• Nem Talált Eredményt

of carbon single-walled nanotubes diameter Breakdown selectivity of in a reductive hydrogenationreaction Chemical Physics Letters

N/A
N/A
Protected

Academic year: 2022

Ossza meg "of carbon single-walled nanotubes diameter Breakdown selectivity of in a reductive hydrogenationreaction Chemical Physics Letters"

Copied!
5
0
0

Teljes szövegt

(1)

ContentslistsavailableatScienceDirect

Chemical Physics Letters

j o ur na l ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / c p l e t t

Breakdown of diameter selectivity in a reductive hydrogenation reaction of single-walled carbon nanotubes

Katalin Nemeth

a

, Emma Jakab

b

, Ferenc Borondics

a,1

, Hajnalka M. Tóháti

a

, Áron Pekker

a,2

, Mónika Bokor

a

, Tamás Verebélyi

a

, Kálmán Tompa

a

, Sándor Pekker

a,c

, Katalin Kamarás

a,∗

aInstituteforSolidStatePhysicsandOptics,WignerResearchCentreforPhysics,HungarianAcademyofSciences,P.O.Box49,H1525Budapest,Hungary

bInstituteofMaterialsandEnvironmentalChemistry,ResearchCentreforNaturalSciences,HungarianAcademyofSciences,P.O.Box286, H1519Budapest,Hungary

cÓbudaUniversity,Doberdóút6,H1034Budapest,Hungary

a r t i c l e i n f o

Articlehistory:

Received18September2014 Infinalform11November2014 Availableonline15November2014

a b s t r a c t

Reductivehydrogenationwasappliedtotwotypesofsingle-walledcarbonnanotubeswithdifferent diameter range. Alkali metal intercalation, followed by reaction with methanol, led to hydro- genatedproducts.Bothyieldandselectivityofthisreactionshowedstrongdependenceondiameter, contrary to expectation based on simple curvature effects. The observed yield, as detected by thermogravimetry–massspectrometryand1HNMR,isdrasticallyreducedinsmall-diametertubeswhere thealkalidopantdoesnotreachtheinsideofthebundles.Widerangeopticaltransmissionmeasure- mentswereemployedtodeterminetheselectivityandindicatethatbesideshigheryield,lowerdiameter selectivityoccursaboveacriticaldiameter.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Chemicalmodificationofcarbonnanotubesurfacesbysidewall reactionsisimportantforanyapplicationwherefurtherchemical bondingorincreaseinsolubilityisdesired.Nanotubechemistry, however,constitutesmanychallengescomparedtoconventional organicchemistry methods:pristinenanotubes areinsolublein mostsolvents,andsolidsamplescontainbundlesofmanytubes, heldtogetherbyvanderWaalsforces.Toincreasecontactbetween reactantsandthetubesurface,exfoliationandsolubilizationare required.Theseuniquecharacteristicsalsomeanthatotherfactors thanthechemicalpropertieshavetobetakenintoaccountwhen predictingtheyieldofachemicalreaction.

Reductivereactions,wherethefirststepconsistsofchargingthe reactants,areespeciallywellsuitedforexfoliation.Severaltypesof modifiedBirchreductionarefoundintheliterature[1–4],using ammonia,tetrahydrofuran andethylenediamineas solvent.The

Correspondingauthor.

E-mailaddress:kamaras.katalin@wigner.mta.hu(K.Kamarás).

1 Presentaddress:SoleilSynchrotron,BP48,L’OrmedesMerisiers,91192Gifsur YvetteCédex,France.

2 Presentaddress:CenterforNanoscaleScienceandEngineering,Departments ofChemistryandChemical&EnvironmentalEngineering,UniversityofCalifornia, Riverside,CA92521,USA.

firststepiselectrontransferontothenanotubes,whererepulsion betweentheresultingnegativelycharged‘supermolecules’helps exfoliationandpromotesfurtherreactions.Similarprocessescan happeninalkalimetalintercalatedgraphitecompounds[5],result- inginpartiallyhydrogenatedgraphite[6].

