• Nem Talált Eredményt

Atomic Descriptions in Dynamic Predicate Logic

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Atomic Descriptions in Dynamic Predicate Logic"

Copied!
14
0
0

Teljes szövegt

(1)

Atomic Descriptions in Dynamic Predicate Logic

F x

x F F x

x F

F x x F

2010-4.indd 163

2010-4.indd 163 2011.01.21. 13:06:252011.01.21. 13:06:25

(2)

??

2010-4.indd 164

2010-4.indd 164 2011.01.21. 13:06:262011.01.21. 13:06:26

(3)

F x x F

∃x

(x) & (x)

& ∃y( (y) & (x, y))

x

∃x

∃x

(x) & (x)

& ∃y( (y) & (x, y))

x

∃x

&

I

2010-4.indd 165

2010-4.indd 165 2011.01.21. 13:06:272011.01.21. 13:06:27

(4)

{∃x( (x) & (x) & (x),

(x))} |= (x)

∀x( (x) & (x) & (x)

& (x))⊃ (x))

∃x (x) & (x) &∃y (y) & (x, y) &

(Iw (w), y) &∃z (z) & (z)

&∃v (v) & (z, w) & (Iw (w)) &

(Iw (w))

d1 d2

∃x

s1 d1

s2 d2

s1

Iw (w) s2

Iw (w)

(Ix (x)) & (x)

x

2010-4.indd 166

2010-4.indd 166 2011.01.21. 13:06:282011.01.21. 13:06:28

(5)

∃x (x) & (x), (x),

∃y (y) & (x) |=

(Iz (z))

Iz (z)

??

(∃x( & ( , x))∨ ∃y( & ( , x))

& (Ix (x), )

∼ (Ix (x)) & (x)

??

∼(∃x (x) & (x)) & (x)

x

2010-4.indd 167

2010-4.indd 167 2011.01.21. 13:06:292011.01.21. 13:06:29

(6)

∃x

∀y( (y) ≡y=x)

& (y) & (x, x)

∃x∀y

(y) ≡y=x

& (y) & (x, x)

∃x∀y

(y) ≡y =x

x

(y) (x, x) ∃x

2010-4.indd 168

2010-4.indd 168 2011.01.21. 13:06:292011.01.21. 13:06:29

(7)

n

∼,&,∃, =,(,) ϕ∨ψ ⇐⇒d ∼(∼ϕ&∼ ψ) ϕ⊃ψ ⇐⇒d ∼(ϕ&∼ψ) ϕ≡ψ ⇐⇒d (ϕ⊃ψ) & (ψ⊃ϕ)

∀x ϕ(x) ⇐⇒d ∼ ∃x ∼ϕ

P n t1, . . . , tn P(t1, . . . , tn)

t1 t2 t1=t2

ϕ ψ (ϕ&ψ)

ϕ ∼ ϕ

ϕ x ∃x ϕ

M=U,

U

a P n (a) ∈ U

(P) ⊆ Un

V[x] =d

v: v v ∈V v[x]v ,

2010-4.indd 169

2010-4.indd 169 2011.01.21. 13:06:302011.01.21. 13:06:30

(8)

v[x]v ⇐⇒d y x v(y) =v(y).

|t|M,V t (t) v(t) [[ϕ]]M

[[P(t1, . . . , tn)]]M(V) =d

v∈V :|t1|M,V, . . . ,|tn|M,V ∈(P) [[t1=t2)]]M(V) =d{v∈V :|t1|M,V =|t2|M,V}

[[(ϕ& ψ)]]M(V) =d[[(ψ)]]M◦[[(ϕ)]]M(V) [[∼ϕ]]M(V) =d

v∈V : [[ϕ]]M({v}) =∅ [[∃x ϕ]]M(V) =d[[ϕ]]M(V[x])

ϕ1, . . . , ϕn |= ψ ϕ1, . . . , ϕn |= ψ ⇐⇒d M V,

[[(ϕn)]]M◦ · · · ◦[[(ϕ1)]]M(V)=∅, [[(ϕn)]]M◦[[(ϕn)]]M◦ · · · ◦[[(ϕ1)]]M(V)=∅. ϕ1, . . . , ϕn |= ψ

ϕ1, . . . , ϕn

ϕ1, . . . , ϕn, ψ

I =d, r, V d

0 =∅ n={0, . . . , n−1}

d r

n d, r

2010-4.indd 170

2010-4.indd 170 2011.01.21. 13:06:312011.01.21. 13:06:31

(9)

V d U x v(r(x)) v ∈ V

d, r[x] =dd+ 1,(r\ {x, i:i < d})∪ {x, d}

x x

V

V[d] =d

v: (∃v ∈V) (∃u∈U)v=v∪ {d, u}

I = d, r, V I = d, r, V I = d, r, V M= U, M = U,

I d, r V

I[x] =dd, r[x], V[d]

|t|M,I t (t) v(r(t)) [[ϕ]]M

a, b , c a,b, c a a

2010-4.indd 171

2010-4.indd 171 2011.01.21. 13:06:322011.01.21. 13:06:32

(10)

d, r,

v∈V :|t1|M,I, . . . ,|tn|M,I ∈(P) [[t1 =t2)]]M(I) =dd, r,{v ∈V :|t1|M,I=|t2|M,I} [[(ϕ&ψ)]]M(I) =d[[(ψ)]]M◦[[(ϕ)]]M(I)

