• Nem Talált Eredményt

A. Lagerstrom and L. N. Edited by THE TO THE OF I

N/A
N/A
Protected

Academic year: 2022

Ossza meg "A. Lagerstrom and L. N. Edited by THE TO THE OF I"

Copied!
18
0
0

Teljes szövegt

(1)

P A R T I

T H E O R Y O F S I N G U L A R P E R T U R B A T I O N S W I T H A P P L I C A T I O N S T O T H E A S Y M P T O T I C T H E O R Y

O F T H E N A V I E R - S T O K E S E Q U A T I O N S

E d i t e d b y

P . A . L a g e r s t r o m a n d L . N . H o w a r d

(2)

S a u l K a p l u n d e v e l o p e d his i d e a s about s i n g u l a r p e r ­ t u r b a t i o n s in the c o u r s e of studying a s y m p t o t i c s o l u t i o n s of the N a v i e r - S t o k e s e q u a t i o n s , in p a r t i c u l a r solutions f o r v i s c o u s f l o w at l o w R e y n o l d s n u m b e r s . A s a r e s u l t , a l m o s t a l l his d i s c u s s i o n of a s y m p t o t i c t h e o r y and technique is g i v e n in connection w i t h p r o b l e m s of v i s c o u s f l o w . T h i s I n t r o ­ duction w i l l attempt a s u r v e y of his b a s i c i d e a s . A h i s t o r i c a l account of how he d e v e l o p e d these i d e a s w i l l be g i v e n h e r e . It is h o p e d that s u c h a n a c c o u n t w i l l b e of h e l p f o r u n d e r ­ standing the l o g i c of his i d e a s although, f o r r e a s o n s stated, concepts f r o m F l u i d D y n a m i c s w i l l be u s e d . H o w e v e r , K a p l u n

1

s t h e o r y of s i n g u l a r p e r t u r b a t i o n s c o u l d , in p r i n c i p l e , be p r e s e n t e d without a n y r e f e r e n c e to v i s c o u s f l o w . T h e r e ­ f o r e s o m e s i m p l e m a t h e m a t i c a l m o d e l s w i l l be g i v e n l a t e r

on in this I n t r o d u c t i o n and it w i l l be i n d i c a t e d b r i e f l y how K a p l u n ' s i d e a s c a n be i l l u s t r a t e d w i t h the a i d of t h e s e e q u a t i o n s .

D e v e l o p m e n t of an A s y m p t o t i c T h e o r y f o r F l o w at L o w R e y n o l d s N u m b e r s . In this h i s t o r i c a l a c c o u n t w e s h a l l have to a s s u m e that a r e a d e r is f a m i l i a r w i t h the b a s i c t h e o r y of v i s c o u s f l u i d s . A s r e f e r e n c e f o r this t h e o r y the r e a d e r m a y c o n s u l t s t a n d a r d t e x t b o o k s . W e r e f e r a l s o to V a n D y k e (1964) w h i c h d e a l s s p e c i f i c a l l y w i t h p e r t u r b a t i o n p r o b l e m s a n d a p p l i e s K a p l u n ' s technique to a l a r g e v a r i e t y of p r o b l e m s a n d to L a g e r s t r o m (1964) w h i c h , in the d i s ­ c u s s i o n of v i s c o u s f l o w , m a k e s e x t e n s i v e u s e of i d e a s due to K a p l u n . T h e notation u s e d in this I n t r o d u c t i o n is e x p l a i n e d in the a r t i c l e s r e p r i n t e d h e r e a s C h a p t e r s II and I I I .

The p r o b l e m of d i s c u s s i n g P r a n d t l ' s b o u n d a r y - l a y e r t h e o r y ( f o r f l o w at l a r g e R e y n o l d s n u m b e r s ) in the light of the t h e o r y of a s y m p t o t i c e x p a n s i o n s had o c c u p i e d v a r i o u s r e s e a r c h w o r k e r s at G A L C I T s i n c e b e f o r e 1950. K a p l u n ' s f i r s t c o n t r i b u t i o n to this r e s e a r c h w a s his d o c t o r ' s t h e s i s on the r o l e of the c o o r d i n a t e s y s t e m in b o u n d a r y - l a y e r t h e o r y ; the p u b l i s h e d v e r s i o n of this is r e p r i n t e d h e r e a s C h a p t e r I . V e r y little c o m m e n t is n e e d e d on this c h a p t e r ( i n f a c t , E d i t o r s ' N o t e s w e r e d i s p e n s e d w i t h ) . It is a s e l f - c o n t a i n e d

(3)

p a p e r w h i c h s o l v e s the g i v e n p r o b l e m i n d i c a t e d b y the title in an i n g e n i o u s w a y b y going d i r e c t l y to the h e a r t of the m a t t e r . In e s s e n c e the p r o b l e m p o s e d is c o m p l e t e l y s o l v e d , although o b v i o u s l y s e v e r a l g e n e r a l i z a t i o n s of the t h e o r y s u g ­ g e s t t h e m s e l v e s .

A f t e r having c o m p l e t e d his t h e s i s , K a p l u n s t a r t e d his w o r k on the t h e o r y of f l o w at low R e y n o l d s n u m b e r s . T h e p r o b l e m s of f l o w at l a r g e and s m a l l R e y n o l d s n u m b e r s , r e s p e c t i v e l y , e x h i b i t a c e r t a i n s i m i l a r i t y . In the f o r m e r c a s e one m a y obtain an a p p r o x i m a t e s o l u t i o n b y n e g l e c t i n g the v i s c o u s t e r m s in the N a v i e r - S t o k e s e q u a t i o n s . T h i s a p p r o x i m a t i o n ; i s , h o w e v e r , not u n i f o r m l y v a l i d n e a r the b o u n d a r y of a s o l i d . P r a n d t l ' s b o u n d a r y - l a y e r t h e o r y of 1904 w a s an i n g e n i o u s attempt to cope w i t h this difficulty and is in fact a c l a s s i c a l e x a m p l e of one of the i m p o r t a n t m e t h o d s in the t h e o r y of s i n g u l a r p e r t u r b a t i o n s . F o r the c a s e of f l o w at l o w R e y n o l d s n u m b e r s Stokes p r o p o s e d in 1850 that the t r a n s p o r t t e r m s be n e g l e c t e d in the N a v i e r - Stokes e q u a t i o n s . T h e s u c c e s s as w e l l as the difficulties of this t h e o r y a r e w e l l - k n o w n . A p a r t i a l e x p l a n a t i o n of the difficulties w a s found b y O s e e n a r o u n d 1910, w h o pointed out that the Stokes a p p r o x i m a t i o n w a s not u n i f o r m l y v a l i d at infinity. O s e e n i n t r o d u c e d the "extended Stokes e q u a t i o n s

1 1

, now k n o w n as the O s e e n e q u a t i o n s . T h e s e equations e v i d e n t l y w e r e an i m p r o v e m e n t o v e r the Stokes e q u a t i o n s in s o m e

r e s p e c t s ; h o w e v e r a r a t i o n a l d i s c u s s i o n of t h e i r m e a n i n g and t h e i r v a l i d i t y w a s m i s s i n g . A n y w a y in both the c a s e of l a r g e R e y n o l d s n u m b e r s and that of s m a l l R e y n o l d s n u m ­ b e r s a b a s i c fact is the l a c k of u n i f o r m v a l i d i t y of c e r t a i n a p p r o x i m a t i o n s . G u i d e d b y this s i m i l a r i t y K a p l u n s t a r t e d to i n v e s t i g a t e w h e t h e r a unified t h e o r y of s i n g u l a r p e r t u r ­ bations c o u l d be a p p l i e d to both c a s e s . T h e u l t i m a t e r e s u l t of his i n v e s t i g a t i o n s w a s not only the f i r s t s y s t e m a t i c e x ­ p l a n a t i o n of m e a n i n g of the Stokes a n d O s e e n solutions and t h e i r p l a c e in an a s y m p t o t i c e x p a n s i o n of the c o r r e s p o n d i n g N a v i e r - S t o k e s s o l u t i o n s , but a l s o s o m e v e r y s i g n i f i c a n t and d e e p i d e a s about s i n g u l a r p e r t u r b a t i o n p r o b l e m s , p o w e r f u l and g e n e r a l e n o u g h to be a p p l i c a b l e to a w i d e v a r i e t y of pr o b l e m s .