Followinggraphiteintercalationcompounds[5],nanotubeexfo- liationpossibilitiesandprocesses[7,8],weapplieddirectreduction byintercalatingalkalimetalsintocarbonnanotubebundles.Based ontheseresultsandtherathersimilarreactivityofgraphiteandcar- bonnanotubes,weexpectedalkalimetalintercalationtoexfoliate andreducenanotubebundles.Bythismethod,thestepofcarbanion formationduringthereductivemodificationcouldbeseparatedin spaceandtimefromtheattachmentofthefunctionalgroup(unlike otherBirch-typereactions)[9].

Addingalkalimetalstocarbonnanotubesinexcess,overtime asaturationconcentration(aboutKC9 forpotassium)isreached [10].Astablephase(withcompositionKC27determinedbyXPS)is formedinafewminutesat180C.StructuralcharacterizationofK- andCs-dopedSWNTsbyX-raydiffractionandelectronmicroscopy provedthatthealkaliionsareattachedtothetubesurfaces,increas- ingthebundlesize,insteadofbeingencapsulatedintothetubes [11].Sidewallfunctionalizationofthenanotubescanproceedfrom thedopedphasebyelectrophilicaddition.

Thegeneral selectivityof sidewallreactionsin nanotubes is believedtobedeterminedprincipallybystructuralstraincaused http://dx.doi.org/10.1016/j.cplett.2014.11.019

0009-2614/©2014ElsevierB.V.Allrightsreserved.

(2)

by-orbitalmisalignmentonthecurvedsurface [12],resulting in higher reactivity ofsmaller diametertubes. Considering one nanotube,thesefeaturesdeterminediameterselectivitythermo- dynamically.Takingintoaccount,however,thatrealisticnanotube samplesconsistofbundles,thereareotherimportantphenomena thatmustbeconsidered,suchaskinetics,stericeffectsandener- geticsofallprocessesandintermediateproductsinareaction.

Theeffect of bundling isan unusualand exciting featureof nanotubepropertiesandreactions,andhasbeensubjectofmany previousinvestigations.Oneespeciallyrelevanttoreductivereac- tionsisthecarefulanddetailedstudybyKukoveczetal.[13]on thefirststepofthesereactions,thedopingofbundlednanotubes, using resonant Ramanspectroscopy and conductivitymeasure- ments.TheyfoundthatinHiPcotubesaminimumindopinglevel appearsataround1.1nm.Theyexplained theirfindingsbytak- ingintoaccountthemorphologyof thebundles, andcalculated therequiredrelativelatticeexpansionasafunctionofthesizeof theintertubechannelsinthebundles,whichisproportionaltothe tubediameter.Accordingtotheircalculations,above1.3nmtube diameter,thereisnoneedforlatticeexpansionforincorporatingK+ ions.Atlowdiameters,however,anothereffecthastobetakeninto account,theincreasingstackinginteractioninthebundle,inversely proportionaltotubediameter[14].Thislattereffectcompeteswith theincreasingreactivityathighercurvature.

Inthisletter,wedescribetheresultsofintercalationofsingle- walledcarbonnanotubes(SWNTs)byalkalimetals,followedby electrophilicadditionofprotonstoyieldhydrogenatedproducts.

Weusedtwotypesofcommercialnanotubesamplesasstarting materials,withdifferentdiameterrange,aboveandbelow1.2nm.

Asdopantionsweusedpotassiumandrubidium,similarinchem- icalpropertiesbutdifferinginsize,inordertoreachtwoextreme combinations(potassiumwiththelargerdiametertubes,rubid- iumwiththesmallerones).The productswere investigatedby thermogravimetry–mass spectrometry (TG–MS), 1H NMR spec- troscopy,Ramanspectroscopyandwiderangeopticaltransmission spectroscopytoobtaindetailed informationaboutthereactivity throughthe composition,thermal and opticalproperties ofthe samples,withspecialattentiontodiameterselectivity.Wefind thataboveacriticalintertubechannel/ionicradiusratio,theyield increasesandbecomesindependentofdiameter.

2. Experimental

Twotypesofcommerciallyavailablesingle-walledcarbonnano- tubes, differing in average diameter, were used: P2 by Carbon Solutions,Inc.andCoMoCatCGbySouthWestNanoTechnologies.

