• Nem Talált Eredményt

MULTIPLICATION OF SUBHARMONIC FUNCTIONS

N/A
N/A
Protected

Academic year: 2022

Ossza meg "MULTIPLICATION OF SUBHARMONIC FUNCTIONS"

Copied!
40
0
0

Teljes szövegt

(1)

Multiplication of Subharmonic Functions

R. Supper vol. 9, iss. 4, art. 118, 2008

Title Page

Contents

JJ II

J I

Page1of 40 Go Back Full Screen

Close

MULTIPLICATION OF SUBHARMONIC FUNCTIONS

R. SUPPER

Université Louis Pasteur

UFR de Mathématique et Informatique, URA CNRS 001 7 rue René Descartes

F–67 084 Strasbourg Cedex, France EMail:supper@math.u-strasbg.fr

Received: 31 May, 2008

Accepted: 12 November, 2008

Communicated by: S.S. Dragomir

2000 AMS Sub. Class.: 31B05, 33B15, 26D15, 30D45.

Key words: Gamma and Beta functions, growth of subharmonic functions in the unit ball.

Abstract: We study subharmonic functions in the unit ball of RN, with either a Bloch–

type growth or a growth described through integral conditions involving some involutions of the ball. Considering mappingsu7→gubetween sets of functions with a prescribed growth, we study how the choice of these sets is related to the growth of the functiong.

(2)

Multiplication of Subharmonic Functions

R. Supper vol. 9, iss. 4, art. 118, 2008

Title Page Contents

JJ II

J I

Page2of 40 Go Back Full Screen

Close

Contents

1 Introduction 3

2 Notations and Main Results 4

3 Some Preliminaries 7

4 Proof of Theorem 2.2 14

4.1 Proof of Theorem 2.2 in the case (i) . . . 22

4.2 Proof of Theorem 2.2 in the case (ii) . . . 24

4.3 Proof of Theorem 2.2 in the case (iii) . . . 25

4.4 Proof of Theorem 2.2 in the case (iv) . . . 27

4.5 Proof of Theorem 2.2 in the case (v) . . . 28

4.6 Proof of Theorem 2.2 in the case (vi) . . . 29

5 The Situation with Radial Subharmonic Functions 30 5.1 The example ofu:x7→(1− |x|2)−AwithA≥0 . . . 30

5.2 Proof of Theorem 2.3 . . . 33 6 Annex: The SetsSXλ andSYα,β,γ for some Special Values ofλ,α,β,γ 35

(3)

Multiplication of Subharmonic Functions

R. Supper vol. 9, iss. 4, art. 118, 2008

Title Page Contents

JJ II

J I

Page3of 40 Go Back Full Screen

Close

1. Introduction

This paper is devoted to functions u which are defined in the unit ball BN of RN (relative to the Euclidean norm|·|), whose growth is described by the above bound- edness onBN ofx 7→ (1− |x|2)αv(x)for some parameterα. The functionv may denote merelyuor some integral involvinguand involutionsΦx(precise definitions and notations will be detailed in Section2). In the first (resp. second) case,uis said to belong to the setX (resp.Y). Given a functiong defined onBN, we try to obtain links between the growth ofg and information on such mappings as

Y → X, u7→gu.

This work is motivated by the situation known in the case of holomorphic functions f in the unit diskDofC. Such a function is said to belong to the Bloch spaceBλ if

||f||Bλ :=|f(0)|+ sup

z∈D

(1− |z|2)λ|f0(z)|<+∞.

It is said to belong to the spaceBM OAµif

||f||2BM OAµ :=|f(0)|2+ sup

a∈D

Z

D

(1− |z|2)2µ−2|f0(z)|2(1− |ϕa(z)|2)dA(z)<+∞

withdA(z)the normalized area measure element onDandϕa(z) = 1−aza−z.

Givenha holomorphic function onD, the operatorIh :f 7→Ih(f)defined by:

(Ih(f))(z) = Z z

0

h(ζ)f0(ζ)dζ ∀z ∈D

was studied for instance in [7] where it was proved that Ih : BM OAµ → Bλ is bounded (with respect to the above norms) if and only if h ∈ Bλ−µ+1 (assuming 1< µ < λ).

Since |f0|2 is subharmonic in the unit ball of R2, the question naturally arose whether some similar phenomena occur for subharmonic functions inBN forN ≥2.

(4)

Multiplication of Subharmonic Functions

R. Supper vol. 9, iss. 4, art. 118, 2008

Title Page Contents

JJ II

J I

Page4of 40 Go Back Full Screen

Close

2. Notations and Main Results

LetBN ={x ∈RN : |x|< 1}withN ∈ N,N ≥2and|·|the Euclidean norm in RN. Givena ∈BN, letΦa :BN →BN denote the involution defined by:

Φa(x) = a−Pa(x)−p

1− |a|2Qa(x)

1− hx, ai ∀x∈BN, where

hx, ai=

N

X

j=1

xjaj, Pa(x) = hx, ai

|a|2 a , Qa(x) =x−Pa(x)

for allx= (x1, x2, . . . , xN)∈RN anda= (a1, a2, . . . , aN) ∈RN, withPa(x) = 0 ifa = 0. We refer to [4, pp. 25–26] and [1, p. 115] for the main properties of the mapΦa (initially defined in the unit ball ofCN). For instance, we will make use of the relation:

1− |Φa(x)|2 = (1− |a|2) (1− |x|2) (1− hx, ai)2 . In the following,α,β,γ andλare given real numbers, withγ ≥0.