P r e v i o u s l y m a n y a u t h o r s had a p p l i e d the i d e a of l i m i t p r o c e s s e s to t h e o r y of f l o w at l a r g e R e y n o l d s n u m b e r s : a n outer l i m i t , w h i c h y i e l d s the i n v i s c i d solution and a n i n n e r l i m i t w h i c h y i e l d s the b o u n d a r y - l a y e r solution (cf. C h a p t e r I ) . S i m i l a r l y (cf. C h a p t e r s II a n d I I I ) a s R e y n o l d s n u m ­ b e r tends to z e r o one m a y c o n s i d e r t w o p r i n c i p a l l i m i t s .

(4)

The outer l i m i t ( O s e e n l i m i t ) m a y be thought of as letting the c h a r a c t e r i s t i c l e n g t h of the b o d y g o to z e r o w h i l e e v e r y ­ thing e l s e is f i x e d . T h e N a v i e r - S t o k e s e q u a t i o n s a r e u n ­ c h a n g e d u n d e r this l i m i t . T h e inner l i m i t ( S t o k e s l i m i t ) m a y be c o n v e n i e n t l y thought of as letting v i s c o s i t y tend to infinity; a p p l i e d to the N a v i e r - S t o k e s e q u a t i o n s it y i e l d s the Stokes e q u a t i o n s . K a p l u n i n t r o d u c e d the s y s t e m a t i c use of these two l i m i t s . U n d e r the outer l i m i t the finite b o d y s h r i n k s to a point w h i c h cannot d i s t u r b the f l o w . T h u s it is p l a u s i b l e that the f r e e s t r e a m v e l o c i t y q* at any f i x e d p o i n t tends to the f r e e - s t r e a m v a l u e i . T h e c o n v e r g e n c e is, h o w e v e r , not u n i f o r m n e a r the b o d y s i n c e q* = 0 at the s u r f a c e of the body. O r , to put it s l i g h t l y d i f f e r e n t l y , a v e r y s m a l l b o d y i n t r o d u c e d in a u n i f o r m s t r e a m c a u s e s a p e r t u r b a t i o n w h i c h is v e r y s m a l l e x c e p t at the s u r f a c e of the b o d y . It is this l a c k of u n i f o r m i t y of the outer l i m i t n e a r the b o d y w h i c h s u g g e s t s the i n t r o d u c t i o n of the i n n e r l i m i t d e s c r i b e d a b o v e . A n e q u i v a l e n t d e s c r i p t i o n of the inner l i m i t is the f o l l o w i n g : A s the b o d y s h r i n k s to a point, s a y the o r i g i n , one m e a s u r e s the v e l o c i t y , not a t , a f i x e d point, but at a point w h i c h a p p r o a c h e s the o r i g i n at the s a m e r a t e at w h i c h the b o d y ^ s h r i n k s . U s i n g e i t h e r d e s c r i p t i o n one s e e s that the v a l u e q* = 0 at the b o d y does not

, f

g e t lost'

1

w h e n the inner l i m i t p r o c e s s is a p p l i e d . Note that O s e e n e m p h a s i z e d the l a c k of u n i f o r m i t y of the Stokes e q u a t i o n s at oo; K a p l u n e m p h a s i z e d the l a c k of u n i f o r m i t y of the outer l i m i t n e a r the body. In fact he i n s i s t e d that w h i l e the outer and i n n e r l i m i t s a r e the t w o p r i n c i p a l l i m i t s ( s e e end of S e c t i o n L Z of C h a p t e r I V ) the outer l i m i t has p r i o r i t y , it is " m o r e p r i n c i p a l '

1

. ( S e e end of Section 1.5 of C h a p t e r I V ) . The p h y s i c a l r e a s o n f o r this is that the nature of the p e r t u r ­ b a t i o n p r o b l e m is that a u n i f o r m s t r e a m ( = i = outer l i m i t of q* ) is being p e r t u r b e d b y the p r e s e n c e of a s m a l l b o d y . T h i s is p h y s i c a l l y r e a s o n a b l e , and the m a t h e m a t i c a l technique for c o n s t r u c t i n g the a s y m p t o t i c e x p a n s i o n s c o n s i s t s in f i r s t finding the l e a d i n g t e r m of the outer s o l u t i o n ( i n this c a s e g

Q

= i ) and then m a t c h i n g a solution of the inner ( S t o k e s ) equations to the outer a p p r o x i m a t i o n i .

The technique of using inner a n d outer l i m i t s w a s , of c o u r s e , not new. The new thing in the r e a s o n i n g d e s c r i b e d a b o v e c o n s i s t e d e s s e n t i a l l y in r e a l i z i n g that this technique c o u l d be a p p l i e d to the p r o b l e m of f l o w at l o w R e y n o l d s n u m ­ b e r s and in finding s u i t a b l e i n n e r and outer l i m i t s a n d f i n a l l y in r e c o g n i z i n g the p r i o r i t y of the outer l i m i t . A c c o r d i n g to the state of the a r t in 195 3-54 the next thing w o u l d be to

(5)

c o n s t r u c t the inner and outer e x p a n s i o n s , in p r i n c i p l e o b ­ tainable b y r e p e a t e d a p p l i c a t i o n s of the r e s p e c t i v e l i m i t p r o c e s s e s to the e x a c t solutions and in p r a c t i c e b y s o l v i n g c e r t a i n a p p r o x i m a t e d i f f e r e n t i a l equations w i t h a p p r o p r i a t e b o u n d a r y conditions a n d m a t c h i n g conditions. In b o u n d a r y - l a y e r t h e o r y ( s e e C h a p t e r I ) the s i m p l e s t f o r m of the m a t c h i n g condition states that the t a n g e n t i a l v e l o c i t y c o m ­ ponent at the w a l l g i v e n b y the outer solution has the s a m e v a l u e as that g i v e n b y the inner ( b o u n d a r y - l a y e r ) solution at infinity. A m o r e g e n e r a l f o r m is that the i n n e r l i m i t of the outer l i m i t should a g r e e w i t h the outer l i m i t of the i n n e r l i m i t . A s t i l l m o r e g e n e r a l f o r m is that s o m e p a r t i a l s u m of the outer e x p a n s i o n , e v a l u a t e d for s m a l l v a l u e s of the a r g u m e n t , should a g r e e w i t h s o m e p a r t i a l s u m of the i n n e r e x p a n s i o n , e v a l u a t e d f o r l a r g e v a l u e s of the a r g u m e n t .

