• Nem Talált Eredményt

stable set for coalition function form games The equivalence of the minimal dominant set and the myopic Games and Economic Behavior

N/A
N/A
Protected

Academic year: 2022

Ossza meg "stable set for coalition function form games The equivalence of the minimal dominant set and the myopic Games and Economic Behavior"

Copied!
13
0
0

Teljes szövegt

(1)

Contents lists available atScienceDirect

Games and Economic Behavior

www.elsevier.com/locate/geb

The equivalence of the minimal dominant set and the myopic stable set for coalition function form games

P. Jean-Jacques Herings

a

,∗ , László Á. Kóczy

b

,

c

aDepartmentofEconomics,MaastrichtUniversity,P.O.Box616,6200MD,Maastricht,theNetherlands bCentreforEconomicandRegionalStudies,TóthKámánu.4.,1097Budapest,Hungary

cDepartmentofFinance,FacultyofEconomicsandSocialSciences,BudapestUniversityofTechnologyandEconomics, Magyar tudósok körútja 2,1117Budapest,Hungary

a rt i c l e i nf o a b s t ra c t

Articlehistory:

Received29May2020

Availableonline20February2021

JELclassification:

C71

Keywords:

Coalitionstructurecore Sequentialdominance

Incooperativegames,thecoalitionstructurecoreis,despiteitspotentialemptiness,oneof themostpopularsolutions.Whileitisafundamentallystaticconcept,theconsideration of a sequential extension of the underlying dominance correspondence gave rise to a selection of non-empty generalizations. Among these, the payoff-equivalence minimal dominant set and the myopic stable set are defined by asimilar set ofconditions. We identifysomeproblemswith thepayoff-equivalenceminimal dominantset and propose an appropriatereformulation called the minimaldominant set.We show that replacing asymptoticexternalstabilitybysequentialweakdominanceleaves themyopicstableset unaffected.Themyopicstablesetisthereforeequivalenttotheminimaldominantset.

©2021TheAuthor(s).PublishedbyElsevierInc.Thisisanopenaccessarticleunderthe CCBYlicense(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Thecoreisoneofthemostpopularsolutionconcepts incooperativegametheory.Itintroduces acoalitionalnotionof stability not unlike theNash equilibrium:once sucha proposalismade, it isnot abandoned.The similarities gofurther:

neither oftheseconcepts tellushow such agreements arereached. Suppose thegame starts withan arbitraryproposal:

howtomovefromthisproposaltoanacceptable,equilibriumallocation?

To ourknowledge Stearns (1968) wasthe first to lookat thisproblem by considering a recontractingprocess where myopic deviationsbycoalitions areconsidered asimprovements.Green(1974), Neuefeind(1974),andWu(1977) present resultsthatsuch improvementsalmost surelyorapproximatelyreachthecore.TheresultsofArnoldandSchwalbe(2002) extendeventoNTU-games.Morerecently,RothandVandeVate(1990),Diamantoudietal.(2004),KlausandKlijn(2007) andChen etal.(2016) show formatchingmarkets andSenguptaandSengupta (1994,1996), KóczyandLauwers(2004), andKóczy(2006) showforcoalitionalgamesthatthecorecanactuallybereached.Thelatterresultsprovetheexistenceof an upperboundonthenumberofstepsneeded.Thisboundhassincebeendrasticallylowered(Yang,2010,2011; Béalet al.,2012,2013a,b).

KóczythanksthesupportoftheNationalResearchDevelopmentandInnovationOffice (NKFIH)undergrantnumberK-128573. Thisresearchwas supportedbytheHigherEducationInstitutionalExcellenceProgram2020oftheMinistryofInnovationandTechnologyintheframeworkofthe‘Financial andPublicServices’researchproject(TKP2020-IKA-02)atCorvinusUniversityofBudapest.

*

Correspondingauthor.