Definition 2.1. LetXλ denote the set of all functionsu:BN →[−∞,+∞[satisfy- ing:

MXλ(u) := sup

x∈BN

(1− |x|2)λu(x)<+∞.

LetYα,β,γ denote the set of all measurable functions u: BN → [−∞,+∞[satisfy- ing:

MYα,β,γ(u) := sup

a∈BN

(1− |a|2)α Z

BN

(1− |x|2)βu(x) (1− |Φa(x)|2)γdx <+∞.

(5)

Multiplication of Subharmonic Functions

R. Supper vol. 9, iss. 4, art. 118, 2008

Title Page Contents

JJ II

J I

Page5of 40 Go Back Full Screen

Close

The subset SXλ (resp. SYα,β,γ) gathers all u ∈ Xλ (resp. u ∈ Yα,β,γ) which moreover are subharmonic and non–negative. The subsetRSYα,β,γ gathers allu∈ SYα,β,γ which moreover are radial.

Remark 1. When λ < 0 (resp. α +β < −N or α < −γ), the set SXλ (resp.

SYα,β,γ) merely reduces to the single functionu ≡0(see Propositions6.2, 6.3and 6.4).

In Proposition3.1and Corollary3.2, we will establish that SYα,β,γ ⊂ SXα+β+N and that there exists a constantC >0such that

MXλ+α+β+N(gu)≤C MXλ(g)MYα,β,γ(u)

for allu ∈ SYα,β,γ and all g ∈ Xλ withMXλ(g) ≥ 0.We will next study whether some kind of a “converse” holds and obtain the following:

Theorem 2.2. Givenλ∈Randg :BN →[0,+∞[a subharmonic function satisfy- ing:

∃C0 >0 MXλ+α+β+N(gu)≤C0MYα,β,γ(u) ∀u∈ SYα,β,γ, theng ∈ Xλ+N−1

2 in each of the six cases gathered in the following Table1.

Theorem 2.3. Givenλ∈Randga subharmonic function defined onBN, satisfying:

∃C00 >0 MXλ+α+β+N(gu)≤C00MYα,β,γ(u) ∀u∈ RSYα,β,γ, theng ∈ SXλ+α+N−1

2 provided thatα ≥0,β ≥ −N+12 ,γ > N−12 .

(6)

Multiplication of Subharmonic Functions

R. Supper vol. 9, iss. 4, art. 118, 2008

Title Page Contents

JJ II

J I

Page6of 40 Go Back Full Screen

Close

case α β γ

(i) α= N+12 +β β >N2+1 γ >max(α,−1β)

(ii) α=β+ 1 β >N4+3 γ >|1 +β|

(iii) α=N2+1γ β ≥ −γ N+14 < γ < N2+1

(iv) α= 1 β0 γ >1

(v) α= 1 +βγ β >−1 1+β2 < γ < β+N4+3

(vi) α=β+12 β ≥ −12 γ >

1+β 2

Table 1: Six situations where Theorem2.2shows thatgbelongs to the setXλ+N−1

2 .

(7)

Multiplication of Subharmonic Functions

R. Supper vol. 9, iss. 4, art. 118, 2008

Title Page Contents

JJ II

J I

Page7of 40 Go Back Full Screen

Close

3. Some Preliminaries

Notation 1. Givena∈BN andR ∈]0,1[, letB(a, Ra) ={x∈BN : |x−a|< Ra} with

Ra =R 1− |a|2 1 +R|a|.

Proposition 3.1. There exists aC > 0depending only onN,β,γ, such that:

MXα+β+N(u)≤C MYα,β,γ(u) ∀u∈ SYα,β,γ.

Proof. Let someR ∈]0,1[be fixed in the following. Sinceu≥0, we obtain for any a∈BN:

MYα,β,γ(u)≥(1− |a|2)α Z

BN

(1− |x|2)βu(x) (1− |Φa(x)|2)γdx

≥(1− |a|2)α Z

B(a,Ra)

(1− |x|2)βu(x) (1− |Φa(x)|2)γdx.

It follows from Lemma 1 of [6] that

B(a, Ra)⊂E(a, R) ={x∈BN : |Φa(x)|< R}, hence:

(3.1) MYα,β,γ(u)≥(1−R2)γ(1− |a|2)α Z

B(a,Ra)

(1− |x|2)βu(x)dx asγ ≥0. From Lemmas 1 and 5 of [5], it is known that

1−R

1 +R ≤ 1− |x|2

1− |a|2 ≤2 ∀x∈B(a, Ra).

(8)

Multiplication of Subharmonic Functions

R. Supper vol. 9, iss. 4, art. 118, 2008

Title Page Contents

JJ II

J I

Page8of 40 Go Back Full Screen

Close

LetCβ = 1−R1+Rβ

ifβ ≥0andCβ = 2β ifβ <0. Hence MYα,β,γ(u)≥Cβ(1−R2)γ(1− |a|2)α+β

Z

B(a,Ra)

u(x)dx.

The volume of B(a, Ra)is σN (Ra)N

N with σN = Γ(N/2)2πN/2 the area of the unit sphere SN inRN (see [2, p. 29]) andRa1+RR (1− |a|2). The subharmonicity ofunow provides:

MYα,β,γ(u)≥Cβ(1−R2)γ(1− |a|2)α+βu(a)σN (Ra)N N

≥Cβ σN N

RN(1−R)γ

(1 +R)N−γ (1− |a|2)α+β+Nu(a).