Inordertoreachtwoextremesofthedopantradiustodiameter ratiorD/dNT,P2tubesweredopedwithpotassiumandCoMoCat tubeswithrubidium.Parametersofthereactantsaresummarized inTable1.Calculatedintertubechannelradiifromthemeandiam- etervaluesinTable1,accordingtoRef.[13],are0.15nmforP2and 0.096nmforCoMoCat.Comparingthesevalueswiththedopant radii,theK/P2combinationrepresentsacasewherethechannels caneasilyaccomodatethedopantions,whereasforRb/CoMoCat theionicradiusofthedopantbyfarexceedstheintertubechannel radius.ThisdifferenceisexpressedintherD/dNTratio,giveninthe lastcolumnofTable1.

Fig.1.Directreductionofsingle-walledcarbonnanotubesbyintercalatingpotas- sium.

The hydrogenationmethod, which wasinspired bygraphite intercalationcompounds,isdescribedbelowandshowninFigure1.

InthecaseofP2,about100mgofas-receivedSWNTwasfirst annealedindynamicvacuum(at10−6mbar)at250Cfor12h,fol- lowedbytransferintoanargondrybox.Potassiumwasaddedina glassvial,keepingtheSWNT-Kmolarratio4:1.Theglassvialwas sealedonavacuumline.Annealingat200Cfor12hwasenough forpotassiumtointercalatethenanotubes.Intercalationwasindi- catedbythecopper/goldcolorofthesample.Subsequently,the samplewasputintoaSchlenk-typeflaskwithafunnel.40mlanhy- droustoluene(Sigma–Aldrich,cryo-distilledfromNa–Kalloy)was addedtotheflaskand20mlintothefunnel.Toluenewasusedas atotallyaproticsolventtoavoidsidereactionswithanyotherH source,andtocontrolalkalimetalatomstointercalatethenano- tubesandnottodissipateinthesolvent.Sonicationwasappliedfor 15mintoenhancetheintercalationprocess.Next,5mlmethanol (Sigma–Aldrich,usedasreceived)wasfilledcarefullyintothefun- nel.Methanolwasaddeddropwiseintotheflaskduringsonication.

Sonicationwascontinuedfortwomorehours,andthemixturewas leftovernight.ThesamplewasfilteredonaMilliporenylonmem- branefilter(0.1␮mporesize),washedwithethanol,1:3HCl:H2O, distilledwater,ethanolandacetone.Finallyitwasdriedindynamic vacuumat200Cfor12h.Theproductobtainedthiswaywastrans- ferredbackintothedrybox.Thewholeprocessdescribedabove, exceptpriorannealing,wasrepeatedtwomoretimesinorderto investigatewhetheritispossibletoimprovethedegreeofhydro- genationbyapplyingsuccessivesteps.ForCoMoCat,rubidiumwas usedinsteadofpotassiumasintercalatingagent,inordertoachieve largerbundleexpansion[15].Themainproductsofthesereactions are hydrogenatednanotubes,but there areside reactions, such ashydrogenevolution,whenattachmentofHtothenanotubeis kineticallyhindered,orwhentheunreactedalkalimetalreduces methanoldirectly.

Reference samples were made of pristine P2 and CoMoCat by performingthesame stepsaswiththe hydrogenationreac- tions(initialannealing,annealinginsealedglasstube,additionof methanol,washing,annealingindynamicvacuum),exceptaddition ofalkalimetal.

Thermogravimetry–mass spectrometry (TG–MS) measure- mentswereusedtodeterminethecompositionofthesamples, particularlytheHcontent.Themainpurposeofthemeasurement isthequantitativedeterminationofthedecompositionproducts asa functionof temperature.Masschangewithtemperatureis directlymeasuredbyaPerkin-ElmerTGS-2thermobalanceanda HIDENHAL2/301PICquadrupolemassspectrometer.2–4mgsam- pleinaPtvesselwasheatedupto800Cwith20C/minratein Aratmosphere.Aportionofthevolatileproductswasintroduced intothemassspectrometer(operatedat70eVinelectronimpact ionizationmode)throughaheatedglass-linedsteelcapillary.Ion intensities were normalized to 38Ar isotope of the carrier gas toeliminateerrorsresultingfromtheshiftinMSintensities.To

Table1

Specificparametersofnanotubereactions.

