• Nem Talált Eredményt

Magnetic properties of Fe-Ag multilayers with varying layer

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Magnetic properties of Fe-Ag multilayers with varying layer "

Copied!
26
0
0

Teljes szövegt

(1)

Magnetic properties of Fe-Ag multilayers with varying layer

thickness and bilayer number

L.F. Kiss, J. Balogh, L. Bujdosó, D. Kaptás

Institute for Solid State Physics and Optics Wigner Research Centre for Physics

Hungarian Academy of Sciences, Budapest, Hungary

(2)

Outline

•Samples: Fe-Ag multilayers of the sequence

Si / buffer + (t

Fe

Fe + t

Ag

Ag)

n

+ cover

•Preparation

•Measurements: how does the blocking temperature (T

B

) depend on t

Fe

, t

Ag

and n?

•Consequences: general concepts determining the

magnetic structure of Fe-Ag multilayers

(3)

Sample preparation

Vacuum evaporation in 10-7 Pa with 0.01 nm/s for 57Fe Ag with electron guns

57Fe from Joule-heated W crucible target 1 (Ag)

target 2 (B, Nb)

substrate: untreated Si(111) wafer

(4)

Experimental details

•SQUID-magnetometer (Quantum Design MPMS-5S)

•Measuring range: 1.8 K  T  400 K and 0  H  5 T

•ZFC protocol: cooling in zero field and measuring during heating at a small field (typically 10 Oe)

•FC protocol: cooling at the measuring field and measuring during heating at the same field

•2 pieces of ca. 6 x 6 mm2 Si wafer on one another (each with the multilayer on the surface)

(5)

Magnetic properties of small particles Blocking temperature

H

10-20 Å V, Ms, K m = MsV

E = KV energy barrier H = 0

-dM/dt = f0M e-KV/kT  M /

, where f0  109 s-1

Mr = Mi e-t/,

where 1/

= f0 e-KV/kT

:= 100 s  Vp = ? 10-2 = 109 e-KVp/kT

KVp/kT = 25 V = const TB = KV/25k

(6)

Structure of the multilayers

Si Ag Fe cover

Si Ag Fe cover

Si Ag Fe cover

SPM SPM + FM FM

(7)

1 2 4 5 6 7 10 14 15 28 826

0 1

5.7 324

8 75 75

10 118

13 75 75 75

20 92 59 30

26 10,75,162 10 10,20 10 10

30 92

40 92 59

50 1-20 1 1,2,10 1,10

52-55 35,75 75

70 2-20

80 92

104 32

tAg (A)

tFe (A)

SPM SPM + FM FM

bilayer numbers

(8)

1 2 4 5 6 7 10 14 15 28 826

0 1

5.7 324

8 75 75

10 118

13 75 75 75

20 92 59 30

26 10,75,162 10 10,20 10 10

30 92

40 92 59

50 1-20 1 1,2,10 1,10

52-55 35,75 75

70 2-20

80 92

104 32

tAg (A)

tFe (A)

SPM SPM + FM FM

bilayer numbers

(9)

Dependence on Fe thickness

0 50 100 150 200 250 300

-20 0 20 40 60

10 Oe FC

ZFC

Si/50 A Ag + t A Fe + 50 A Ag

M (emu/g)

T (K)

4 A 5 A 7 A 10 A

SPM SPM + FM 1 layer

(10)

Dependence on Fe thickness

0 50 100 150 200 250 300

0 50 100 150 200

30x 10 Oe

10x

30x

M (emu/g)

T (K)

2 A 4 A 5 A 7 A

Si/26 A + (tFe 57Fe + 26 A Ag)10

SPM SPM + FM

0 T

0.3 T

-5 0 5

(4 A Fe + 26 A Ag)10

velocity (mm/s)

Intensity (a.u.)

0.5 T

(7 A Fe + 26 A Ag)10

0 T

Intensity (a.u.)

0.1 T

0.3 T

-5 0 5

velocity (mm/s)

0.5 T

10 layers

RT

Hhf increases with external field showing small-particle behaviour

(11)

Dependence on Fe thickness

Below tFe ~ 2-7 Å, SPM;

Above tFe ~ 2-7 Å, SPM + FM BUT it depends on tAg and n

0 50 100 150 200 250 300

-200 -100 0 100 200

20x

Si/50 A Ag + (tFe Fe + 50 A Ag)10

FC

ZFC

10 Oe

M (emu/g)

T (K)

4 A 7 A 10 A

SPM 10 layers

SPM + FM

(12)

1 2 4 5 6 7 10 14 15 28 826

0 1

5.7 324

8 75 75

10 118

13 75 75 75

20 92 59 30

26 10,75,162 10 10,20 10 10

30 92

40 92 59

50 1-20 1 1,2,10 1,10

52-55 35,75 75

70 2-20

80 92

104 32

tAg (A)

tFe (A)

SPM SPM + FM FM

bilayer numbers

(13)

Dependence on Ag thickness

0 50 100 150 200 250 300

-1 0 1 2 3 4

10 Oe

(1 A Fe + tAg Ag)75

M (emu)/g

T (K)

8 A 13 A

0 50 100 150 200 250 300

0 10 20 30

30x 10x

4.5x

10 Oe

(2 A Fe + tAg Ag)75

M (emu/g)

T (K)

8 A 13 A, 4.5x 26 A, 10x 54 A, 30x

SPM SPM SPM + FM

(14)

Dependence on Ag-layer roughness

0 50 100 150 200 250 300

-100 -50 0 50 100

12x 500 A

50 A

10 Oe

tAg Ag + 4 A Fe + 70 A Ag + 70 A Nb

M (emu/g)

T (K)

0 200 400 600

0 50 100

tAg (A)

TB (K)

TB increases with tAg above tAg ~ 50 Å

Around tAg ~ 50 Å, TB shows minimum, indicating pin-hole effect

J. Balogh, L. Bujdosó, D. Kaptás, I. Dézsi and A. Nakanishi, Phys.

Rev. B 85 (2012) 195429

(15)

1 2 4 5 6 7 10 14 15 28 826

0 1

5.7 324

8 75 75

10 118

13 75 75 75

20 92 59 30

26 10,75,162 10 10,20 10 10

30 92

40 92 59

50 1-20 1 1,2,10 1,10

52-55 35,75 75

70 2-20

80 92

104 32

tAg (A)

tFe (A)

SPM SPM + FM FM

bilayer numbers

(16)

Dependence on layer number

Why does TB depend on the layer number?