Corollary 3.2. Letg ∈ Xλ withMXλ(g)≥0. Then:

MXλ+α+β+N(gu)≤C MXλ(g)MYα,β,γ(u) ∀u∈ SYα,β,γ where the constantCstems from Proposition3.1.

Proof. Sinceu≥0, we have for anyx∈BN:

(1− |x|2)λ+α+β+Ng(x)u(x)≤MXλ(g) (1− |x|2)α+β+Nu(x)

≤MXλ(g)MXα+β+N(u) because ofMXλ(g)≥0.

Lemma 3.3. Givena∈BNandR ∈]0,1[, the following holds for anyx∈B(a, Ra):

1

2 < 1

1 +R|a| ≤ 1− hx, ai

1− |a|2 ≤ 1 + 2R|a|

1 +R|a| <2 and 1

4 < 1− hx, ai

1− |x|2 <21 +R 1−R .

(9)

Multiplication of Subharmonic Functions

R. Supper vol. 9, iss. 4, art. 118, 2008

Title Page Contents

JJ II

J I

Page9of 40 Go Back Full Screen

Close

Proof. Clearlyhx, ai=ha+y, ai=|a|2+hy, aiwith|y|< Ra. From the Cauchy- Schwarz inequality, it follows that−Ra|a| ≤ hy, ai ≤Ra|a|. Hence:

1− |a|2−R|a| 1− |a|2

1 +R|a| ≤1− hx, ai ≤1− |a|2+R|a| 1− |a|2 1 +R|a|. The term on the left equals

(1− |a|2)

1− R|a|

1 +R|a|

= (1− |a|2) 1 1 +R|a|

and1 +R|a|<2. The term on the right equals (1− |a|2)

1 + R|a|

1 +R|a|

,

with 1+R|a|R|a| <1. Now

1− hx, ai

1− |x|2 = 1− hx, ai 1− |a|2

1− |a|2 1− |x|2 and the last inequalities follow from Lemmas 1 and 5 of [5].

Lemma 3.4. LetH = {(s, t) ∈ R2 :t ≥ 0, s2+t2 <1}andP > −1, Q >−1, T >−1. Then

Z Z

H

sPtQ(1−s2−t2)Tds dt=





0 if P is odd;

Γ(P+12 )Γ(Q+12 )Γ(T+1)

2 Γ(P+Q2 +T+2) if P is even.

(10)

Multiplication of Subharmonic Functions

R. Supper vol. 9, iss. 4, art. 118, 2008

Title Page Contents

JJ II

J I

Page10of 40 Go Back Full Screen

Close

Proof. With polar coordinatess =r cosθ,t =r sinθ, this integral turns intoI1I2 with

I1 = Z 1

0

rP+Q(1−r2)T r dr and I2 = Z π

0

(cosθ)P (sinθ)Qdθ.

Keeping in mind the various expressions for the Beta function (see [3, pp. 67–68]):

B(x, y) = Z 1

0

ξx−1(1−ξ)y−1

= 2 Z π/2

0

(cosθ)2x−1(sinθ)2y−1dθ = Γ(x) Γ(y) Γ(x+y)

(withx >0andy >0), the change of variableω=r2 leads to:

I1 = 1 2

Z 1 0

ωP+Q2 (1−ω)T

= 1 2B

P +Q

2 + 1, T + 1

= Γ P+Q2 + 1

Γ(T + 1) 2 Γ P+Q2 +T + 2 .

WhenP is odd,I2 = 0becausecos(π−θ) = −cos(θ). However, whenP is even:

I2 = 2 Z π/2

0

(cosθ)P(sinθ)Q

=B

P + 1

2 ,Q+ 1 2

= Γ P+12

Γ Q+12 Γ P+Q2 + 1 .

(11)

Multiplication of Subharmonic Functions

R. Supper vol. 9, iss. 4, art. 118, 2008

Title Page Contents

JJ II

J I

Page11of 40 Go Back Full Screen

Close

Lemma 3.5. GivenA ≥ 0anda ∈ BN, let uand fa denote the functions defined onBN byu(x) = (1−|x|12)A andfa(x) = (1−hx,ai)1 A ∀x∈ BN. They are both subhar- monic inBN.

Remark 2. uis radial, but notfa.

Proof. For u, the result of Lemma3.5 has already been proved in Proposition 1 of [5]. For anyj ∈ {1,2, . . . , N}, we now compute:

∂fa

∂xj(x) =ajA(1−hx, ai)−A−1 and ∂2fa

∂x2j (x) = (aj)2A(A+1)(1−hx, ai)−A−2, so that:

(∆fa)(x) = |a|2A(A+ 1)

(1− hx, ai)A+2 ≥0 ∀x∈BN.

Remark 3. GivenA≥0,A0 ≥0, the functionfadefined onBN by

fa(x) = 1

(1− hx, ai)A(1− |x|2)A0 is subharmonic too. The computation

(∆fa)(x)≥fa(x)

A|a|

1− hx, ai − 2A0|x|

1− |x|2 2

≥0 is left to the reader.

Proposition 3.6. GivenN ∈N,N >3,(s, t, b1, b2)∈R4such that|s b1|+|t b2|<1 andP > 0, let

IP(s, t, b1, b2) = Z π

0

(sinθ)N−3dθ (1−s b1−t b2 cosθ)P.

