• Nem Talált Eredményt

A refinement of Jensen‘s inequality

N/A
N/A
Protected

Academic year: 2022

Ossza meg "A refinement of Jensen‘s inequality"

Copied!
6
0
0

Teljes szövegt

(1)

Vol. 17, No.1, April 2009, pp 209-214 ISSN 1222-5657, ISBN 978-973-88255-5-0, www.hetfalu.ro/octogon

209

A refinement of Jensen‘s inequality

Mih´aly Bencze and Zhao Changjian18

ABSTRACT.In this paper we give a refinement and some applications of the inequality 1+x2 n1+x2 n

which is a particular case of the Jensen‘s inequality MAIN RESULTS

Theorem 1. Ifx≥0, n, k∈N, k≤n, then 1). xk+xnk ≤1 +xn

2). n 1 +xn+1

≥2 Pn

k=1

xn+1k 3). 2n 1 +x+x2+...+xn+1

≥(n+ 2) (1 +x) 1 +x+x2+...+xn 4). 1+x2n1+x+xn+12+...+xn1+x2 n

Proof.

1). xk+xnk ≤1 +xn is equivalent with xk−1

xnk−1

≥0,or (x−1)2

xk1+xk1+...+x+ 1 xnk1+xnk2+...+x+ 1

≥0 Using 1). we have

2). n 1 +xn+1

= Pn

k=1

1 +xn+1

≥ Pn

k=1

xk+xn+1k

= 2 Pn

k=1

xn+1k 3). The inequality

2n 1 +x+x2+...+xn+1

≥(n+ 1) (1 +x) 1 +x+x2+...+xn is equivalent with

1 +x+x2+...+xn+1

n+ 2 ≥

1 +x+...+xn n+ 1

1 +x 2

.

After elementary calculus we get:

n 1 +xn+1

≥2 Xn k=1

xn+1k

18Received: 16.03.2006

2000Mathematics Subject Classification. 26D15 Key words and phrases. Jensen‘s inequality.

(2)

which result from 2).

Using 1). we get

4). (n+ 1) (1 +xn) = Pn

k=0

(1 +xn)≥ Pn

k=0

xk+xnk

= 2 Pn

k=0

xk or 1 +xn

2 ≥ 1 +x+x2+...+xn n+ 1

The inequality 1+x+xn+12+...+xn1+x2 n

we prove by induction.

Forn= 1 we have equality, ifn= 2,then (x−1)2 ≥0,true. We suppose true for n,and we prove for n+ 1.But from 3) we get

1 +x+x2+...+xn

n+ 1 ≥

1 +x+...+xn n+ 1

1 +x 2

1 +x 2

n+1

,

therefore is true for all n∈N. Remark 1. The inequality

1 +xn

2 ≥ 1 +x+x2+...+xn

n+ 1 ≥

1 +x 2

n

is a new refinement of Jensen‘s inequality, for the function f(x) =xn, n∈N.

Corollary 1.1. If x≥0 the Yn k=0

xk+xnk

≤(1 +xn)n Proof. From Theorem 1, point 1) we get

Yn k=0

xk+xnk

≤ Yn k=0

(1 +xn) = (1 +xn)n Ifx= ab then we have the following.

Remark 2. If a, b >0 then Yn k=0

akbnk+ankbk

≤(an+bn)n

(3)

Corollary 1.2. If a, b >0 then an+bn

2 ≥ an+an1b+...+abn1+bn

n+ 1 ≥

a+b 2

n

for all n∈N.

Proof. In Theorem 1 we getx= ab.

Remark 3. If n= 2,then we obtain a problem of M. Lascu.

Corollary 1.3. If f :R→R is a convex and increasing function and g:R→R is a concave and increasing function, then

1). f(1)+f(x)+...+f(xn)

n+1 ≥f 1+x2 n 2). g(1)+g(x)+...+g(xn)

n+1 ≤g 1+x2n for all x≥0 andn∈N.

Proof. From Jensen‘s inequality and from Theorem 1 we get 1). f(1)+f(x)+...+f(xn)

n+1 ≥f

1+x+...+xn n+1

1+x2 n 2). g(1)+g(x)+...+g(xn)

n+1 ≤g

1+x+...+xn n+1

≤g 1+x2n

Corollary 1.4. If x, y, z >0,then Xx2 ≥ 2P

x2+P xy

3 ≥

Px2+P xy

2 ≥X

xy

Proof. In Corollary 1.2 we taken= 2 so we obtain x2+y2

2 ≥ x2+xy+y2

3 ≥

x+y 2

2

= x2+ 2xy+y2 4 and

Xx2 =Xx2+y2

2 ≥Xx2+xy+y2

3 = 1

3 2X

x2+X xy

≥Xx2+ 2xy+y2

4 =

Px2+P xy

2 ≥X

xy

Corollary 1.5. In all triangle ABC holds 1). 2 s2−r2−4Rr

13 5s2−3r2−12Rr

12 3s2−r2−4Rr

≥s2+r2+ 4Rr

2). s2−2r2−8Rr≥ 13 2s2−3r2−12Rr

12 s2−r2−4Rr

≥r(4R+r) 3). (4R+r)2−2s213

2 (4R+r)2−3s2

12

(4R+r)2−s2

≥s2

(4)