C o n s i d e r now the c a s e of t w o - d i m e n s i o n a l f l o w . In this c a s e the f i r s t two f o r m s of the m a t c h i n g condition f a i l c o m p l e t e l y ; the l a s t f o r m m a y be v e r i f i e d a p o s t e r i o r i but hides the nature of matching. T o see that the f i r s t two f o r m s f a i l w e o b s e r v e that the i n n e r l i m i t of q# is z e r o ( a n a n a l o g y w i t h the heat equation m a k e s this quite p l a u s i b l e a p r i o r i and it m a y be m a d e s t i l l m o r e p l a u s i b l e a p o s t e r i o r i ) . Since the outer l i m i t of q* is i , it is o b v i o u s that the i n n e r and outer l i m i t cannot be m a t c h e d b y a n y p r o c e s s . T h i s l e d K a p l u n to a t h o r o u g h rethinking of the p r i n c i p l e s u n d e r l y i n g the techniques of m a t c h i n g .

The b a s i c q u e s t i o n i s : What a r e the e s s e n t i a l conditions for two a s y m p t o t i c a p p r o x i m a t i o n s to m a t c h ? T o a n s w e r this q u e s t i o n K a p l u n c o n s i d e r e d the p a r t i a l l y o r d e r e d set of e q u i ­ v a l e n c e c l a s s e s ( o r d c l a s s e s , o r d f ) of functions f ( R e )

such that o r d R e < o r d f < o r d 1. ( F o r the definition of these t e r m s see the s e c t i o n on I n t e r m e d i a t e L i m i t s in C h a p t e r II or Section 1 of C h a p t e r I V ) . T o e a c h s u c h f ( R e ) t h e r e is a c o r r e s p o n d i n g l i m i t p r o c e s s defined; the o r d e r c l a s s e s a r e a l s o u s e d in d e s c r i b i n g the d o m a i n of v a l i d i t y of an a p p r o x i ­ mation, (cf. C h a p t e r II and Section 1.2 of C h a p t e r I V ) . L e t us c o n s i d e r the t w o - d i m e n s i o n a l p r o b l e m s in p o l a r c o o r d i n a t e s and d i s r e g a r d the d e p e n d e n c e on θ ( w h i c h does not l e a d to n o n - u n i f o r m i t i e s ) . T h e outer v a r i a b l e is then r = U r / v

and the inner v a r i a b l e is r* = r / R e . L e t w be a f l o w quantity, s a y q * , and wj_ and W £ t w o a p p r o x i m a t i o n s . A s s u m e that w\ is u n i f o r m l y v a l i d in the o r d e r d o m a i n Dj_, c o n s i s t i n g of a l l f s u c h that o r d gi < o r d f < o r d 1. T h i s m e a n s that as R e tends to z e r o w - w]_ tends to z e r o

(6)

u n i f o r m l y f o r f ^ ( R e ) < r < co w h e r e £\ is a n y function in the o r d e r d o m a i n D . In other w o r d s , g i v e n a n y δ one m a y find an e j§ s u c h that | w - W ] J < δ in the d o m a i n b o u n d e d b y the h o r i z o n t a l l i n e s R e = 6^ 5 and R e = 0 and the c u r v e τ = ^ ( R e ) ( S e e F i g . 1 ) .

F i g . 1 O v e r l a p p i n g D o m a i n s of V a l i d i t y

S i m i l a r l y , w e m a y s p e a k of W 2 b e i n g a u n i f o r m l y v a l i d a p p r o x i m a t i o n in an o r d e r d o m a i n D£ c o n s i s t i n g of a l l f ( R e ) s u c h that o r d R e < f < o r d g£ . T h i s m e a n s that

w - W 2 a p p r o a c h e s z e r o u n i f o r m l y f o r R e < r < f 2 ( R e ) w h e r e o r d £2 is any o r d e r c l a s s in D ^ . C l e a r l y w-^ and W 2 c a n be m a t c h e d only if they have d o m a i n s of v a l i d i t y w h i c h o v e r - lap, that is w h i c h have o r d e r c l a s s e s in c o m m o n . In the p r e s e n t c a s e this m e a n s that o r d g\ < o r d g 2 · The functions fj a n d f 2 m a y then be c h o s e n s u c h that f^ < Î 2 f o r R e > 0 , and t h e r e e x i s t s a functio n f 3 , lyin g i n b e t w e e n f ^ an d f 2 . A m a t c h i n g conditio n i s the n s i m p l y lim £ ( w , - w ^ ) = 0 .

(7)

I n c i d e n t a l l y , if r = R e r e p r e s e n t s the s u r f a c e of the b o d y and if and W 2 have o v e r l a p p i n g d o m a i n s as d e s c r i b e d a b o v e , then one has in p r i n c i p l e a u n i f o r m l y v a l i d solution ( t o o r d e r unity). K a p l u n c o n s i d e r e d the p r o b l e m of using

and W 2 to c o n s t r u c t one c o m p o s i t e a p p r o x i m a t i o n ( w h i c h contains both) to be of l e s s f u n d a m e n t a l i m p o r t a n c e , although its p r a c t i c a l i m p o r t a n c e m a y be c o n s i d e r a b l e .

It m a y now be s e e n w h y the i n n e r and outer l i m i t s cannot be e x p e c t e d to o v e r l a p . ( W e s t i l l c o n s i d e r t w o - d i m e n s i o n a l f l o w at l o w R e y n o l d s n u m b e r ) . A p r i o r i one m a y e x p e c t the outer l i m i t to be v a l i d f o r r > A w h e r e A is any constant > 0 and the i n n e r l i m i t to be~~~valid f o r 1 < r * < Β = constant o r R e < r < Β R e . It is then c l e a r that no m a t t e r how s m a l l A is c h o s e n a n d no m a t t e r how l a r g e Β is c h o s e n , t h e r e is no a p r i o r i r e a s o n to e x p e c t o v e r l a p (cf. F i g . 2 ) .

R e

B o d y S u r f a c e —

— r = A

' r = Β R e

Outei

F i g . 2 N o n - o v e r l a p of O u t e r and I n n e r L i m i t s

(8)

The E x t e n s i o n T h e o r e m , to be d i s c u s s e d b e l o w , cannot a p r i o r i b e e x p e c t e d to r e m e d y the situation and, of c o u r s e , does not do s o in a c t u a l fact in the p r e s e n t c a s e of t w o - d i m e n s i o n a l f l o w .

The q u e s t i o n then a r i s e s how to find two a p p r o x i m a t i o n s w h i c h b e t w e e n t h e m c o v e r the e n t i r e d o m a i n R e < r < co , i.e. b e h a v e like the w^ a n d w ^ d e s c r i b e d a b o v e . It s e e m s p l a u s i b l e ( b y a n a l o g y w i t h solutions of the O s e e n e q u a t i o n s ) that if f = R e ^ ( 0 <

a <

1 ) then l i m

f

q * =

(l-a)T.