(12)

Multiplication of Subharmonic Functions

R. Supper vol. 9, iss. 4, art. 118, 2008

Title Page Contents

JJ II

J I

Page12of 40 Go Back Full Screen

Close

Then

IP(s, t, b1, b2) = √

πΓ N2 −1 Γ(P)

X

k∈N

X

j∈N

Γ(j + 2k+P)

k!j! Γ N2−1 +k(b1s)j t b2

2 2k

.

Proof. As

t b2 cosθ 1−s b1

t b2 1−s b1

<1,

the following development is valid:

IP(s, t, b1, b2) = Z π

0

(sinθ)N−3

(1−s b1)P

1− t b1−s b2 cosθ

1

P

= 1

(1−s b1)P X

n∈N

Γ(n+P) n! Γ(P)

t b2 1−s b1

nZ π 0

(sinθ)N−3(cosθ)ndθ.

The last integral vanishes whennis odd. Whennis even (n = 2k), then 2

Z π/2 0

(sinθ)N−3(cosθ)2kdθ =B

N −2

2 , k+ 1 2

= Γ N−22

Γ k+ 12 Γ N−12 +k

= Γ N−22

(2k)!√ π Γ N−12 +k

22kk!

by [3, p. 40]. Hence:

IP(s, t, b1, b2) = Γ N−22 √ π Γ(P)

X

k∈N

Γ(2k+P) Γ N−12 +k

22kk!

(t b2)2k (1−s b1)2k+P.

(13)

Multiplication of Subharmonic Functions

R. Supper vol. 9, iss. 4, art. 118, 2008

Title Page Contents

JJ II

J I

Page13of 40 Go Back Full Screen

Close

The result follows from the expansion Γ(2k+P)

(1−s b1)2k+P =X

j∈N

Γ(j+ 2k+P)

j! (b1s)j.

(14)

Multiplication of Subharmonic Functions

R. Supper vol. 9, iss. 4, art. 118, 2008

Title Page Contents

JJ II

J I

Page14of 40 Go Back Full Screen

Close

4. Proof of Theorem 2.2

The cases (i), (ii), (iii), (iv), (v) and (vi) of Theorem2.2will be proved separately at the end of this section.

Theorem 4.1. Given A > 0, P > 0, T > −1 and N ∈ N (N ≥ 2) such that 1≤A+P ≤N + 1 + 2T, let

IA,P,T(a, b) = Z

BN

(1− |x|2)T

(1− hx, ai)A(1− hx, bi)P dx ∀a∈BN,∀b ∈BN andτ a number satisfying both P−A2 < τ < P and0≤τ ≤ A+P2 . Then

IA,P,T(a, b)≤ K

(1− |a|2)A+P2 −τ(1− |b|2)τ ∀a∈BN,∀b∈BN

where the constantK is independent ofaandb.

Example 4.1. IfP > Aandτ = A+P2 , then IA,P,T(a, b)≤ K

(1− |b|2)A+P2 ∀a ∈BN,∀b∈BN, with

K = 2A+P−1πN−12 Γ(T + 1) Γ(P) Γ

P −A 2

.

Example 4.2. IfP < Aandτ = 0, then IA,P,T(a, b)≤ K

(1− |a|2)A+P2 ∀a ∈BN,∀b∈BN,

(15)

Multiplication of Subharmonic Functions

R. Supper vol. 9, iss. 4, art. 118, 2008

Title Page Contents

JJ II

J I

Page15of 40 Go Back Full Screen

Close

with

K = 2A+P−1πN−12 Γ(T + 1) Γ(A) Γ

A−P 2

.

Proof. Up to a unitary transform, we assumea= (|a|,0,0, . . . ,0)andb= (b1, b2,0, . . . ,0).

Proof of Theorem4.1in the case N > 3. Polar coordinates inRN provide the for- mulas:x1 =r cosθ1withr=|x|,x2 =r sinθ1 cosθ2(the formulas forx3, . . . , xN are available in [9, p. 15]) where θ1, θ2,. . . , θN−2 ∈]0, π[ andθN−1 ∈]0,2π[. The volume element dx becomesrN−1dr dσ(N) wheredσ(N) denotes the area element onSN, with

(N) = (sinθ1)N−2(sinθ2)N−312(N−2)

(see [9, p. 15] for full details). Hereθ2 ∈]0, π[sinceN > 3. In the following, we will writes=r cosθ1 andt =r sinθ1, thushx, bi=s b1+t b2 cosθ2and

(4.1) IA,P,T(a, b) =σN−2 Z π

0

Z 1 0

(1−r2)TrN−1(sinθ1)N−2IP(s, t, b1, b2) (1− |a|s)A dr dθ1 withIP(s, t, b1, b2)defined in the previous proposition. From [2, p. 29] we notice that

σN−2Γ

N −2 2

π= 2πN−12 .

