equation in quasi-Banach spaces, J. PARK, On the stability of the linear mapping in Banach

Key words: Smooth normed spaces, quasi-inner product spaces, oriented (non-oriented) B−angle between two vectors, oriented (non-oriented) g−angle between two vectors.. Abstract: It

Key words and phrases: Smooth normed spaces, quasi-inner product spaces, oriented (non-oriented) B−angle between two vectors, oriented (non-oriented) g−angle between two vectors..

(More generally, a linear mapping between real normed spaces which preserves the Birkhoff-James orthogonality has to satisfy (1.1) – see [5].) There- fore, linear