Nanotube Diameterrange Meandiameter Dopant Ionicradius rD/dNT

nm nm nm

P2 1.2–1.7 1.60 K 0.138 0.086

CoMoCat 0.57–1.17 0.90 Rb 0.152 0.169

(3)

measurehydrogen(m/z2),a calibrationwithTiH2 isnecessary.

Duringthemeasurements,signalsof16ionswerefollowed.

Wideline1HNMR measurementsanddataacquisitionwere accomplishedbya BrukerAVANCE IIINMR spectrometeratthe frequency of 82.4MHz witha stability better than ±10−6. The inhomogeneity of the magnetic field was 2ppm. Free induc- tiondecays(FIDs)weremeasuredatroomtemperature.Known amounts (weight) of the nanotubes (typically 7–15mg) and adamantane(99+%,Sigma–Aldrich)wereputin Tefloncapsules.

TheFIDmeasuredontheemptycapsulewassubtractedfromthe FIDoftheactualcapsuledsampletocorrectforbackground.The amplitudeoftheFIDatzerotimeisproportionaltothenumber of1Hnucleiinthesample[16].Thefirst9–10␮softheFIDwas lostinthedeadtimeofthespectrometer.TheobservedFIDswere extrapolatedbacktozerotime by fittingGaussian functionsto obtainitszero-timeamplitude.TheFIDofadamantanewasused forcalibrationincalculatingthehydrogenconcentrations.There wereresidualmagneticcatalystparticlesinthesamples(typically 2–5w/w%),buttheydidnotdisturbthemeasurementsignificantly [3].

RamanspectraweretakenbyaRenishaw1000Bspectrometer using785nmexcitationwavelength,with4cm1spectralresolu- tion.Thelaserpowerwaskeptsufficientlylowinordertoexclude heatdamage.

Widerangeopticaltransmissionmeasurementswerecarried outonself-supportingthinfilmsmadeofthesamples[17].Trans- missiondatabetween 25 and 52500cm−1 wererecorded, by a BrukerIFS 66v/s FT-IR instrument in the far and mid-infrared region,aBrukerTensor37inthenearinfrared,andaJascov550 spectrometer in the visible and UV. Optical conductivity data wereobtainedbyperformingKramers–Kronig(KK)transformation onthetransmissiondata(atomicforcemicroscopy wasusedto determinesamplethicknessforKKcalculations)[18].Opticalcon- ductivityspectrawerefittedbytheDrude–Lorentzmodel.After subtractingthebackgroundandallotherpeaksrelatedtotransi- tionsbetweendifferentVanHovesingularities,weobtainedthe contributionofthespecificpeaks[19].

3. Resultsanddiscussion

Ramanspectrawererecordedinordertodetectchangesinthe D/Gmodeintensityratio.TheincreaseinD/Gratioindicatesthe presenceofmoredefectsinthenanotubesidewall.Thisischarac- teristicoffunctionalizednanotubes,inwhichthesp3carbonatoms inthesidewallsactasdefects[20,21].Ramanspectraofbothsam- plesareshowninFigure2.EachspectrumisnormalizedtotheG bandtobecomparable.TheD/Gratioincreasesuponfunctional- ization,butthechangecannotbeusedforquantitativeestimation ofthesidegroupcontent,becauseofthecomplicatedoriginofthe Dband[22].Todeterminethehydrogencontentmoreprecisely, TG–MSandNMRspectrometrywereemployed.

ResultsoftheTG–MSmeasurementsareshowninFigure3and Table2.IncaseoftheCoMoCattubestheH-contentwassosmall thatthehydrogenevolutionpeakfadedintothebackground,there- foretheexact temperatureof hydrogenevolution couldnotbe determined.