The expansion

1

(1− |a|s)A =X

`∈N

Γ(`+A)

`! Γ(A) (|a|s)` leads to:

IA,P,T(a, b) = 2πN−12 Γ(P) Γ(A)

X

(k,j,`)∈N3

Γ(j+ 2k+P) Γ(`+A) k!j!`! Γ(N2−1 +k) (b1)j

b2 2

2k

|a|`Jk,j,`

(16)

Multiplication of Subharmonic Functions

R. Supper vol. 9, iss. 4, art. 118, 2008

Title Page Contents

JJ II

J I

Page16of 40 Go Back Full Screen

Close

where

Jk,j,` = Z π

0

Z 1 0

sj+`t2k(1−r2)TrN−1(sinθ1)N−2dr dθ1

= Z Z

H

sj+`t2k+N−2(1−s2−t2)Tds dt

withH as in Lemma3.4. NowJk,j,` = 0unlessj+`= 2h(h∈N). Thus:

IA,P,T(a, b) = πN−12 Γ(P) Γ(A)

× X

(k,h)∈N2 2h

X

j=0

Γ(j+ 2k+P) Γ(2h−j +A) Γ h+12

Γ(T + 1) k!j! (2h−j)! Γ k+h+N2 +T + 1 (b1)j

b2 2

2k

|a|2h−j

Taking [3, p. 40] into account:

(4.2) IA,P,T(a, b) = πN2 Γ(T + 1) Γ(P) Γ(A)

X

(k,h)∈N2 2h

X

j=0

(2h)!B(j+ 2k+P,2h−j+A) 22h+2kh!k!j! (2h−j)!

× Γ(2k+P + 2h+A)

Γ(k+h+N2 +T + 1) bj1b2k2 |a|2h−j. Let

L= 2P+A−1Γ(T + 1) Γ(P) Γ(A) πN−12 . The duplication formula

√πΓ(2z) = 22z−1Γ(z) Γ

z+1 2

(17)

Multiplication of Subharmonic Functions

R. Supper vol. 9, iss. 4, art. 118, 2008

Title Page Contents

JJ II

J I

Page17of 40 Go Back Full Screen

Close

(see [3, p. 45]) is applied with2z = 2k+P + 2h+A. Now Γ(k+h+A+P + 1

2 )≤Γ

k+h+ N

2 +T + 1

sinceΓincreases on[1,+∞[and

1≤k+h+ A+P + 1

2 ≤k+h+N

2 +T + 1.

This leads to:

IA,P,T(a, b)

≤L X

(k,h)∈N2 2h

X

j=0

(2h)!B(j+ 2k+P,2h−j +A) Γ k+h+A+P2

h!k!j! (2h−j)! bj1b2k2 |a|2h−j

=L X

(k,h)∈N2

Γ k+h+A+P2 h!k! b2k2

2h

X

j=0

(2h)!

j! (2h−j)!bj1|a|2h−jB(j+ 2k+P,2h−j +A).

The last sum turns into:

2h

X

j=0

(2h)!bj1|a|2h−j j! (2h−j)!

Z 1 0

ξj+2k+P−1(1−ξ)2h−j+A−1

= Z 1

0 2h

X

j=0

(2h)! (b1ξ)j[(1−ξ)|a|]2h−j j! (2h−j)!

!

ξ2k+P−1(1−ξ)A−1

= Z 1

0

[b1ξ+|a|(1−ξ)]2hξ2k+P−1(1−ξ)A−1dξ.

(18)

Multiplication of Subharmonic Functions

R. Supper vol. 9, iss. 4, art. 118, 2008

Title Page Contents

JJ II

J I

Page18of 40 Go Back Full Screen

Close

Hence the majorant ofIA,P,T(a, b)becomes:

L Z 1

0

X

k∈N

(b2ξ)2k k!

X

h∈N

Γ(h+k+ A+P2 )

h! [b1ξ+|a|(1−ξ)]2h

!

ξP−1(1−ξ)A−1

=L Z 1

0

X

k∈N

Γ(k+A+P2 ) (b2ξ)2k k!

1

1−[b1ξ+|a|(1−ξ)]2

k+A+P2

ξP−1(1−ξ)A−1

according to the expansion

Γ(C)

(1−X)C =X

h∈N

Γ(h+C) h! Xh

with|X|< 1whenC > 0(see [8, p. 53]). HereX = [b1ξ+|a|(1−ξ)]2 belongs to]−1,1[sinceb1and|a|do andξ ∈[0,1]. The same expansion now applies with

C = A+P

2 and X = (b2ξ)2

1−[b1ξ+|a|(1−ξ)]2 since|X|<1, as

δ(ξ) := (b2ξ)2+ [b1ξ+|a|(1−ξ)]2

=|b|2ξ2+|a|2(1−ξ)2 + 2ξ(1−ξ)b1|a|

≤ |b|2ξ2+|a|2(1−ξ)2+ 2ξ(1−ξ)|b| |a|

= [ξ|b|+|a|(1−ξ)]2 <1.

(19)

Multiplication of Subharmonic Functions

R. Supper vol. 9, iss. 4, art. 118, 2008

Title Page Contents

JJ II

J I

Page19of 40 Go Back Full Screen

Close

Hence

IA,P,T(a, b)

≤L Z 1

0

Γ A+P2

1− 1−[b (b2ξ)2

1ξ+|a|(1−ξ)]2

A+P2

ξP−1(1−ξ)A−1dξ (1−[b1ξ+|a|(1−ξ)]2)A+P2

=L· Γ

A+P 2

Z 1 0

ξP−1(1−ξ)A−1

(1−[b1ξ+|a|(1−ξ)]2−(b2ξ)2)A+P2 .

Now

1−δ(ξ)≥1−[ξ|b|+|a|(1−ξ)]2

≥1−[ξ|b|+ (1−ξ)]2

=ξ(1− |b|)[2−ξ(1− |b|)]

≥ξ(1− |b|2) since

[2−ξ(1− |b|)]−(1 +|b|) = (1−ξ)(1− |b|)≥0.