E-mailaddresses:P.Herings@maastrichtuniversity.nl(P.J.J. Herings),koczy@krtk.mta.hu(L.Á. Kóczy).

https://doi.org/10.1016/j.geb.2021.02.003

0899-8256/©2021TheAuthor(s).PublishedbyElsevierInc.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

(2)

It is naturalto ask wheredo thesecoalitionalimprovements lead in casethecore is(possibly) empty.Sengupta and Sengupta (1994) define the setofviableproposals, Kóczyand Lauwers(2007) the payoff-equivalenceminimaldominantset1 andmostrecentlyDemuyncketal.(2019) themyopicstableset.Alltheseconceptsrelyonnotionsofsequentialdominance andbelongtothefamilyofstochasticsolutions(Packel,1981)withappropriaterestrictionsonthepermittedtransitions.

We identifya probleminthedefinitionof thepayoff-equivalence minimaldominantset; underthecurrentdefinition Theorem 4 ofKóczy andLauwers(2007) does nothold. The problemiscaused bythe incorporationof payoff-equivalent outcomesinthedominancecorrespondence.Wearguethatpayoffequivalenceshouldbedropped,whichleadstothenotion ofthe minimaldominantset.Wego onto show thatthe minimal dominantsetandthemyopic stablesetare equivalent, whereforthelatterconceptitdoesnotmatterwhetherstrictorweakdominanceisusedinthedefinition.Itthenfollows fromYang(2020) thatbothconceptsareincludedinthesetofviableproposals.

Accordingly, the structure of thepaper is asfollows. First,we introduce the basic terminologyand notation together withboththepayoff-equivalentminimaldominantsetandtheminimaldominantset.Thenweintroducethemyopicstable set anditsvariant basedonweak dominance calledtheweak dominancemyopic stableset.We presentourmain result showingtheequivalenceoftheminimal dominantset,themyopic stableset,andtheweakdominancemyopic stableset.

Finally, forthe class of proper simple games, we presenta general resultof payoff equivalence of the payoff-equivalent minimaldominantset,theminimaldominantset,andthemyopicstableset.

2. Thepayoff-equivalenceminimaldominantset

A characteristicfunction formgame isdefinedby a pair

(

N

,

v

)

,where N is a setof playerswithcardinalityn anda characteristicfunctionv

:

2N

RthatassignstoeachcoalitionC

N anumberv

(

C

)

R,calledtheworthofC,withthe usualconventionthat v

() =

0.Thecollectionofnon-emptycoalitionsisdenotedbyN.Acoalitionstructureisapartition P

= {

C1

, . . . ,

Cm

}

ofN.Itdescribeshowthegrandcoalitionisdividedintonon-overlappingsubcoalitions.Thecollectionof allcoalitionstructures,thatis,thecollectionofpartitionsofN,isdenotedby

.ForacoalitionC

N,let

C

denotethe partitionintosingletoncoalitions.Formally,wehavethat

C

= {{

i

} |

i

C

}

.

ForacoalitionstructureP

andacoalitionD

N,thepartners’set P

(

D

,

P

)

ofD inPistheunionofthosecoalitions inPthathaveanon-emptyintersectionwithD,theresidualplayers R

(

D

,

P)aretheplayersinthepartners’setoutsideD andtheoutsiders O

(

D

,

P)arealltheplayersoutsidethepartners’set,somoreformallywehave

P

(

D

,

P

) =

C∈P,CD=∅

C

,

(2.1a)

R

(

D

,

P

) =

P

(

D

,

P

) \

D

,

(2.1b)

O

(

D

,

P

) =

N

\

P

(

D

,

P

).

(2.1c)

Thecollectionofcoalitionstowhichtheoutsidersbelongisgivenby O

(

D

,

P

) = {

O

P

|

O

D

= ∅} .

Forcoalitionfunctionformgames,we definethesetofoutcomes X asthesetofcoalitionstructures

together withall individually rational payoff vectorsthat can be obtainedby allocating the worthsamong themembers of therespective coalitions:

X

=

(

P

,

u

) × R

N

| ∀

i

N

,

ui

v

({

i

})

and,

C

P

,

iC

ui

=

v

(

C

)

.