A s s u m i n g the outer l i m i t ( # = 0 ) to have p r i o r i t y K a p l u n t r i e d to find an a p p r o x i m a t i o n w h i c h in s o m e s e n s e c o n t a i n e d a l l these l i m i t s f o r 0 < a < 1 . T h i s w o u l d b r i d g e the g a p b e t w e e n inner and outer l i m i t s . H e p r o c e e d e d to an e v e n s t r o n g e r a s s u m p t i o n b y the f o l l o w i n g a r g u m e n t : C o n s i d e r the o r d e r d o m a i n D : o r d R e < o r d f < o r d 1. F o r a n y f in D , lirri£

a p p l i e d to the N a v i e r - S t o k e s e q u a t i o n s y i e l d s the Stokes equation. T h u s D is the f o r m a l d o m a i n of v a l i d i t y of the Stokes equations (this is j u s t a definition). K a p l u n then m a d e the r e a s o n a b l e H y p o t h e s i s of V a l i d i t y that t h e r e e x i s t s a solution of the Stokes e q u a t i o n s w h o s e a c t u a l d o m a i n of v a l i d i t y c o i n c i d e s w i t h the f o r m a l d o m a i n of v a l i d i t y of the e q u a t i o n s . T h i s s o l u t i o n , w h i c h need not be a l i m i t , w i l l then

o v e r l a p w i t h the outer l i m i t p r o v i d e d the d o m a i n of v a l i d i t y of the outer solution c a n be e x t e n d e d e v e r s o s l i g h t l y , i.e.

to a d o m a i n Di : o r d f^ < o r d f < 1 w h e r e o r d f^ is d e f i n i t e l y s m a l l e r than, though p o s s i b l y v e r y c l o s e to, o r d 1. T h i s E x t e n s i o n T h e o r e m is e a s i l y p r o v e d (the b a s i c i d e a is g i v e n in C h a p t e r II , s e c t i o n on M a t c h i n g ) . A s u i t a b l e s o l u t i o n of the Stokes e q u a t i o n s is the function \T

0

= e ( R e ) h\ ( X J * ) d i s ­ c u s s e d in C h a p t e r III. It is not a l i m i t . Of c o u r s e , it m a y be o b t a i n e d by r e p e a t e d a p p l i c a t i o n of the i n n e r l i m i t : If one d i v i d e s q* b y € ( R e ) , then a p p l i e s the i n n e r l i m i t and then m u l t i p l i e s b y e ( R e ) a g a i n one obtains u

0

. One m a y thus c o n s i d e r u

0

to be the s e c o n d t e r m of the i n n e r e x p a n s i o n , c ounting z e r o a s the f i r s t t e r m . H o w e v e r , this d e s c r i p t i o n

hides the n a t u r e of m a t c h i n g . It is the v e r y f i r s t d e s c r i p t i o n of u

0

g i v e n a b o v e w h i c h s h o w s its b a s i c r o l e . N o t e that, as e x p e c t e d , u^ contains the i n t e r m e d i a t e l i m i t s

(l-a)T*

in the s e n s e that lirri£ u£ =

(l-a)T

f o r f = R e

a

. The function e ( R e ) is d e t e r m i n e d b y m a t c h i n g w i t h the outer l i m i t T* . The o v e r l a p d o m a i n is a c t u a l l y v e r y s m a l l ; o r d R e ^ f o r any Ot is outside the o v e r l a p d o m a i n .

One c a n now see the m e a n i n g of the O s e e n e q u a t i o n s . If the outer e x p a n s i o n is i 4 6 g^, then gj ( a s w e l l a s

(9)

i + € ) o b e y s the O s e e n e q u a t i o n s . F o r i n s t a n c e , K a p l u n

1

s a n a l y s i s m a d e it obvious that the O s e e n equations a r e v a l i d at s m a l l R e ( b a s e d on r a d i u s of c u r v a t u r e at the n o s e ) f o r f l o w p a s t a p a r a b o l o i d of r e v o l u t i o n , but not f o r f l o w p a s t a p a r a b o l a . In the f o r m e r c a s e the outer l i m i t of q* is i ; in the l a t t e r c a s e it is v i s c o u s f l o w p a s t a s e m i - i n f i n i t e flat plate. It a l s o m a d e it o b v i o u s that the O s e e n equations a r e by nature l i n e a r , i.e. , l i n e a r i z a t i o n a r o u n d f r e e s t r e a m v e l o c i t y , w h e r e a s the Stokes e q u a t i o n s a r e l i n e a r only b y accident. F o r c o m p r e s s i b l e f l o w the Stokes e q u a t i o n s a r e n o n - l i n e a r (cf. L a g e r s t r o m (1964), p. 190 ff. ) . The s t a t e ­ ments j u s t m a d e i l l u s t r a t e s o m e e s s e n t i a l i d e a s of K a p l u n ' s and they w i l l t h e r e f o r e be e l a b o r a t e d . A s o b s e r v e d p r e ­ v i o u s l y , if l i m f is a p p l i e d to the N a v i e r - S t o k e s equations they do not change if o r d f = 1 and tend to the Stokes e q u a ­ tions in the a d j o i n i n g o r d e r d o m a i n o r d R e < o r d f < 1 , K a p l u n ' s b a s i c i d e a is then that a solution of the Stokes equation should m a t c h a s o l u t i o n of the N a v i e r - S t o k e s e q u a ­ tions. T h e Stokes e q u a t i o n s (but not n e c e s s a r i l y the Stokes s o l u t i o n ) a r e thus o b t a i n e d b y a l i m i t p r o c e s s a n d m a y be n o n - l i n e a r (they a c t u a l l y a r e in the c a s e of c o m p r e s s i b l e f l o w ) . The N a v i e r - S t o k e s equations a r e c e r t a i n l y n o n - l i n e a r . H o w e v e r , since they a r e obtained b y l i m i t s p e r t a i n i n g to one c l a s s only ( o r d f = o r d 1) w e m a y a s s u m e that the r e l e v a n t N a v i e r - S t o k e s solution is obtained b y a p p l y i n g lirri£ , w i t h o r d f = o r d 1 , to the e x a c t solution ( w e a s s u m e that o r d f

= o r d R e and o r d f = o r d 1 g i v e the p r i n c i p a l l i m i t s a n d that hence w e a r e only i n t e r e s t e d l i m f f o r o r d R e < o r d f

< o r d 1). U n d e r the outer l i m i t a finite b o d y r e d u c e s to a point and a p a r a b o l o i d of r e v o l u t i o n to a n e e d l e . T h e l i m i t i n g c o n f i g u r a t i o n s cannot influence the flow and hence w e m a y a s s u m e that g^ = outer l i m i t of q* is e q u a l to i w h i c h r e p r e s e n t s the f r e e s t r e a m f l o w . The next t e r m in the outer e x p a n s i o n s , n a m e l y gj then o b e y s the l i n e a r O s e e n equations, i.e. the equations o b t a i n e d b y l i n e a r i z i n g a r o u n d u n d i s t u r b e d f l o w . Nothing in this r e a s o n i n g w o u l d change f o r c o m p r e s s i b l e f l o w ( o m i t t i n g the s u p e r s o n i c c a s e w h e r e the b e h a v i o r of the s h o c k l a y e r s at infinity has to be c o n s i d e r e d ) . T h u s in this c a s e the O s e e n equations a r e l i n e a r a n d the Stokes e q u a t i o n s a r e not. L e t now the b o d y be a p a r a b o l a ; u n d e r the outer l i m i t this b o d y tends to a s e m i - i n f i n i t e flat p l a t e . H e n c e in this c a s e o b e y s e q u a t i o n s o b t a i n e d l i n e a r i z i n g a r o u n d the f l o w f i e l d p a s t a s e m i - i n f i n i t e flat p l a t e . T h e s e equations a r e not the O s e e n e q u a t i o n s ; they a r e b y nature l i n e a r but

(10)

cannot be w r i t t e n d o w n e x p l i c i t l y until one d e t e r m i n e s the f l o w f i e l d a r o u n d a s e m i - i n f i n i t e flat p l a t e .

A n o t h e r f e a t u r e of the O s e e n equations is now m a d e c l e a r . A l t h o u g h the O s e e n equations a r e outer equations they have s o l u t i o n s w h i c h a r e u n i f o r m l y v a l i d to o r d e r 6 ( r e l a t i v e to N a v i e r - S t o k e s s o l u t i o n s ) . The r e a s o n is that the O s e e n e q u a t i o n s a r e " r i c h enough" to contain the Stokes equations in the s e n s e that the a p p l y i n g inner l i m i t of the O s e e n e q u a t i o n s y i e l d s the Stokes e q u a t i o n s . A g a i n , this is true only f o r i n c o m p r e s s i b l e f l o w . F o r c o m p r e s s i b l e flow the Stokes equations a r e not contained in the O s e e n equations and one cannot e x p e c t to find a u n i f o r m l y v a l i d O s e e n solution.