Similarly,

1−δ(ξ)≥(1−ξ)(1− |a|2).

Thus 1

[1−δ(ξ)]A+P2 ≤ 1

[(1−ξ)(1− |a|2)]A+P2 −τ[ξ(1− |b|2)]τ sinceτ ≥0and A+P2 −τ ≥0. Finally:

IA,P,T(a, b)≤ L·Γ A+P2

(1− |a|2)A+P2 −τ(1− |b|2)τ Z 1

0

ξP−τ−1(1−ξ)A+τ−A+P2 −1dξ.

(20)

Multiplication of Subharmonic Functions

R. Supper vol. 9, iss. 4, art. 118, 2008

Title Page Contents

JJ II

J I

Page20of 40 Go Back Full Screen

Close

This integral converges sinceP −τ >0and A+τ− A+P

2 = A−P

2 +τ >0.

Now the result follows with K =L·Γ

A+P 2

B

P −τ,A−P 2 +τ

=LΓ(P −τ) Γ

A−P 2 +τ

.

Proof of Theorem4.1in the caseN = 3. Here

IA,P,T(a, b) = Z π

0

Z 1 0

(1−r2)T r2(sinθ1)JP(s, t, b1, b2)

(1− |a|s)A dr dθ1, where

JP(s, t, b1, b2) = Z

0

2

(1−s b1−t b2 cosθ2)P = 2IP(s, t, b1, b2)

with IP(s, t, b1, b2) as in Proposition 3.6, with N = 3. Hence IA,P,T(a, b) has the same expression as in Formula (4.1), withN = 3, sinceσ1 = 2. Thus the proof ends in the same manner as that above in the caseN >3.

Proof of Theorem 4.1 in the caseN = 2. Now x1 = s = r cosθ and x2 = t = r sinθ:

IA,P,T(a, b) = Z

0

Z 1 0

(1−r2)T r dr dθ (1− |a|s)A(1−s b1−t b2)P

(21)

Multiplication of Subharmonic Functions

R. Supper vol. 9, iss. 4, art. 118, 2008

Title Page Contents

JJ II

J I

Page21of 40 Go Back Full Screen

Close

= Z

B2

X

`∈N

Γ(`+A)

`! Γ(A) (|a|s)`X

n∈N

(t b2)n n! Γ(P)

Γ(n+P)

(1−s b1)n+P (1−s2−t2)T ds dt

= X

(`,n,j)∈N3

Γ(`+A)|a|`(b2)nΓ(j+n+P) (b1)j

`! Γ(A)n! Γ(P)j!

Z

B2

s`+jtn(1−s2−t2)Tds dt.

The last integral vanishes when n is odd or ` +j odd. Otherwise (n = 2k and

`+j = 2h), it equals

2 Z

H

s`+jtn(1−s2−t2)T ds dt= Γ h+12

Γ k+ 12

Γ(T + 1) Γ(k+h+T + 2)

by Lemma3.4and turns into

n! (2h)!πΓ(T + 1) 22h+2kh!k! Γ(k+h+T + 2)

according to [3, p. 40]. Thus IA,P,T(a, b)is again recognized as Formula (4.2) now withN = 2and the proof ends as for the caseN >3.

We now present an example of a family of functions {fa}a which is uniformly bounded above inYα,β,γ:

Corollary 4.2. Givenβ >−N+12 (N ≥2) letα= N+12andγ >max(α,−1−β).

For anya∈BN letfadenote the function defined by:fa(x) = (1−hx,ai)1 ,∀x∈BN. Thenfa ∈ Yα,β,γ,∀a ∈BN. Moreover, there existsK > 0such thatMYα,β,γ(fa) ≤ K,∀a ∈BN.

Remark 4. This constantKis the same as that in the previous theorem, withA= 2α, P = 2γ andT =β+γ.

(22)

Multiplication of Subharmonic Functions

R. Supper vol. 9, iss. 4, art. 118, 2008

Title Page Contents

JJ II

J I

Page22of 40 Go Back Full Screen

Close

Proof. With the above choices for parametersA, P,T, we actually have: P > A >

0,T >−1and

A+P = 2α+ 2γ =N + 1 + 2β+ 2γ =N + 1 + 2T >1.

The conditions0 ≤ τ ≤ α+γ together withγ−α < τ <2γ reduce to: γ −α <

τ ≤α+γ. Let

(4.3) Jb(fa) = (1− |b|2)α Z

BN

(1− |x|2)βfa(x) (1− |Φb(x)|2)γdx.

Now

Jb(fa) = (1− |b|2)α+γ Z

BN

(1− |x|2)β+γ

(1− hx, ai)N+1+2β(1− hx, bi) dx

≤K ∀a ∈BN,∀b∈BN

according to Theorem4.1applied withτ =α+γ = A+P2 . 4.1. Proof of Theorem2.2in the case (i)

GivenR ∈]0,1[, the subharmonicity ofgprovides for anya∈BN the majoration:

g(a)≤ 1 Va

Z

B(a,Ra)

g(x)dx

withVathe volume ofB(a, Ra). From Lemma3.3, it is clear that:

1≤

21 +R 1−R

1− |x|2 1− hx, ai

A

∀x∈B(a, Ra)

(23)

Multiplication of Subharmonic Functions

R. Supper vol. 9, iss. 4, art. 118, 2008

Title Page Contents

JJ II

J I

Page23of 40 Go Back Full Screen

Close

withA = 2α > 0. Nowg(x)≥0,∀x ∈BN. Withfaas in Corollary4.2, this leads to:

Vag(a)≤

21 +R 1−R

AZ

B(a,Ra)

(1− |x|2)Afa(x)g(x)dx.