4). 2 8R2+r2−s2

13 5r2−8Rr+ 40R2−4s2

12 3r2−8Rr+ 16R2−2s2

≥s2+r2−8Rr 5). 2

(4R+r)2−s2

13

5 (4R+r)2−3s2

12

3 (4R+r)2−s2

≥s2+ (4R+r)2

Proof. In Corollary 1.4 we take (x, y, z)∈

(a, b, c),(s−a, s−b, s−c),(ra, rb, rc), sin2 A2,sin2 B2,sin2 C2 , cos2 A2,cos2 B2,cos2 C2

Corollary 1.6. If x, y, z >0 and a, b >0, then 1). P

x2aPx2a+b+bPxy ≥P xy 2). P

x2≥ P x2a

(P

xy)ba+b1

≥P xy

Corollary 1.7. If x≥0 andn∈N, n≥2,then 1 +x+x2+...+xn1

n

n−1n

≤ 1 +xn 2

Proof. The functionf(x) =xnn−1, x≥0 is convex, therefore from Theorem 1 point 4) we get

1 +x+x2+...+xn1 n

nn−1

=f

1 +x+x2+...+xn1 n

≤ f(1) +f(x) +...+f(xn)

n =

1 +xnn−1 + xnn−12

+...+

xnn−1n1

n ≤

≤ 1 +

xnn−1n1

2 = 1 +xn 2 Corollary 1.8. If f : (0,+∞)→R wheref(x) = √n

x, n∈N, n≥2, then exist c∈n

a+n b 2

;a+b2

,0< a≤b such that f(b)−f(a) = (b−a)f(c) Proof. We have f(b)−f(a) = (b−a)f(c) or

n

b−√n a

b−a = 1

n√n cn1

(5)

therefore

c=

 b−a n

n

b−√n a

n n1

=

=

n

an1−1 + √n

an2b+...+ √n

abn2+ √n bn1 n

!nn

−1

n

b+√n a 2

!n

which follows from Corollary 1.2 fora→ √n

a, b→ √n

b,n→n−1.

In same way c=

n

an1+ √n

an2b+...+ √n

abn2+ √n bn1 n

!nn−1

≤ a+b 2 which follows from Corollary 1.7 forx= qn

b a.

Remark 4. Because na+n b 2

n

≥√

ab, therefore for all n∈N, n≥2, c∈√

ab,a+b2 .

Open Question 1. Iff : (0,+∞)→R is convex and xk>0 (k= 1,2, ..., n),then

1). f(x1)+f(x2 2)

f(x1)+

Pn k=1

f x

2 x1

kn!

n+1 ≥f x1+x2 2 2). n1 Pn

k=1

f(xk)≥ n(n+1)1 Pn

k=1

f(xk) + P

cyclic

Pn k=1

f

x2

x1

nk!

≥f

1 n

Pn k=1

xk

Open Question 2. Iff : (0,+∞)→R is convex andn−time differentiable, then existpk>0 (k= 1,2, ..., n+ 1) such that for allx≥0 holds

1). 1+x2n

Pn k=0

xn−k (nk)!

Pn k=0

1 (nk)!

1+x2 n

2). f(1)+f(x)2

n+1P

k=1

pkf(k−1)(x)

n+1P

k=1

pk

≥f 1+x2

(6)

REFERENCES [1] Octogon Mathematical Magazine, 1999-2009.

[2] Bencze,M., Inequalities, (manuscript), 1982.

Str. H˘armanului 6, 505600 S˘acele-N´egyfalu Jud. Bra¸sov, Romania

E-mail: benczemihaly@yahoo.com

Department of Informatics and Mathematics China Jiling University,

Hangzhou 310018, China

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Faculty of Science and Informatics University of Szeged, Hungary 2015-2018 Bachelor’s Degree of Chemistry.. Faculty of Science and Informatics University of

1 Brno University of Technology, Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, 602 00 Brno, Czech Republic, and Brno University of

Department of Mathematics Department of Mathematics Zhejiang Xinchang High School Zhejiang Normal University Shaoxing 312500, Zhejiang Jinhua 321004, Zhejiang People’s Republic

WANG, Convex Functions and Their Inequalities, Sichuan University Press, Chengdu, China, 2001. WANG, On a chains of Jensen inequalities for convex

WANG, Convex Functions and Their Inequalities, Sichuan University Press, Chengdu, China, 2001.. WANG, On a chains of Jensen inequalities for convex

Equality on the left hand side of the double inequality (2.1) is valid if and only if triangle ABC is an isosceles triangle with top- angle greater than or equal to π 3 , and

1 Department of Microbiology, Faculty of Science and Informatics, University of Szeged; 2 Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences,

Jiahao Pang, The Hong Kong University of Science and Technology, Hong Kong SAR of China; Gene Cheung, National Institute of Informatics, Japan; Antonio Ortega, University of