Thedegrees of hydrogenation measuredbyNMR follow the sametrendasTG–MS:thevalueobtainedforCoMoCatissmaller thanthatforP2.Bothmethodsprovedthepresenceofhydrogen, althoughtheyhavenotyetbeensystematicallycompared.Since NMRmeasuresthetotalhydrogencontentinthesample,wecon- sider theTG–MS methodas yielding more precisequantitative resultsofhydrogenwithchemicalbondingtothenanotubewalls.

ThehydrogencontentoftheproductsformedfromP2isbetween2 and4at%.Incontrast,insmallerdiameterCoMoCatsamples,where

Fig.2.Ramanspectraofthetwosamples(excitationwavelength:785nm)before functionalization(reference)andafterthreefunctionalizationsteps.Redframe:D modes;blueframe:Gmodes.EachspectrumisnormalizedtotheGmode.Increasing D/Gratioindicatessidewallhydrogenation.(Forinterpretationofthereferencesto colorinthisfigurelegend,thereaderisreferredtothewebversionofthearticle.)

Rbwasusedasintercalatingalkalimetal,thedegreeofhydrogena- tionisverysmall.Thisfactisingoodagreementwithprevious studies[23,24].

Fromspecial features intheoptical spectra,conclusionscan bedrawnaboutthereactivityofthestartingmaterial[21,25,26].

Theenergyof theinterbandtransitions(orlikewise, transitions betweenexcitoniclevelsclosetothebandedge)scaleswiththe inversediameteroftherespectivetubes.Thewidthofthepeaks intheopticalspectrareflectsmainlythediameterdistributionof peaksinthesample,and thereforethechangein shapeupon a chemicalreactionreflectsthechangeindistributionbetweenthe startingmaterialandtheproduct.Themostpreciseprocedureto extractthesechangesfromsolid-statespectraistocomparethe opticalconductivity.Thisquantityisadditivewhenseveralinde- pendentprocessesareinvolved(likelightabsorptionbydifferent nanotubes)anditscalculationtakesintoaccountthereflectanceat theinterfaces,whichcanheavilyinfluencetheopticaldensitycal- culatedfromtransmittance[18].Themodelweused[19]involvesa reliablebackgroundcorrectionandresultsincurvesreflectingone typeoftransitionacrossvariousdiametersamples.Theadvantage ofusingopticalspectratodeterminechangesindiameterdistribu- tionoverRamanspectroscopyisthatthereisnoresonanceprocess whichpreferscertainnanotubesoverotherswithselectiveincrease inthescatteringintensity.

Figure 4 compares the change in optical conductivity upon hydrogenationinthespectralregionsconnectedtothefirst(S11) and second(S22)transitions betweensemiconducting nanotube energylevels.Thecurvesshownarethoseoftheproductswith thehighesthydrogencontent,obtainedafterthreestepsofhydro- genation. Intensity loss due to hydrogenation is independent of frequency in P2, and increases withincreasing frequency in

(4)

Table2

Hcontentandthermalstabilityofthesamples.NMRdataarerelatedtothesampleswiththehighestdegreeofhydrogenationmeasuredbyTG–MS.Hcontentdetermined byNMRarecorrectedwiththeHcontentofthereferencesamplestocorrectwiththeHcontentofotherHcontainingmaterials(toluene,etc.).

Sample Tmax[H] H/100C(TG-MS) [H](NMR) H/100C(NMR)

C Samplenumber mmol/g

1 2 3

P2 350 2.17 2.41 3.61 4.63±0.27 5.6

CoMoCat <1 <1 <1 2.39±0.15 2.9

CoMoCat.Thischangeindicatesthatthereactivityisdetermined bythepenetrationofthedopantintothebundles:inP2,theinten- sitydecreasesindependentlyoffrequency,whereasinCoMoCatthe inversediameterdependencereturns.Inthelattercase,theeffect ofthebundlesseemstodisappear,sincethealkaliatomswillcover onlythebundlesurface.Thiseffectresultsinmuchloweryieldbut

‘normal’diameterselectivity,determinedbythecurvatureofthe nanotubes.

Inthefirstapproximation,intercalationshouldproceedaccord- ingtothefirsttransitionenergy(S11insemiconductingnanotubes).