Givenan outcome x

X,we denotebyP(x

)

the projectionto itsfirst component,that is,thecoalitionstructure, andby u

(

x

)

the projection to its second component, that is,thepayoff vector. We can thus write x

= (

P

(

x

),

u

(

x

))

. The set X is non-empty sinceitalwayscontains theoutcome xwhereN ispartitionedintosingletons,so P

(

x

) =

N

,andeachplayer i

N receivesthepayoff v

( {

i

} )

.

KóczyandLauwers(2007) definethenotionofoutsider-independent dominance,towhichwewillreferasweakdomi- nanceinthispaper.

Definition2.1.Anoutcome y

X weaklydominatesanoutcomex

X bydeviatingcoalition D if

P(y

) = {

D

} ∪

R

(

D

,

P(x

))

O(D

,

P(x

))

, and

1 KóczyandLauwers(2007) usetheterminologyminimaldominantset,butfollowingthelaterliteraturewereservethistermforadifferentconcept.

(3)

foreveryi

D,ui

(

y

)

ui

(

x

)

andthereexistsi

Dsuchthatui

(

y

) >

ui

(

x

)

,

foreveryi

O

(

D

,

P(x

))

,ui

(

y

) =

ui

(

x

)

.

After a coalition D deviates, theresidual playersfall apartintosingletons,whereas theoutsiders stayintheir original coalitions. Utilities ofoutsiders arenot affected, whereas theutilities ofthe deviating playersall weaklyimprove andat least one deviating player strictly improves. Since y

X, it follows fromDefinition 2.1that

iDui

(

y

) =

v

(

D

)

and, for everyi

R

(

D

,

P(x

))

,ui

(

y

) =

v

( {

i

} )

.Thetreatmentofresidualplayerscorrespondstothe

γ

-modelofHartandKurz(1983).

ThepropertythatoutsidersarenotaffectedbyacoalitionaldeviationisalsoreferredtoascoalitionalsovereigntyinKonishi andRay(2003),RayandVohra(2014,2015),andHeringsetal.(2017).

Oneofthemostprominentset-valuedsolutionconceptsforcoalitionfunctionformgamesisthecoalitionstructurecore asdefinedinAumannandDrèze(1974).

Definition2.2.Thecoalitionstructurecore(CSC)of

(

N

,

v

)

isthesetofoutcomesx

X suchthat,foreverycoalitionC

N,

iC

ui

(

x

)

v

(

C

).

Inwords,thecoalitionstructurecoregivestothemembersofeachcoalitionatleastthepayofftheycanobtainbyforming thatcoalition.Itiseasytoprovideexampleswherethecoalitionstructurecoreisempty.

Letsome outcome x

X be given. The set ofall outcomes that weaklydominate x together withoutcome x itself is denotedby g

(

x

)

,so

g

(

x

) = {

x

} ∪ {

y

X

|

there isD

N such thatyweakly dominatesxbyD

} .

We definethetwo-foldcompositionof g by g2

(

x

) = {

z

X

| ∃

y

g

(

x

)

such thatz

g

(

y

) }

.Byinduction,we definethek- folditeration gk

(

x

)

asthesubsetof X thatcontainsalloutcomesobtainedbyacompositionofdominancecorrespondences of length k

N,that is, gk

(

x

) = {

z

X

| ∃

y

gk1

(

x

)

such thatz

g

(

y

) }

. Observe that forevery k

,

N ifk

,then gk

(

x

)

g

(

x

)

.Wedefinethesetofalloutcomesthatcanbereachedfromxbyafinitenumberofdominationsby gN

(

x

)

, so

gN

(

x

) =

k∈Ngk

(

x

).

Theoutcomesx

,

y

X arepayoffequivalentifu

(

x

) =

u

(

y

)

.Thenotionofpayoffequivalencepartitionsthesetofoutcomes into equivalence classes. We denote the equivalence class containing x by

[

x

]

. Kóczy and Lauwers (2007) say that the outcome y

X isaccessiblefromtheoutcome x

X ify

gN

(

x

)

or y ispayoffequivalent tox.Thesetofoutcomesthat areaccessiblefromxinthesenseofKóczyandLauwers(2007) canthereforebewrittenas

g

N

(

x

) =

gN

(

x

) ∪ [

x

].