The e s s e n c e of the i d e a s and technique d e s c r i b e d a b o v e w e r e f i r s t a n n o u n c e d ( a n d c l e a r l y a t t r i b u t e d to K a p l u n ) in

L a g e r s t r o m a n d C o l e (1955), u n d e r the heading " M e t h o d of K a p l u n

1 1

( S e c t i o n 6.3.2. ) .

W e d e s c r i b e d a b o v e K a p l u n ' s intuitive e x p l a n a t i o n w h y t h e r e e x i s t s a Stokes s olution w h i c h m a t c h e s the outer l i m i t . The c o r r e s p o n d i n g p r o b l e m a r i s e s f o r h i g h e r o r d e r t e r m s . One m a y often v e r i f y b y a d i r e c t c h e c k that t h e r e is an o v e r ­ lap d o m a i n f o r p a r t i a l s u m s of two e x p a n s i o n s ( o r at l e a s t that this a s s u m p t i o n does not l e a d to c o n t r a d i c t i o n s ) . H o w ­ e v e r , it is d e s i r a b l e to have an intuitive e x p l a n a t i o n w h y an o v e r l a p d o m a i n e x i s t s . K a p l u n g a v e this p r o b l e m c o n s i d e r ­ a b l e thought. W e s h a l l r e t u r n to this topic l a t e r on in this Introduction.

M a t h e m a t i c a l M o d e l s . W e i n t e r r u p t the d i s c u s s i o n of the p r o b l e m of f l o w at l o w R e y n o l d s n u m b e r in o r d e r to i n t r o ­ duce s o m e s i m p l e m a t h e m a t i c a l m o d e l s w h i c h m a y b e u s e d to i l l u s t r a t e K a p l u n ' s i d e a s .

The f i r s t m o d e l e q u a t i o n w a s o r i g i n a l l y i n t r o d u c e d b y K. O. F r i e d r i c h s to e x p l a i n P r a n d t l ' s b o u n d a r y - l a y e r t h e o r y ; it has often b e e n e m p l o y e d in the d i s c u s s i o n of s i n g u l a r p e r t u r b a t i o n p r o b l e m s . T h e equation is

e

" + y' = g ' ( x ) (1)

y

w i t h b o u n d a r y conditions

y(0) = 0 , y ( l ) = 1 ( 2 )

H e r e " p r i m e " denotes d e r i v a t i v e w i t h r e s p e c t to the v a r i a b l e x. W e s e e k a n a s y m p t o t i c solution v a l i d as € J 0 . B y

s t a n d a r d m e t h o d s one finds that t h e r e is a b o u n d a r y l a y e r at χ = 0 a n d that its t h i c k n e s s is of o r d e r 6 . In other w o r d s ,

(11)

the a p p r o p r i a t e i n n e r l i m i t is o b t a i n e d b y holding x* = x / e f i x e d , w h e r e a s the outer l i m i t is o b t a i n e d b y holding χ f i x e d . The o r d e r d o m a i n to be c o n s i d e r e d is the

D = { o r d f J o r d e < o r d f < o r d 1 } ( 3 ) W e define the v a r i a b l e xf b y f(6 )x£ = χ ; then l i m f is the l i m i t as 6 | 0 , xf being f i x e d . A p p l y i n g lirri£ ( w i t h ord£

in D ) one obtains t h r e e p o s s i b l e e q u a t i o n s ,

y" = g> ( x ) o r d f = o r d 1 ( 4 )

y

1

= 0 o r d € < o r d f < o r d 1 ( 5 )

6 y » + y" = 0 o r d f = o r d 6 ( 6 )

F r o m E q . ( 5 ) a n d the condition y ( l ) = 1 w e obtain the solution of E q . ( 4 )

h

0

( x ) = g( x ) + [ 1 - g ( D ] ( 7 ) The function h

0

( x ) is e x p e c t e d to be the outer l i m i t of the e x a c t solution y ( x, 6 ) . A c c o r d i n g to the e x t e n s i o n t h e o r e m t h e r e e x i s t s a function f^ ( 6 ) , o r d f^ < o r d f s u c h that a d o m a i n of v a l i d i t y of the a p p r o x i m a t i o n h

0

is d e f i n e d by

D

1

= { o r d f J o r d f

x

< o r d f < o r d 1 } ( 8 ) A c c o r d i n g to the H y p o t h e s i s of V a l i d i t y , E q . ( 5 ) has a

solution w h i c h is v a l i d in the d o m a i n

D

2

= { o r d f J o r d € < o r d f < o r d 1 } ( 9 ) A solution of E q . ( 5 ) c a n d e p e n d on € only. W e s h a l l c a l l it k

0

( € ) . L e t now f be a function s u c h that o r d f is both in Di and M a t c h i n g is then e x p r e s s e d b y the e q u a t i o n

l i m

f

[ k

0

( 6 ) - h o ( x ) ] = 0 ( 1 0 ) Since o r d f < o r d 1 , one obtains f r o m E q s . ( 7 ) and ( 1 0 )

k

0

( 0 ) = g( 0 ) + 1 - g ( l ) (11) S i m i l a r l y one find that the s o l u t i o n of E q . ( 6 ) has the f o r m

i

0

( x * ) = A ( e ) ( l - e

_ X

' ) ( 1 2 )

(12)

T h i s solution is v a l i d in s o m e d o m a i n

D

3

= { o r d f J o r d e < o r d f < o r d f

3

}

Since o r d € is in this d o m a i n the condition IQ(0) = 0 m u s t be s a t i s f i e d . T h u s E q . (12) contains only one constant of i n t e g r a t i o n A( e ) . M a t c h i n g w i t h s o m e f s u c h that o r d f is in both and g i v e s us

A ( 0 ) = k

0

( 0 ) (13)

T h i s i s , of c o u r s e , the c l a s s i c a l r e s u l t that

i o ( o o ) = h

0

( 0 ) (14a)

or that

l i m ^ i

0

(

x

* ) = l i m .

h

o ( x ) (14b) outer

o x 1

i n n e r

o x 1 x

' O b v i o u s l y , the m e t h o d u s e d is m u c h too c l u m s y f o r a c t u a l c o m p u t a t i o n of the p r e s e n t c a s e . H o w e v e r , it d o e s g i v e a d e e p e r e x p l a n a t i o n of the matching ( a l t h o u g h , of c o u r s e , the m a t c h i n g p r i n c i p l e has not bee η p r o v e n w i t h m a t h e m a t i c a l r i g o r ) a n d in tackling m o r e difficult p r o b l e m s the m o r e f u n d a m e n t a l v i e w p o i n t m a y be v e r y helpful. W e note the f o l l o w i n g s i m p l i f i c a t i o n w h i c h is s t i l l in the s p i r i t of the g e n e r a l a p p r o a c h : If a n i n t e r m e d i a t e l i m i t , i.e. a liiri£

w i t h o r d f in is a p p l i e d to E q . ( 4 ) , one obtains E q . ( 5 ) . One m a y s a y that E q . ( 4 ) is " r i c h e n o u g h to y i e l d E q . ( 5 ) "

or s i m p l y that it "contains E q . ( 5 ) " . (cf. the s t a t e m e n t m a d e e a r l i e r that the O s e e n equations contain the Stokes e q u a t i o n s in the i n c o m p r e s s i b l e c a s e ) . S i m i l a r l y E q . ( 6 ) contains E q . ( 5 ) . T h u s it is n a t u r a l to state that the f o r m a l d o m a i n of v a l i d i t y of E q . ( 4 ) is a c t u a l l y the union of the d o m a i n s and D£ and that the f o r m a l d o m a i n of v a l i d i t y of E q . ( 6 ) is the union of and Dy T h u s in this m o d e l e x a m p l e t h e r e is a v e r y l a r g e o v e r l a p d o m a i n , n a m e l y D ^ . A v e r y s i m i l a r situation o c c u r s in the matching of the outer f l o w and b o u n d a r y - l a y e r f l o w in the a s y m p t o t i c t h e o r y of f l o w at l a r g e R e . T h e d i s c u s s i o n g i v e n a b o v e i s , in fact, a p a r a ­ p h r a s e of a l e t t e r b y K a p l u n about b o u n d a r y - l a y e r t h e o r y .