Sincethisquantityscalesinverselywithdiameter,thefirstreac- tionstepwouldbemoreprobableforhigherdiametertubes.These twooppositetrends(thatoftheionicintercalationstepandthe chemicalreaction,describedabove)determinetherateofthereac- tionandthereforeitisnotsurprisingthatitisnotmonotonous withdiameter.Anaddedcomplicationarisesbecausetheinterca- lationhappensinsidebundles,introducingadditionalfactors.Since intercalationintobundlesformedbylargerdiametertubesisless hindered,thesebundleswillbemorereactive,bothbytheirlarger

Fig.3.TypicalTG–MScurvesofthesamples.(a)P2,(b)CoMoCat.Blacksolidlinesin bothgraphsrepresentmasslossanditsderivative,respectively.Notationsforgraph (a):(redcircles)m/z2hydrogen;(bluetriangles)m/z16methane;(greendiamonds) m/z31methanol;(magentasquares)m/z92toluene.Forgraph(b):(redcircles)m/z 2hydrogen;(bluetriangles)m/z28CO;(greendiamonds)m/z44CO2;(magenta squares)m/z92toluene,wheremistheatomicmassandztheatomicnumber.(For interpretationofthereferencestocolorinthisfigurelegend,thereaderisreferred tothewebversionofthearticle.)

Fig.4.Theeffectofhydrogenationonthefirst(S11)andsecond(S22)semiconducting interbandtransitionsintheopticalspectra.Inbothcases,thereferencesampleand theproductwiththehighesthydrogencontentareshown.

electron density and better availability for reactant molecules [13].Abovethediameterlimitestimated(1.3–1.5nm),wherethe intertubechannelsarewiderthantheionicradius,potassiuminter- calationbecomesunhinderedandbecauseofhighavailabilityfor reactantmolecules(loosenedbundles)verylittlediameterselec- tivity can be detected.This is thecase of theK/P2 sample. As thechannelsbecomenarrowercomparedtotheintercalantion, intercalationbecomesmoreandmorehindereduntilitwillbeener- geticallytotallyunfavorable.Inthiscase(Rb/CoMoCat),electron transferispossibleonlyatthesurfaceofthebundles,whichcauses adrasticloweringinavailabilityoftubes[23].Belowthetransi- torydiameterrangethediameterselectivitywillbedeterminedby thechemicalreaction,favoringhighercurvature,asobservedinthe caseofCoMoCat.

Wedidnotaddressthequestionofselectivitybetweenmetallic andsemiconductingtubes;asinthefirstintercalationstepallthe tubesacquiremetalliccharacterduetodopingwithchargecarriers fromthealkalimetal[27],wedonotconsiderthiseffectsignificant.

4. Conclusion

Wehavesynthesizedhydrogenatedsingle-walledcarbonnano- tubesbyalkalimetalintercalationandsubsequentreactionwith methanol.Byusingtwosampleswithwidelydifferentdiameter distributions (P2 and CoMoCat), we could investigatediameter selectivity.Wehaverevealedtheroleofalkalimetalintercalation indiameterselectivityofsimilarreductivereactions.Theresults areinagreementwithpreviousstudiesonalkalimetalintercalated nanotubes. We demonstrated that factorsother thanstructural strainmustbeconsideredinreactionsthataredriveninnottotally homogeneousmediasuchasbundlednanotubes.Forpracticalpur- posesofnanotubechemistry,ourresultsexplainwhyananotube

(5)

samplewithlowaveragediametercaninfactproduceloweryield inchemical reactionsthan nanotubes abovea critical diameter limit.

Acknowledgment

Thisresearchwasfunded bytheHungarian NationalScience Fund(OTKA)undergrantNo.105691.

References

[1]Y.Chen,etal.,J.Mater.Res.13(1998)2423.

[2]S.Pekker,J.-P.Salvetat,E.Jakab,J.-M.Bonard,L.Forró,J.Phys.Chem.B105 (2001)7938.

[3]F.Borondics,M.Bokor,P.Matus,K.Tompa,S.Pekker,E.Jakab,Fuller.Nanotubes CarbonNanostruct.13(2005)375.