ThecorrespondencegNmayfailtobetransitive.Asweareconsideringoutcomesaccessiblefromaccessibleoutcomesitis naturaltoconsideritstransitiveversion:

g

(

x

) =

g

(

x

) ∪ [

x

].

We define its two-foldcomposition by g2

(

x

) = {

z

X

| ∃

y

g

(

x

)

such thatz

g

(

y

)}

. Byinduction, we define the k-fold iteration gk

(

x

)

asthe subset of X that contains all outcomes obtainedby a composition ofdominance correspondences of length k

N,that is, gk

(

x

) = {

z

X

| ∃

y

gk1

(

x

)

such thatz

g

(

y

) }

. Observe that forevery k

,

N ifk

,then gk

(

x

)

g

(

x

)

.Wedefinethesetofalloutcomesthat canbereachedfromxbyafinitenumberofdominationsandpayoff equivalencesby gN

(

x

)

,so

gN

(

x

) =

k∈Ngk

(

x

).

Itiseasilyseenthat

gN

(

x

)

g

N

(

x

) =

gN

(

x

) ∪ [

x

].

Inthispaper,wesaythattheoutcome y

X isaccessiblefromtheoutcomex

X if y

gN

(

x

)

.

Definition2.3.Let

(

N

,

v

)

be a coalition function form game. The set

X isa payoff-equivalenceminimaldominantset (PEMDS)ifitsatisfiesthefollowingthreeconditions:

1. Closure:Foreveryx

,gN

(

x

)

.

2. Accessibility:Foreveryx

/ ,

gN

(

x

) = ∅

.

(4)

3. Minimality:Thereisnoset

thatsatisfiesConditions1 and2.

Wearguenextthatmultiplepayoff-equivalenceminimaldominantsetscannotco-exist.Theargumentreliesheavilyon thetransitivityofgN.

Theorem2.4.Acoalitionfunctionformgame

(

N

,

v

)

canhaveatmostonePEMDS.

Proof. Let

1 and

2 both be a PEMDS of

(

N

,

v

)

. We argue that

1

2 satisfies Closure andAccessibility,which by Minimalityimpliesthat

1

=

2.NoticethatAccessibilityof

1

2impliesthat

1

2

=

.

ToshowClosurefor

1

2,letx

1

2 andy

gN

(

x

)

.Thengiventhatx

1and

1satisfiesClosure,itmustbe that y

1.Alsogiventhatx

2 and

2 satisfiesClosure,itmustbethat y

2.Thisimpliesthat y

1

2 aswas tobeshown.

ForAccessibility,takeanyx

/

1

2.Therearethreecasestoconsider.

Case1.x

1

\

2.Then, byAccessibility of

2,there is y

2 such that y

gN

(

x

)

.ByClosureof

1,wehavethat y

1.Thismeansthat y

1

2,whichiswhatweneededtoshow.

Case2.x

2

\

1.TheproofissymmetrictoCase 1with

1 and

2interchanged.

Case3.x

X

\ (

1

2

)

.Weknow,byAccessibilityof

1,thatthereis y

1 suchthat y

gN

(

x

)

.If y

2,weare done. Ifnot,thenwe knowfromCase 1that thereis z

1

2 suchthat z

gN

(

y

)

.It followsfromtransitivity of gN that z

gN

(

x

)

.

Kóczy andLauwers(2007) also assertexistence ofa PEMDSfora coalitionfunction formgame

(

N

,

v

)

.Unfortunately, Kóczy and Lauwers (2007) do not use Accessibility consistently, formost of the paper the correspondence gN is used interchangeablywith gN.MostnotablyTheorem 4ofKóczyandLauwers(2007) isfalse.Theproblematicassertionisthat thereexistsanaturalnumber

τ ∈

Nsuchthatforalloutcomesx

,

y

X wehavethat y

gN

(

x

)

ifandonlyify

gτ

(

x

)

.