[[∼ϕ]]M(I) =d

d, r,

v∈V : [[ϕ]]M(d, r,{v}) [[∃x ϕ]]M(I) =d[[ϕ]]M(I[x])

ϕ1, . . . , ϕn |=ψ M I

[[ψ]]M◦[[ϕn]]M◦ · · · ◦[[ϕn]]M(I)

[[ϕn]]M◦ · · · ◦[[ϕn]]M(I)

[[ψ]]M◦[[ϕn]]M◦ · · · ◦[[ϕn]]M(I)

ϕ1, . . . , ϕn

x ∃x

2010-4.indd 172

2010-4.indd 172 2011.01.21. 13:06:332011.01.21. 13:06:33

(11)

Ix R(x,Iy P(y)) Ix R(x, y)

P x Ix P x

I =d, r, S, V S

P d

P, d

P d

s=P, d Ix P x

d, r x, d s=P, d

P, d x

d, r[x/d] =dmax(d, d+ 1), r\ {x, i:i < d})∪ {x, d}

x

Ix P(x) ∃y P(y)

x ∃y x y

2010-4.indd 173

2010-4.indd 173 2011.01.21. 13:06:332011.01.21. 13:06:33

(12)

d r(t) =d P(t) S

P, d

S[P(t)] =d

P, r(t), S

S(P)

P S

S(P) P

S(P) S

S=∅ S(P) =P S =

P, d, S

d S S(P) =d S =

Q, d, S

Q P d S

S(P) =S(P)

V

x x

I[x/d] =dd, r[x/d], S, V

I[x] =dd, r[x/d], S, V[d]

[[t]]M [[x]]M(I) =d

I[x] x /∈dom(r);

I x∈dom(r);

[[a]]M(I) =dI [[Ix P(x)]]M(I) =d

I[x] S(P) =P; I[x/d] S(P) =d.

x

x

Ix P(x)

2010-4.indd 174

2010-4.indd 174 2011.01.21. 13:06:342011.01.21. 13:06:34

(13)

x Ix P(x)

|t|M,I t

|a|M,I =d(t)

|x|M,I=dv(r(x))

|ixP(x)|M,I =dv(r(x))

[[ϕ]]M

[[P(t)]]M(I) =d

d, r, S[P(t)],

v∈V:|t|M,I ∈(P) d, r, S, V= [[t]]M(I)

[[P(t1, . . . , tn)]]M(I) =d

d, r, S,

v∈V :|t1|M,I, . . . ,|tn|M,I ∈(P) n >1 d, r, S, V= [[tn]]M◦ · · · ◦[[t1]]M(I) [[t1=t2)]]M(I) =dd, r, S,{v∈V :|t1|M,I =|t2|M,I}

d, r, S, V= [[t2]]M◦[[t1]]M(I) [[(ϕ& ψ)]]M(I) =d[[(ψ)]]M◦[[(ϕ)]]M(I) [[∼ϕ]]M(I) =d

d, r, S,

v∈V : [[ϕ]]M(d, r, S,{v}) [[∃x ϕ]]M(I) =d[[ϕ]]M(I[x])

P Q T R S

∃x P(x) & Q(x) &∃y T(y) & R(x, y) &S(Iw P(w), y)

∃x P(x) x

P d1 = 1 r1 ={x,0} S1 =P,0;V1 ={{0, u} :u∈ (P)}

Q(x) d1 =d1 r2 =r1 S2 =

Q,0, <

P,0

V1 ={{0, u} :u∈(P), u∈(Q)}

∃y T(y) y

d3 = 2 r3 = {x,0,y,1}

2010-4.indd 175

2010-4.indd 175 2011.01.21. 13:06:352011.01.21. 13:06:35

(14)

3 = 1 0 0 3 = {{0 1 } : ∈ ( ) ∈ (Q), u∈(T)}

R(x, y)

d4 = d3 r4 = r3 S4 = S3 V4 = {{0, u,1, u} : u ∈ (P), u∈(Q), u ∈(T),u, u ∈(R)}

Iw P(w)

P S4

w r5(w) = S4(P) = 0 d5 = d4 r5 ={x,0,y,1,w,0} S5 =S4 V5=V4

S(Iw P(w), y)

d6 = d5 r6 = r5 S6 =S5 V6 ={{0, u,1, u} : u∈(P), u∈(Q), u ∈(T),u, u ∈(R),u, u ∈(S)}

2010-4.indd 176

2010-4.indd 176 2011.01.21. 13:06:352011.01.21. 13:06:35

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

This description stands so far out from the preceding and following parts of the text that the gesture of the description itself (and this very type of description) appears as

In our study, our aim was to point out the importance of automotive sector in global economy, the introduction of fuzzy logic and the need for innovative solutions in

• Political actors left party logic behind in their communication for good and learnt media logic thus stepping into mediatisation where.. media does the agenda selection that

As in Modern Turkish, in comparative constructions in Uzbek, the standard of comparison is generally marked with the ablative case (-dan) and the predicate is coded

 bottom-up induction: using the relative LGG, it iteratively generalizes the current clauses as long as it is consistent with the negative examples3. - system based on this

Many-sorted logic is a version of first-order logic. Quantifiers and the argu- ments of the functions and relations are restricted in a sense. Many-sorted logic can be applied on

The standard approach to probabilistic logic [3], [9] (see also the database [10]) involves extension of the classical propositional or predicate calculus with the

If we consider the vertical fragments in Figure 1, we can construct various modal extensions of linear logic that enable additional useful applications in