[4]F.Borondics,E.Jakab,S.Pekker,J.Nanosci.Nanotechnol.7(2007)1.

[5]M.S.Dresselhaus,G.Dresselhaus,Adv.Phys.30(1981)139.

[6]D.E.Bergbreiter,J.M.Killough,J.Am.Chem.Soc.100(1978)2126.

[7]A.Dailly,J.W.L.Yim,C.C.Ahn,E.Miura,R.Yazami,B.Fultz,Appl.Phys.A80 (2005)717.

[8]O.Tanaike,O.Kimizuka,N.Yoshizawa,K.Yamada,X.Wang,H.Hatori,M.Toy- oda,Electrochem.Commun.11(2009)1441.

[9]D.Voiry,O.Roubeau,A.Pénicaud,J.Mater.Chem.20(2010)4385.

[10]Y.Iwasa,H.Fudo,Y.Yatsu,T.Mitani,H.Kataura,Y.Achiba,Synth.Metals121 (2001)1203.

[11]C.Bower,S.Suzuki,K.Tanigaki,O.Zhou,Appl.Phys.AMater.67(1998)47.

[12]S.Niyogi,etal.,Acc.Chem.Res.35(2002)1105.

[13]A.Kukovecz,T.Pichler,R.Pfeiffer,C.Kramberger,H.Kuzmany,Phys.Chem.

Chem.Phys.5(2003)582.

[14]L.Henrard,E.Hernandez,P.Bernier,A.Rubio,Phys.Rev.B60(1999)R8521.

[15]X.Liu,T.Pichler,M.Knupfer,J.Fink,Phys.Rev.B67(2003),125403.

[16]K.Tompa,P.Banki,M.Bokor,G.Lasanda,L.Vasaros,J.AlloysCompd.350(2003) 52.

[17]Z.C.Wu,etal.,Science305(2004)1273.

[18]Á.Pekker,F.Borondics,K.Kamarás,A.G.Rinzler,D.B.Tanner,Phys.StatusSolidi B243(2006)3485.

[19]Á.Pekker,K.Kamarás,Phys.Rev.B84(2011),075475.

[20]R.Graupner,etal.,J.Am.Chem.Soc.128(2006)6683.

[21]M.Müller,etal.,ChemPhysChem11(2010)2444.

[22]S.Reich,C.Thomsen,J.Maultzsch,CarbonNanotubes:BasicConceptsandPhys- icalPrinciples,Wiley-VCH,Weinheim,2004.

[23]N.Bendiab,A.M.Saita,R.Aznar,J.L.Sauvajol,R.Almairac,I.Mirebeau,G.Andre, Phys.Rev.B78(2008),104108.

[24]E.C.T.Harley,L.E.McNeil,J.Phys.Chem.Solids65(2004)1711.

[25]Á.Pekker,D.Wunderlich,K.Kamarás,A.Hirsch,Phys.StatusSolidiB245(2008) 1954.

[26]K.Németh,A.Pekker,F.Borondics,E.Jakab,N.M.Nemes,K.Kamarás,S.Pekker, Phys.StatusSolidiB247(2010)2855.

[27]T.Pichler,M.Sing,M.Knupfer,M.S.Golden,J.Fink,SolidStateCommun.109 (1999)721.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

1 Computer and Automation Research Institute, Hungarian Academy of Sciences, gyarfas@sztaki.hu 2 Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, simonyi@renyi.hu

f Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 17. Szeged, Hungary

Budapest, Institute of Economics, Centre for Economic and Regional Stud- ies, Hungarian Academy of Sciences, 2017..

Abbreviation: ID – Regis- tration number of mollusks in collection of Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences; HNHM – Hungarian Natural

HUNGARIAN ACADEMY O F SCIENCES CENTRAL RESEARCH INSTITUTE FOR

HUNGARIAN ACADEMY OF SCIENCES CENTRAL RESEARCH INSTITUTE FOR

I investigated the diameter selectivity of hydrogenation by alkali metal intercala- tion on single-walled carbon nanotubes by using three different mean diameters and

Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.. b Research Centre for Natural Sciences, Hungarian Academy of Sciences,