Thefollowingisacounterexample.

Example2.5.Consider a game with N

= {

1

,

2

}

and v

(

C

) = |

C

|

for all C

N and the outcome x where P

(

x

) = {

N

}

and u

(

x

) = (

1

,

1

)

.ThisisanelementofthecoalitionstructurecoreCSC andthereforeg

(

x

) =

gN

(

x

) = {

x

}

.Ontheotherhandthe outcome ywhereP

(

y

) =

N

andu

(

y

) =

u

(

x

)

ispayoffequivalent toxandistherefore,bydefinition,accessible.Contrary totheassertionoftheaforementionedTheorem,wehavethat y

gN

(

x

)

gN

(

x

)

,whereas y

/

gN

(

x

)

.

3. Theminimaldominantset

It is clear that payoff equivalence causes problems, while it turns out that it is completely superfluous and can be eliminated.Inthissectionwedroppay-off equivalencefromthedominancecorrespondence.Otherpapersintheliterature studyingthepayoff-equivalenceminimaldominantsethavedonesoaswell,seeforinstanceYang(2011,2020).Thismakes also sense froma conceptual point of view.For a new coalition to form, atleast one of the coalition members should improve,whichisnotthecaseunderpayoffequivalence.

Definition3.1.Let

(

N

,

v

)

beacoalitionfunctionformgame.Theset

X isaminimaldominantset(MDS)ifitsatisfiesthe followingthreeconditions:

1. Closure:Foreveryx

,gN

(

x

)

.

2. Sequentialweakdominance:Foreveryx

/

,gN

(

x

) = ∅

. 3. Minimality:Thereisnoset

thatsatisfiesConditions1 and2.

Definition3.1isobtainedfromDefinition2.3byreplacingthecorrespondence gNby gN.The onlydifferencebetween thesecorrespondencesistheabsenceofpayoffequivalenceinthelatter,soforevery x

X itholdsthat gN

(

x

)

gN

(

x

)

.

TheproofofTheorem 4ofKóczyandLauwers(2007) reliesonaconstructionwherethesetofoutcomesispartitioned intosimilarity classes.Similarityclassesareclosed andconvexsets ofoutcomesdeterminedby thecoalitionaldeviations they are subjectto.Notably, twodistinct payoff-equivalentoutcomesbelong to differentsimilarityclasses andtheir pay- off equivalenceis not takeninto accountat all.As a result, ifwe replace Accessibility withSequentialweak dominance, Theorem 4ofKóczyandLauwers(2007) holds.

Theorem3.2.Let

(

N

,

v

)

beagame.Thenthereexistsanaturalnumber

τ ∈

Nsuchthatforalloutcomesx

,

y

X wehavethat y

gN

(

x

)

ifandonlyify

gτ

(

x

)

.

Whilethisresultpresentsnoexplicitbounds,Yang(2011) showsthatelementsoftheMDScanbereachedinanumber ofstepsthatisquadraticinn.

Next,wecanproceedasinKóczyandLauwers(2007) toshowthefollowingresult.

(5)

Theorem3.3.Acoalitionfunctionformgame

(

N

,

v

)

hasauniqueMDS.Ifthecoalitionstructurecoreofthegameisnon-empty,then itisequaltotheMDS.

It followsfrom a counterexamplein Bhattacharya andZiad(2006) that Theorem 3.3cannot be extended to thenon- transferableutilitycase;Kóczy(2018,p. 99) conjecturesthesameforpartitionfunctionformgames.

Whatistheeffectoftheremovalofpayoffequivalenceonthesolutionconcept?Notethatforagenericcoalitionfunction formgame

(

N

,

v

)

,ifP,Q

aredifferentpartitionsofN,soP

=

Q,then

C∈Pv

(

C

) =

C∈Qv

(

C

)

.