Now

A=α+β+N + 1

2 =α+β+N − N −1 2 , thus

Vag(a)≤

21 +R 1−R

AZ

B(a,Ra)

(1− |x|2)λ+α+β+Nfa(x)g(x) (1− |x|2)λ+N−12 dx

≤C0K

21 +R 1−R

AZ

B(a,Ra)

dx (1− |x|2)λ+N−12 from Corollary4.2. Lemmas 1 and 5 of [5] provide

1− |x|2 1− |a|2

λ+N−12

≥Cλ+N−1

2 ∀x∈B(a, Ra), with Cλ+N−1

2 defined in the same pattern as Cβ in the proof of Proposition 3.1.

Finally:

Vag(a)≤ C0K Cλ+N−1

2

21 +R 1−R

A

Va

(1− |a|2)λ+N−12 , thus

MX

λ+N−1 2

(g)≤ C0K Cλ+N−1

2

21 +R 1−R

∀R ∈]0,1[.

(24)

Multiplication of Subharmonic Functions

R. Supper vol. 9, iss. 4, art. 118, 2008

Title Page Contents

JJ II

J I

Page24of 40 Go Back Full Screen

Close

The majorant is an increasing function with respect toR. LettingRtend toward0+, we get:

MX

λ+N−1 2

(g)≤ C0K Cλ+N−1

2

2.

4.2. Proof of Theorem2.2in the case (ii) Here we work withfadefined by:

fa(x) = 1

(1− hx, ai)A where A=α+β+N.

Theorem4.1applies once again, withA = N + 1 + 2β > N−12 > 0,P = 2γ > 0 andT = β+γ >−1(becauseγ >−1−β). ConditionA+P = N + 1 + 2T is fulfilled too. Moreoverτ :=α+γ =β+γ+ 1satisfies both0≤τ ≤β+γ+N2+1 (obviously0< β+γ+ 1and1< N2+1) andγ−β− N+12 < τ <2γ:

τ −γ+β+N + 1

2 = 2β+ N + 3

2 >0 and 2γ−τ =γ−1−β >0.

With such a choice forτ we have A+P

2 −τ = N + 1

2 −1 = N −1 2 , thus

(4.4) IA,P,T(a, b)≤ K

(1− |a|2)N+12 −1(1− |b|2)α+γ ∀a∈BN,∀b∈BN. Hence,Jb(fa)defined in Formula (4.3) now satisfies

(4.5) Jb(fa)≤ K

(1− |a|2)N−12 ∀a∈BN,∀b ∈BN.

(25)

Multiplication of Subharmonic Functions

R. Supper vol. 9, iss. 4, art. 118, 2008

Title Page Contents

JJ II

J I

Page25of 40 Go Back Full Screen

Close

In other words,

(4.6) MYα,β,γ(fa)≤ K

(1− |a|2)N−12 ∀a ∈BN. This implies:

(4.7) MXλ+α+β+N(g fa)≤ C0K

(1− |a|2)N−12 ∀a∈BN.

WithRandVaas in the previous proof, we obtain here:

Vag(a)≤

21 +R 1−R

AZ

B(a,Ra)

(1− |x|2)λ+α+β+Nfa(x)g(x) (1− |x|2)λ dx

≤ C0K (1− |a|2)N−12

21 +R 1−R

AZ

B(a,Ra)

dx (1− |x|2)λ and the last integral is majorized by C Va

λ(1−|a|2)λ withCλ defined similarly toCβ in the proof of Proposition3.1. Finally:

MX

λ+N−1 2

(g)≤ C0K

Cλ 2N+1+2β.

4.3. Proof of Theorem2.2in the case (iii) Herefais defined by:

fa(x) = 1

(1− hx, ai)A(1− |x|2)β+γ ∀x∈BN,

(26)

Multiplication of Subharmonic Functions

R. Supper vol. 9, iss. 4, art. 118, 2008

Title Page Contents

JJ II

J I

Page26of 40 Go Back Full Screen

Close

where A = N + 1− 2γ > 0. Theorem 4.1 is applied with P = 2γ > 0 and T = 0>−1. Thus

A+P =N + 1 =N + 1 + 2T.

We have to chooseτ satisfying both 0≤τ ≤ N + 1

2 and 2γ− N + 1

2 < τ <2γ.

Now

τ := N + 1

2 = A+P

2 =α+γ fulfills the last condition since:

2γ−τ = 2

γ−N + 1 4

>0 and τ −2γ+ N + 1 2 = 2

N + 1 2 −γ

>0.

Formula (4.3) impliesJb(fa)≤Kfor alla∈BN and allb ∈BN. ThusMYα,β,γ(fa)≤ K,∀a ∈BN. As before,

Vag(a)≤

21 +R 1−R

AZ

B(a,Ra)

(1− |x|2)A+β+γg(x) (1− hx, ai)A(1− |x|2)β+γdx.