M a n y of the p e c u l i a r i t i e s of the a s y m p t o t i c e x p a n s i o n s of N a v i e r - S t o k e s s o l u t i o n s f o r s m a l l R e y n o l d s n u m b e r s m a y be studied w i t h the a i d of the f o l l o w i n g m a t h e m a t i c a l m o d e l

(13)

, 2 r d r

&

d r dr

g = 0 f o r r = ρ

g = 1 for r = oo (15c) The p r o b l e m is to find a n a s y m p t o t i c e x p a n s i o n as ρ \ 0.

H e r e one m a y think of the point r = ρ a s the s u r f a c e of a s m a l l s p h e r e in η - d i m e n s i o n a l s p a c e . The " t e m p e r a t u r e "

g is z e r o at the s u r f a c e of the s p h e r e and unity at infinity.

The t e r m g d g / d r m a y b e thought of as r e p r e s e n t i n g a non­

l i n e a r heat l o s s . T h e d i s c u s s i o n of f l o w at l o w R e y n o l d s n u m b e r g i v e n in this I n t r o d u c t i o n and in C h a p t e r s II and III m a y be e a s i l y t r a n s l a t e d in t e r m s of this m o d e l e x a m p l e . T h e b a s i c p h e n o m e n a a r e the s a m e but the a n a l y t i c a l w o r k is

c o n s i d e r a b l y e a s i e r ; it is e v e n p o s s i b l e to p r o v e r i g o r o u s l y the v a l i d i t y of c e r t a i n r e s u l t s obtained b y a p p l y i n g K a p l u n ' s m e t h o d to this m o d e l ( s e e the b o o k b y J u l i a n D . C o l e ,

" P e r t u r b a t i o n M e t h o d s in A p p l i e d M a t h e m a t i c s " , to be p u b l i s h e d b y B l a i s d e l l P u b l i s h i n g C o m p a n y ) . The outer v a r i a b l e is r , the i n n e r v a r i a b l e is r * = r / p . It is intuiti­

v e l y p l a u s i b l e that, at a f i x e d point, the p e r t u r b a t i o n due to the b o d y d i s a p p e a r s as ρ tends to z e r o ( f o r η > 2). T h u s u n d e r the outer l i m i t g —* 1, but not u n i f o r m l y f o r r n e a r ρ . If l i m f is a p p l i e d to E q . (15a) w i t h o r d ρ < o r d f < o r d 1, the f i r s t t w o t e r m s of the equation r e m a i n and the t h i r d tends to z e r o . T h e r e s u l t i n g equation m a y be c a l l e d the Stokes equation. F o r n = 2 this e q u a t i o n has no solution w h i c h s a t i s f i e s a l l b o u n d a r y conditions ( S t o k e s p a r a d o x ) . H o w ­ e v e r , a c c o r d i n g to K a p l u n ' s r e a s o n i n g d e s c r i b e d e a r l i e r in this I n t r o d u c t i o n this " p a r a d o x " is i r r e l e v a n t . A l l one m a y r e q u i r e is that t h e r e e x i s t a solution of the Stokes equation w h i c h m a t c h e s the outer l i m i t of g. F o r n = 2 such a

solution is - l / l o g 6 · log r # . F o r n = 3 the W h i t e h e a d p a r a d o x o c c u r s , i.e. the f i r s t i t e r a t i o n on the Stokes

solution is l o g a r i t h m i c at infinity. F o r η > 3 the p a r a d o x is s t i l l f u r t h e r d e l a y e d , but w i t h e n o u g h p a t i e n c e a n y b o d y can find a p a r a d o x in a n y d i m e n s i o n . T h e O s e e n equation is obtained b y l i n e a r i z i n g a r o u n d the v a l u e g = 1 , in other w o r d s the n o n - l i n e a r t e r m g d g / d r in E q . (15a) is r e p l a c e d

(15a)

(15b)

(14)

by the l i n e a r t e r m d g / d r . In a n a l o g y w i t h the c a s e of i n ­ c o m p r e s s i b l e v i s c o u s f l o w the Stokes e q u a t i o n of the p r e s e n t m o d e l is l i n e a r a n d is a l s o c o n t a i n e d in the O s e e n e q u a t i o n (in the s e n s e d i s c u s s e d in the p r e v i o u s e x a m p l e , i.e. the a p p l i c a t i o n of the i n n e r , or any i n t e r m e d i a t e l i m i t to the O s e e n e q u a t i o n y i e l d s the Stokes e q u a t i o n ) . The l a s t t w o facts a r e a c c i d e n t a l , a s m a y be s e e n b y studying the f o l l o w ­ ing m o d i f i e d v e r s i o n of E q . (15a)

ώ +

+

( d £ )

2

+

d g _

g =0 ) ( 1 6

, 2 r d r \ d r /

to

d r dr

(cf. the s t a t e m e n t m a d e e a r l i e r r e g a r d i n g c o m p r e s s i b l e f l o w at l o w R e ) . T h e r e a d e r i n t e r e s t e d in the m a t h e m a t i c a l a s p e c t s of the P a r t I but having no s p e c i a l i n t e r e s t in F l u i d D y n a m i c s is a d v i s e d to t r a n s l a t e the d i s c u s s i o n in C h a p t e r s I I , I I , a n d I V f r o m the N a v i e r - S t o k e s e q u a t i o n s to the m a t h e m a t i c a l m o d e l s d e s c r i b e d a b o v e .

H i g h e r O r d e r A p p r o x i m a t i o n s . F r i n g e R e g i m e . W e r e t u r n to the p r o b l e m of l o w R e y n o l d s n u m b e r f l o w p a s t a t w o - d i m e n s i o n a l finite b o d y ( w h i c h c o r r e s p o n d s to E q . ( 1 5 ) w i t h η = 2). In the f i r s t p a r t of this I n t r o d u c t i o n w e d i s ­

c u s s e d t h e j p r o b l e m of m a t c h i n g the outer l i m i t of the e x a c t solution ( g = i = outer l i m i t of q^ ) w i t h an a p p r o x i m a t i o n ϊΓ w h i c h is v a l i d n e a r the body. One of K a p l u n