Theorem 3.4.Let

(

N

,

v

)

be a coalitionfunction formgame suchthat, forevery P,Q

suchthatP

=

Q,

C∈Pv

(

C

) =

C∈Qv

(

C

)

.Then

isanMDSof

(

N

,

v

)

ifandonlyifitisaPEMDSof

(

N

,

v

)

.

Proof. TheassumptionofTheorem3.4impliesthatpayoffequivalencescannotoccur.Therefore,itholdsthat gN

=

gN. Theorem3.4establishesthatforgenericcoalitionfunctionformgames,thePEMDScoincideswiththeMDS.

Apartfromthegenericcasewheremultiplepartitionswiththesametotalpayoffdonotexist,thereisanotherinteresting classofcoalitionfunctionformgameswherethepredictionsofPEMDSandMDScoincide,that is,coalitionfunction form gameswithanon-emptycoalitionstructurecore.

Theorem3.5.Let

(

N

,

v

)

beacoalitionfunctionformgamewithanon-emptycoalitionstructurecore.ThenthePEMDSof

(

N

,

v

)

is equaltothecoalitionstructurecore.

Proof. We arguefirst that anyelement ofthe coalitionstructure corebelongs toa PEMDS. Assume that

isa PEMDS.

Let x

CSC. It holds that gN

(

x

) = {

x

}

. Forevery y

∈ [

x

]

, it holds that y belongs to CSC, so gN

(

y

) = {

y

}

and therefore gN

(

x

) = [

x

]

.

Suppose x

/

.Then, wehave gN

(

x

) = [

x

] ∩ = ∅

.Closureof

nowimplies

[

x

] ⊆

,contradicting x

/

.Conse- quently,itholdsthatx

.

We arguethat CSC satisfies Closure andAccessibility,whichby Minimality impliesthat

=

CSC.We alreadyshowed thatforeveryx

CSC wehavegN

(

x

) = [

x

]

.ThisshowsClosure.

By Theorem 3.3, it holds that the MDS of

(

N

,

v

)

is equal to CSC, so CSC satisfies Sequential weak dominance and thereforeAccessibility.

It followsfromTheorems 3.3and3.5thattheMDS andthe PEMDScoincide forcoalitionfunctionformgameswitha non-emptycoalitionstructurecore.

WenowpresentanexamplewheretheMDSisapropersubsetofthePEMDS.

Example3.6.Let

(

N

,

v

)

be the three-playersimple majoritygame,so N

= {

1

,

2

,

3

}

and v

( {

1

,

2

} ) =

v

( {

1

,

3

} ) =

v

( {

2

,

3

} ) =

v

(

N

) =

1,whereastheworthofanyothercoalitionisequaltozero.ItholdsthatCSC

= ∅

.LetM

= {{

1

,

2

} , {

1

,

3

} , {

2

,

3

}}

be thesetofminimalwinningcoalitions.Considertheset F

X definedby

F

= {

x

X

|

P

(

x

)

M

= ∅} ,

so in payoffterms the set F isgiven by thefacets ofthe unit simplex. It iseasily verified that F satisfiesClosure with respectto gN andAccessibility.Moreover, forevery x

F,itholdsthat gN

(

x

) =

F,sothereisnopropersubset ofF that satisfiesClosurewithrespectto gN andAccessibility.ItfollowsthattheMDSof

(

N

,

v

)

isequalto F.Thepredictionofthe MDSisthataminimalwinningcoalitionformsandoneplayerbecomesasingleton.Itisexcludedthatthegrandcoalition forms.

ThesetF isnotaPEMDS,sinceoutcomeswhicharepayoffequivalenttooutcomesinF maynotbelongtoF themselves.

Forinstance,foreveryx

F itholdsthat y

X definedbyP

(

y

) = {

N

}

andu

(

y

) =

u

(

x

)

ispayoffequivalenttox,butisnot partof F.WedefinethesetF

X by

F

=

F

∪ {

x

X

|

P

(

x

) = {

N

}

and there existsi

Nsuch thatui

(

x

) =

0

}

= {

x

X

|

P

(

x

)(

M

∪ {

N

}) = ∅

and there existsi

Nsuch thatui

(

x

) =

0

}.