Now

A+β+γ =N + 1−γ+β

=N + 1 +α− N + 1 2 +β

=α+β+N − N −1 2 ,

(27)

Multiplication of Subharmonic Functions

R. Supper vol. 9, iss. 4, art. 118, 2008

Title Page Contents

JJ II

J I

Page27of 40 Go Back Full Screen

Close

whence

Vag(a)≤

21 +R 1−R

AZ

B(a,Ra)

(1− |x|2)α+β+Nfa(x)g(x) (1− |x|2)N−12 dx

≤C0K

21 +R 1−R

AZ

B(a,Ra)

dx (1− |x|2)λ+N−12 and the proof ends as in the case (i). Here

MX

λ+N−1 2

(g)≤ C0K Cλ+N−1

2

2N+1−2γ.

4.4. Proof of Theorem2.2in the case (iv) Herefais defined by:

fa(x) = 1

(1− hx, ai)A(1− |x|2)β ∀x∈BN,

where A =N + 1, T =γ and P = 2γ thus A+P =N + 1 + 2T, allowing us to use Theorem 4.1, with τ = α + γ = 1 + γ (since 0 ≤ τ ≤ N2+1 + γ and γ− N+12 < τ <2γ). Hence Inequalities (4.4), (4.5), (4.6) and (4.7) follow. Now (4.8) Vag(a)≤

21 +R 1−R

AZ

B(a,Ra)

(1− |x|2)A+βfa(x)g(x)dx.

SinceA+β =α+β+N, this turns into:

Vag(a)≤

21 +R 1−R

AZ

B(a,Ra)

MXλ+α+β+N(g fa) (1− |x|2)λ dx

(28)

Multiplication of Subharmonic Functions

R. Supper vol. 9, iss. 4, art. 118, 2008

Title Page Contents

JJ II

J I

Page28of 40 Go Back Full Screen

Close

and the proof ends as in the case (ii), here with:

MX

λ+N−1 2

(g)≤ C0K Cλ 2N+1.

4.5. Proof of Theorem2.2in the case (v) Herefais defined by:

fa(x) = 1

(1− hx, ai)A(1− |x|2)γ ∀x∈BN, where

A=N+ 1 + 2(β−γ)> N+ 1−N + 3

2 = N −1 2 >0.

WithP = 2γ >0andT =β, the conditionA+P =N + 1 + 2T of Theorem4.1 is fulfilled. Moreoverτ :=α+γ = 1 +βsatisfies

0≤τ ≤ N + 1

2 +β and 2γ−N + 1

2 −β < τ <2γ since:

2γ−τ = 2γ−(1 +β)>0 and τ−2γ+N + 1

2 +β =−2γ+N + 3

2 + 2β >0.

Again

A+P

2 −τ = N + 1

2 −1 = N −1 2

and inequalities (4.4) to (4.7) follow. Formula (4.8) still holds with (1− |x|2)A+γ instead of(1− |x|2)A+β. Here

A+γ =N + 1 + 2β−γ =N +α+β

(29)

Multiplication of Subharmonic Functions

R. Supper vol. 9, iss. 4, art. 118, 2008

Title Page Contents

JJ II

J I

Page29of 40 Go Back Full Screen

Close

and the conclusion follows as in the previous case. Finally:

MX

λ+N−1 2

(g)≤ C0K

Cλ 2N+1+2(β−γ).

4.6. Proof of Theorem2.2in the case (vi) Herefais defined by:

fa(x) = 1

(1− hx, ai)A(1− |x|2)α ∀x∈BN

with A = N + β > N2−1 > 0, P = 2γ > 0, T = β−12 +γ > −1 (actually T + 1 = β+12 +γ >0). The use of Theorem4.1is allowed since

A+P =N + 1 +β−1 + 2γ =N + 1 + 2T.

Now τ := α+γ = β+12 +γ satisfies0 ≤ τ ≤ N2 +γ (because of γ > −β+12 ).

Moreoverγ −N2 < τ <2γis fulfilled too since β+ 1

2 < γ and β+ 1 + (N +β) = 1 +N + 2β >0.

In addition,

A+P

2 −τ = N +β

2 − β+ 1

2 = N −1 2 .

Again it induces Formula (4.6). With (1 − |x|2)A+β replaced by (1− |x|2)A+α, inequality (4.8) remains valid. Since A+α = N +α+β, the conclusion is once again obtained in a similar way as in the cases (iv) and (v), here with

MX

λ+N−1 2

(g)≤ C0K Cλ 2N+β.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

For example, the doubly nested loop structure of the insertion sort algorithm from Chapter 2 immediately yields an O(n 2 ) upper bound on the worst-case running time: the cost of

A heat flow network model will be applied as thermal part model, and a model based on the displacement method as mechanical part model2. Coupling model conditions will

The sigmoid-type functions that have the form (4) and the λ , a, P i , and P t parameters, can be used as control tools in new product or service introductions so that the

The present paper reports on the results obtained in the determination of the total biogen amine, histamine and tiramine content of Hungarian wines.. The alkalized wine sample

We determine three kinds of solutions, namely, biadditive, symmetric and skew-symmetric solution functions, subject to different sets of conditions on the functions involved..

In the history of rhetoric, the categories underlying the umbrella term litotes have included three different interpretations: (1) mitigation or reduction without negation, (2) a

There were a number of hypotheses about the modification of household saving behavior: lowering of household real incomes results in decreasing of saving rate, ruble

Is the most retrograde all it requires modernising principles and exclusive court in the world Mediaeval views and customs still prevailing Solemn obsequies at the late Emperor's