1

s b a s i c i d e a s w a s that ξ s h o u l d be m a t c h e d , not w i t h a l i m i t , but w i t h a solution of a l i m i t i n g equation. T h e e s s e n t i a l r e q u i r e ­ ment on the function £Γ is that it s h o u l d have a s u f f i c i e n t l y l a r g e d o m a i n of v a l i d i t y ; this l e d to the i d e a that ϊ Γ s h o u l d be a solution of a n e q u a t i o n w h o s e f o r m a l d o m a i n o i P v a l i d i t y is s u f f i c i e n t l y l a r g e . The function uT is the f i r s t t e r m of an i n t e r m e d i a t e e x p a n s i o n w h e r e the p a r t i a l s u m s a r e d e t e r ­ m i n e d b y t h e i r o r d e r of v a l i d i t y r a t h e r than b y r e p e a t e d a p p l i c a t i o n of a l i m i t p r o c e s s . It s o h a p p e n s that the f i r s t t e r m of the i n t e r m e d i a t e e x p a n s i o n is the s e c o n d t e r m of the i n n e r e x p a n s i o n , etc. K a p l u n c o n s i d e r e d the p o s s i b i l i t y that in g e n e r a l a n y i n t e r m e d i a t e e x p a n s i o n is r e l a t e d in a s i m i l a r w a y to a l i m i t p r o c e s s e x p a n s i o n . Still, the concept of an i n t e r m e d i a t e e x p a n s i o n is m o r e f u n d a m e n t a l than that of an i n n e r e x p a n s i o n . T h u s K a p l u n d e - e m p h a s i z e d the

f u n d a m e n t a l r o l e of l i m i t - p r o c e s s e x p a n s i o n s (without denying t h e i r i m p o r t a n c e a s a m a t h e m a t i c a l t o o l ) . T h e r e a s o n i n g that U

q

s h o u l d m a t c h w i t h g£ s e e m s c o n v i n c i n g , e v e n though not

(15)

F L U I D M E C H A N I C S A N D S I N G U L A R P E R T U R B A T I O N S

r i g o r o u s . H o w e v e r , if one p r o c e e d s to the next a p p r o x i ­ m a t i o n the r e a s o n i n g p r e v i o u s l y a p p l i e d to u~ s h o w s that ϊ Γ + 6 m a y be e x p e c t e d to be v a l i d ( t o o r d e r e ) only in trie d o m a i n o r d R e < o r d f < o r d 6. S i m i l a r l y , the n-th p a r t i a l s u m £Q 6^ vu c a n be e x p e c t e d to be v a l i d ( t o o r d e r e

n

) only f o r o r d R e < o r d f < o r d e

n

. If w e t r y to m a t c h w i t h the outer e x p a n s i o n 6^ g* w e s e e that t h e r e is a

η 3

3

"fringe r e g i m e " o r d 6 < o r d f < o r d 1 w h i c h cannot be b r i d g e d b y the e x t e n s i o n ~ t h e o r e m and w h e r e this o v e r l a p is in doubt. K a p l u n d i s c u s s e s this b r i e f l y in C h a p t e r I I I and in c o n s i d e r a b l e d e t a i l in C h a p t e r I V ( s e e E d i t o r ' s N o t e s to C h a p t e r s II a n d Π Ι ) . In p r i n c i p l e the f r i n g e r e g i m e r e q u i r e s the i n t e r p o l a t i o n of a d d i t i o n a l i n t e r m e d i a t e e x p a n s i o n s ; f o r p r a c t i c a l p u r p o s e s one m a y , h o w e v e r , a s s u m e that the

v a l i d i t y of the outer e x p a n s i o n extends o v e r the f r i n g e r e g i m e . I n t e g r a t e d E f f e c t s a n d S w i t c h b a c k . F o r m of a n

E x p a n s i o n and C o n s i s t e n c y . In a p e r t u r b a t i o n p r o b l e m one is f a c e d w i t h the f o l l o w i n g situation w h i c h in s c h e m a t i c a n d o v e r s i m p l i f i e d f o r m m a y be e x p r e s s e d a s f o l l o w s : T h e e x a c t equation is M = 6 Ν . H e r e M and Ν a r e functions of the independent v a r i a b l e ( o r v a r i b l e s ) a n d the dependent v a r i a b l e s and t h e i r d e r i v a t i v e s . A solution v a l i d to o r d e r unity ( i n s o m e o r d e r d o m a i n m a y be o b t a i n e d b y s o l v i n g the e q u a t i o n M = 0. One then e x p e c t s the m i s t a k e , i . e . the c o r r e c t i o n t e r m , to be of o r d e r 6, and hence the next t e r m in the e x p a n s i o n to be of this o r d e r . T h e c o r r e c t i o n t e r m to the solution of M = 0 m a y be thought of as due to the effect of the "forcing t e r m " € N o v e r the e n t i r e d o m a i n c o n s i d e r e d . T h e w e l l k n o w n p h e n o m e n a of r e s o n a n c e in f o r c e d o s c i l l a t i o n s s h o w that the i n t e g r a t e d effect of a f o r c i n g t e r m of o r d e r 6 m a y be of o r d e r unity p r o v i d e d the length of the time i n t e r v a l c o n s i d e r e d is of o r d e r l/ e . K a p l u n g a v e this p r o b l e m c o n s i d e r a b l e thought. A v e r y s t r i k i n g

i l l u s t r a t i o n of this p r o b l e m w a s g i v e n in P r o u d m a n a n d P e a r s o n ( 5 7 ) w h e r e the a u t h o r s s h o w e d that f o r the c a s e of flow p a s t a s p h e r e at l o w R e , a t e r m R e ^ l o g R e m u s t o c c u r : The t e r m s of o r d e r R e f o r the i n n e r and outer e x p a n s i o n s w e r e c o n s t r u c t e d a n d m a t c h e d ; h o w e v e r , then it w a s found that m a t c h i n g w a s i m p o s s i b l e f o r the t e r m s of o r d e r R e without i n s e r t i n g an i n t e r m e d i a t e t e r m of o r d e r R e ^ l o g R e . K a p l u n u s e d the e x p r e s s i o n " s w i t c h b a c k " to indicate that in t r y i n g to find the t e r m s of a c e r t a i n o r d e r one is f o r c e d to r e c o n s i d e r l o w e r o r d e r t e r m s . A d e t a i l e d

(16)

study o f s w i t c h b a c k effect s f o r th e s p e c i a l p r o b l e m o f v i s c o u s f l o w a t l a r g e d i s t a n c e s f r o m a finit e b o d y m a y b e foun d i n C h a n g (1961) ; v a r i o u s othe r e x a m p l e s a r e g i v e n i n V a n D y k e (1964) . S i m i l a r p r o b l e m s a r e d i s c u s s e d b y K a p l u n i n connection w i t h s e p a r a t i o n ( s e e P a r t I I . C h a p t e r I , i n p a r t i c u l a r S e c t i o n 2.5d) . I n a f r a g m e n t o f a d r a f t f o r a n a r t i c l e K a p l u n g i v e s th e f o l l o w i n g e x a m p l e o f s w i t c h b a c k du e to i n t e g r a t e d e f f e c t s . T h e functio n w i s d e f i n e d b y th e e q u a t i o n

ê (

f 2

a ? ) • « <"* >

and th e b o u n d a r y condition s

w ( l ) = 0 (17b )

- I I w(a)

= e

, a =

e

e

(17c ) W e c o n s i d e r th e d o m a i n Û function s f( e )

û = { f I f < < a } (18 )

T h e p r o b l e m i s t o fin d a functio n u s u c h tha t f i n / ) i m p l i e s that | w - u | — 0 u n i f o r m l y f o r 1 < r < f ( 6 ) . I f on e a s s u m e s that u ha s th e f o r m u = g ( r ) on e obtain s th e a n s w e r u = 0.

Since h o w e v e r

w = 6 lo g r + ( i - - l ) (19 )

the a n s w e r u = 0 i s f a l s e . On e m u s t a s s u m e u t o hav e th e f o r m u = g ( r ) + 6 h ( r ) . I n othe r w o r d s th e r a n g e o f r i s s o g r e a t tha t th e i n t e g r a t e d effec t o f th e f o r c i n g t e r m 6 i s o f o r d e r unity .