ItiseasilyverifiedthatthePEMDSof

(

N

,

v

)

isgivenby F.

Example3.6presentsanexamplewherethePEMDSisdifferentfromtheMDS,butthesamewhenprojectedtothespace ofpayoffs.Thisturnsouttobeageneralfeatureofso-calledpropersimplegamesaswewillformallystateinTheorem6.1.

Itisnaturaltoaskifthepropertyholdsingeneral:shouldweignorepartitionsandfocusonthepayoffvectorsonly,dowe haveequivalence?Thenextexampleanswersthisquestioninthenegative.

(6)

Fig. 1.An illustration of Example3.7. Arrows indicate weak dominances, dashed lines payoff equivalence. Not all weak dominances are displayed.

Example3.7.Considerthefollowing5-playerexample.Coalitions

{

1

,

2

} , {

1

,

3

}

,and

{

2

,

3

}

haveaworthof1;sodoescoalition

{

4

,

5

}

.Thegrandcoalition

{

1

,

2

,

3

,

4

,

5

}

hasaworthof2.

TheMDSequalstheunionofthefacetsofthesimplexonplayers

{

1

,

2

,

3

}

,withoneofthetwo-playersubsetsforming asa coalition,plus an arbitrarypayoffdivision of theworth of1 ofcoalition

{

4

,

5

}

.The grandcoalitiondoesnot havea profitabledeviationfromthis,soisnotpartoftheMDS.Ontheotherhand,itispartofaPEMDS

bypayoffequivalence.

Now atleast one of the coalitions

{

1

,

2

} , {

1

,

3

}

, or

{

2

,

3

}

can deviate, andplayers 4 and5 become singletons. Now the grandcoalitioncandeviatewithapayoffvectordifferentfromanypayoffvectorintheMDS.OnecanshowthatthePEMDS containsmuchmoreoftheoutcomesalthoughnotall–withonetrivialexampleindicatedinFig.1.

4. Themyopicstableset

Demuynck et al.(2019) introduce the solutionconcept ofthe myopicstableset forgeneral social environments. They then use theconcept to study specific social environments comingfromapplications like coalitionfunction formgames, matchingmodels,networks,andnon-cooperativegames.Wenowexplainhowthesolutionconceptisdefinedwhenapplied tocoalitionfunctionformgames.

Definition4.1.Anoutcome y

X dominatesanoutcome x

X bydeviatingcoalition D if

P

(

y

) = {

D

} ∪

R

(

D

,

P

(

x

))

O

(

D

,

P

(

x

))

, and

foreveryi

D,ui

(

y

) >

ui

(

x

)

,

foreveryi

O

(

D

,

P(x

))

,ui

(

y

) =

ui

(

x

)

.

The only difference betweenDefinitions 2.1 and4.1 is that the condition that at leastone memberof the deviating coalitionstrictlyimproveshasbeenreplacedbytherequirementthatallmembersofthedeviatingcoalitionstrictlyimprove.

Letsome outcomex

X begiven. Thesubset ofX consistingofalloutcomesthatdominatextogetherwithoutcome x itselfisdenotedby f

(

x

)

,so

f

(

x

) = {

x

} ∪ {

y

X

|

there isD

Nsuch thatydominatesxbyD

} .

As before, we define the two-fold composition of f by f2

(

x

) = {

z

X

|∃

y

f

(

x

)

such thatz

f

(

y

) }

. By induction, we define the k-fold iteration fk

(

x

)

asthe subset of X that contains all outcomesobtainedby a composition ofdominance correspondencesoflengthk

N,thatis, fk

(

x

) = {

z

X

|∃

y

fk1

(

x

)

such thatz

f

(

y

) }

.Observethatforeveryk

,

Nif k

,then fk

(

x

)

f

(

x

)

.Wedefinethesetofalloutcomesthatcanbereachedfromxbyafinitenumberofdominations by fN

(

x

)

,so fN

(

x

) =

k∈Nfk

(

x

)

.