First idea: interactions between the Fe clusters

Contradiction: only slight

difference in TB between multi- layers with tAg = 50 and 70 Å

Second idea: the higher the layer position, the larger the cluster size because of the more and more irregular shape of the layers

0 5 10 15 20 25

0 50 100 150

solid: tAg = 50 A open: tAg = 70 A

50A Ag + (4A 57Fe + tAg Ag)n + cover

T B (K)

n

(17)

Dependence on layer position (n = 1)

0 50 100 150 200 250 300

-10 0 10 20 30

10 Oe top

bottom

Si/70 A Ag + 4 A Fe + (70 A Ag + 4 A Nb)19

M (emu/g)

T (K)

bottom top

TB is significantly higher for the top layer position

Si Ag Fe cover

Nb

19x

Si Ag Fe cover

Nb

19x

(18)

Dependence on buffer and cover layers

TB depends mainly on the buffer layer

0 50 100 150 200 250 300

-200 -100 0 100 200

50 A buffer + (7 A Fe + 50 A Ag)10 + 100 A cover

10 Oe

M ( emu/g)

T (K)

buffer: Ag, cover: Ag buffer: Ag, cover: W buffer: W, cover: W

(19)

Field dependence of magnetization

Description

M(H, T) = M0 L(mH/kBT) +

hfH where M0 = nm sat. magn.

n cluster density m cluster moment L Langevin function

hf high-field susceptibility m  1500 B

Dcluster ~ 2 nm

0 10000 20000 30000 40000 50000

0 50 100 150 200

250 Si/50 A Ag + 5 A 57Fe + 50 A Ag + 100 A Ag

M (emu/g)

H (Oe)

5 K 50 K 100 K 150 K 200 K 250 K 300 K

Generally: Dcluster ~ 1.4 – 2 nm

(20)

1 2 4 5 6 7 10 14 15 28 826

0 1

5.7 324

8 75 75

10 118

13 75 75 75

20 92 59 30

26 10,75,162 10 10,20 10 10

30 92

40 92 59

50 1-20 1 1,2,10 1,10

52-55 35,75 75

70 2-20

80 92

104 32

tAg (A)

tFe (A)

SPM SPM + FM FM

bilayer numbers

(21)

Magnetic map of Fe-Ag multilayers

(22)

Magnetic map of Fe-Ag multilayers

Video

(23)

Modeling the ZFC and FC curves

𝑍𝐹𝐶

𝑠2

𝐵 𝐵

𝑚 0

𝐵 𝑇

0

𝑇

𝐵 𝐵

𝐹𝐶

𝑠2

𝑚

0 𝐵 𝐵

𝑇

𝐵

𝐵 𝐵

𝑇

0

Stoner-Wohlfarth model: noninteracting, randomly oriented, single-domain particles

ZFC = Ms2/3K for T < TB

ZFC =

FC = Ms2V/3kT for T > TB where kTB ln(

m/

0) = KV

(24)

Modeling the ZFC and FC curves

0 20 40 60 80 100 120 140 160

0 5 10 15 20 25

/(M s2 /3K)

T (K)

20 K, wide 80 K, wide 20 K, narrow

0 50 100

0.0 0.1 0.2 f (TB)

T (K)

(25)

Summary

•Fe-Ag multilayers with different Fe (tFe) and Ag (tAg) thicknesses and bilayer numbers (n)

•Three organizing principles determining the magnetic structure of Fe-Ag multilayers

• -Critical Fe thickness tFecrit ~ 2-7 Å below which SPM behaviour is observed depends strongly on tAg and n

• -Pin holes and interaction between Fe layers below tAg ~ 50 Å

• -Increasing TB with increasing n is related to the increasing surface roughness due to columnar growth

•Typical cluster size Dcluster ~ 1.4 - 2 nm

L.F. Kiss, J. Balogh, D. Kaptás and L. Bujdosó, Phys. Rev. B 98 (2018) 144423

(26)

Thank you for your attention!

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

If we hope a qualitatively nice picture in the symmetry limit, g/s/ must decrease when s is increasing.For getting the cross section of NTT backward scattering the

HUNGARIAN ACADEMY O F SCIENCES CENTRAL RESEARCH INSTITUTE FOR

HUNGARIAN ACADEMY OF SCIENCES CENTRAL RESEARCH INSTITUTE FOR

The main profile of the institute is basic research in the fields of theoretical and experimental solid state physics and materials science including metal physics, crystal physics

Wigner Research Centre for Physics, 1 Jauary 2012 RMI: Institute for Particle and Nuclear Physics SZFI: Institute for Solid State Physics and Optics... F IELD

Under the coordination of the Institute of Solid State Physics and Optics of Wigner RCP, eight outside institutions also participate in the consortium: Budapest University

Luce Professor of Complex Systems Studies at Kalamazoo College, and also a research professor at the Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics,

Budapest, Institute of Economics, Centre for Economic and Regional Stud- ies, Hungarian Academy of Sciences, 2017..