The g e n e r a l c h a r a c t e r o f s w i t c h b a c k i s tha t on e a s s u m e s the e x p a n s i o n t o hav e a c e r t a i n f o r m . T h e n , a s on e p r o c e e d s in th e a c t u a l c o n s t r u c t i o n , e v e r y t h i n g m a y l o o k c o n s i s t e n t u p to a c e r t a i n s t a g e . H o w e v e r , a t th e nex t s t a g e on e find s a n i n c o n s i s t e n c y ; th e p r o b l e m i s r e s o l v e d b y r e v i s i n g th e a s s u m e d f o r m o f th e e x p a n s i o n .

F o u n d a t i o n o f P e r t u r b a t i o n T h e o r y . F o r th e p r a c t i c a l c o n s t r u c t i o n o f e x p a n s i o n s th e i d e a s o f c o n s i s t e n c y , s w i t c h - b a c k , etc . a r e o f g r e a t v a l u e . T h e r e i s th e d a n g e r i n v o l v e d , h o w e v e r , w h i c h i s i l l u s t r a t e d b y th e p r o b l e m j u s t g i v e n . I f

(17)

one does not look f o r h i g h e r o r d e r t e r m s then, b y the c o n ­ s i s t e n c y a r g u m e n t , u = 0 s e e m s a p e r f e c t l y v a l i d a p p r o x i ­ m a t i o n to w to o r d e r unity. It is only w h e n one p r o c e e d s to o r d e r t that one finds that the a p p r o x i m a t i o n g i v e n is w r o n g . T h e s w i t c h b a c k is s t r o n g in this c a s e : It is not j u s t that one is f o r c e d to i n s e r t an u n e x p e c t e d t e r m of, say, o r d e r 6 l n 6 ; i n s t e a d one r e a l i z e s that the o r i g i n a l solution to o r d e r unity, w h i c h l o o k e d c o n s i s t e n t , is c o m p l e t e l y w r o n g . T h u s if one p r o c e e d s b y c o n s i s t e n c y a l o n e one n e v e r k n o w s w h a t d a n g e r m a y be l u r k i n g a r o u n d the next c o r n e r . F u r t h e r ­ m o r e , i n the f r a g m e n t j u s t r e f e r r e d to, K a p l u n states that one m a y m o d i f y the p r e v i o u s e x a m p l e ( E q s . (17) ff. ) s o a s to exhibit t r a n s c e n d e n t a l s w i t c h b a c k . B y this is m e a n t that an e x p a n s i o n m a y b e c o n s i s t e n t to a l l o r d e r s 6

n

; h o w e v e r , w h e n one c o n s i d e r s t e r m s of o r d e r e" V

£

one d i s c o v e r s the e x p a n s i o n w a s a c t u a l l y i n c o r r e c t . In other w o r d s , the i n ­ t e g r a t e d effect of a t e r m of o r d e r e" V

e

m a y be of o r d e r €

n

. Thus r e a s o n i n g b y c o n s i s t e n c y alone is f r a u g h t w i t h c e r t a i n d a n g e r s ; f u r t h e r m o r e it is " e s t h e t i c a l l y i m p r o p e r " . It w a s K a p l u n ' s hope that "if f o r c i n g t e r m s w e r e taken into account, p e r t u r b a t i o n t h e o r y w o u l d be c o m p l e t e in s o m e significant s e n s e

1 1

. H o w e v e r , the v a r i o u s f r a g m e n t a r y d r a f t s of a r t i c l e s w h i c h have b e e n f o u n d d o not g i v e a definite i n d i c a ­ tion of w h a t he intended. H i s m o s t i m p o r t a n t , r e l a t i v e l y c o m p l e t e study of the foundations of p e r t u r b a t i o n t h e o r y a r e c o n t a i n e d in C h a p t e r I V e s p e c i a l l y S e c t i o n 1.6. T h i s

r e p r e s e n t s a n o u t g r o w t h of the i d e a m e n t i o n e d at the b e g i n n i n g of this Introduction, that t h e r e s h o u l d e x i s t a solution of the Stokes e q u a t i o n s w h o s e d o m a i n of v a l i d i t y ( r e l a t i v e to the

"exact

11

N a v i e r - S t o k e s s o l u t i o n ) c o i n c i d e s w i t h the f o r m a l d o m a i n of v a l i d i t y . T h e b a s i c i d e a is that if a n e q u a t i o n E

1

is "close" to a n e q u a t i o n Ε than to e v e r y solution of Ε t h e r e s h o u l d be a c o r r e s p o n d i n g c l o s e solution of E

1

. C o n c l u d i n g R e m a r k s . T h e r e a r e m a n y w a y s in w h i c h K a p l u n

1

s r e s e a r c h p r e s e n t e d h e r e in P a r t I m a y be continued.

O b v i o u s l y his technique m a y be a p p l i e d to a v a r i e t y of p r o b l e m s . H e h i m s e l f g i v e s a n i n g e n i o u s e x a m p l e i n the study of lift at l o w R e y n o l d s n u m b e r s ( C h a p t e r V ) . H i s study of the s e p a r a ­ tion p r o b l e m ( P a r t I I of this b o o k ) a l s o contains m a n y e x a m p l e s of v e r y s k i l f u l u s e of p e r t u r b a t i o n t e c h n i q u e s .

A n o t h e r a s p e c t of his w o r k is the i n v e s t i g a t i o n of the s t r u c t u r e of p a r t i a l l y o r d e r e d s p a c e s of o r d e r c l a s s e s g i v e n in C h a p t e r V I w h i c h contains m a n y i n t e r e s t i n g r e s u l t s ; it s h o u l d be p o s s i b l e to put his i d e a s in this c h a p t e r on a m a t h e m a t i c a l l y

(18)

r i g o r o u s b a s i s a n d r e l a t e t h e m to m o d e r n a b s t r a c t m a t h e ­ m a t i c s . It s e e m s , h o w e v e r , that a r e a l l y i m p o r t a n t t a s k for f u t u r e r e s e a r c h is to f u r t h e r p u r s u e his intuitive i d e a s about foundations of p e r t u r b a t i o n t h e o r y . M a t h e m a t i c a l r i g o r cannot be e x p e c t e d at a n e a r l y s t a g e , but f u r t h e r c l a r i f i c a t i o n and d e v e l o p m e n t of the b a s i c i d e a s i n C h a p t e r I V ( p o s s i b l y u s i n g the " a r i t h m e t i c " d i s c u s s e d in C h a p t e r V I ) m a y c o n t r i b u t e s i g n i f i c a n t l y to a d e e p e r u n d e r s t a n d i n g

of p e r t u r b a t i o n t h e o r y .

P . A . L .

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Initial identification by the synthetic approach was invalidated by the discovery that the synthetic 2'-isomers were actually 5'-isomers and that the key compound

• This training set contains a n length vector containing the values from i to i+n from the time series as input and the i+n+1 of the time series as desired output. • Running i from

[r]

sition or texture prevent the preparation of preserve or jam as defined herein of the desired consistency, nothing herein shall prevent the addition of small quantities of pectin

The method discussed is for a standard diver, gas volume 0-5 μ,Ι, liquid charge 0· 6 μ,Ι. I t is easy to charge divers with less than 0· 6 μΐ of liquid, and indeed in most of

The localization of enzyme activity by the present method implies that a satisfactory contrast is obtained between stained and unstained regions of the film, and that relatively

FOR MAIN POWER ELEMENTS COOLANT

The legendary professor listed the existence of two anthologies of American literary history and one volume of essays (most probably a reference to the book edited by