Anoutcome y issaidtoasymptoticallydominatetheoutcomexifstartingfromx,itispossibletogetarbitrarilycloseto y inafinitenumberofdominations.Wedefinethemetricdon X bysettingforeveryx

,

y

X,

d

(

x

,

y

) = 1

{P(x)=P(y)}

+

u

(

x

)

u

(

y

)

,

where1istheindicatorfunctionand

·

∞istheinfinitynorm.

Notice that payoff-equivalent outcomeswith differentunderlying partitions are not neardue tothe first term ofthe metric.

(7)

Definition4.2.Anoutcome y

X asymptoticallydominatesanoutcome x

X ifforevery

ε >

0 thereexistsanumberk

N andanoutcomez

fk

(

x

)

suchthatd

(

y

,

z

) < ε

.

Wedenoteby f

(

x

)

thesetofalloutcomesin X thatasymptoticallydominatex.Formally,wehave f

(

x

) = {

y

X

|∀ ε >

0

,

k

∈ N, ∃

z

fk

(

x

) :

d

(

y

,

z

) < ε }.

Itiseasytoseethattheset f

(

x

)

coincideswiththeclosureoftheset fN

(

x

)

. Wearenowreadytodefinethemyopicstableset,abbreviatedasMSS.

Definition4.3.Let

(

N

,

v

)

bea coalitionfunctionformgame.Theset M

X isa myopicstableset(MSS) ifitisclosedand satisfiesthefollowingthreeconditions:

1. Deterrenceofexternaldeviations:Foreveryx

M, f

(

x

)

M.

2. Asymptoticexternalstability:Foreveryx

/

M, f

(

x

)

M

= ∅

.

3. Minimality:ThereisnoclosedsetMMthatsatisfiesConditions1 and2.

Let M be an MSS. Deterrence of external deviations requires that no coalition can profitably deviate to an outcome outside M.Asymptoticexternalstability requiresthatanyoutcome outsideM isasymptoticallydominatedbyanoutcome inM.Hence,fromanyoutcomeoutsideofMitispossibletogetarbitraryclosetoanoutcomeinM byafinitenumberof dominations.Observethat anempty setwouldnecessarilyviolate externalstability,soanyMSSisnon-empty.Minimality imposes that there is no smallerclosed set of outcomesthat satisfies Deterrence ofexternal deviationsand Asymptotic externalstability.

Apartfromtheuseofthe dominancecorrespondenceinstead oftheweakdominance correspondence, thereare three differencesbetweentheMSSandtheMDS.TherequirementofClosureforMDShasbeenreplacedbyDeterrenceofexternal deviationsinMSS.Since“forevery x

M, f

(

x

)

M”implies“forevery x

M, fN

(

x

)

M,”thisdifferencereducestothe use ofthe dominance correspondenceinsteadof theweak dominance correspondence. The second difference is thatthe requirementof Sequentialweak dominancein MDSisbased onthe finitelyiterateddominance correspondence, whereas AsymptoticexternalstabilityinMSSisbasedontheasymptoticdominancecorrespondence.Finally,theMSSisaclosedset bydefinition.

Demuyncketal.(2019) showthefollowingresult.

Theorem4.4.Acoalitionfunctionformgame

(

N

,

v

)

hasauniqueMSS.Ifthecoalitionstructurecoreofthegameisnon-empty,then itisequaltotheMSS.

AsaconsequenceofTheorems3.3,3.5,and4.4,weconcludethattheMDS,thePEMDS,andtheMSScoincidewhenever CSC

= ∅

.Example3.6showsthatingeneralMDSandPEMDSarenotthesame.WenextarguethatinExample3.6,theMSS coincideswiththeMDS.

Example4.5.As in Example 3.6, let

(

N

,

v

)

be the three-player simple majority game, so N

= {

1

,

2

,

3

}

and v

({

1

,

2

}) =

v

( {

1

,

3

} ) =

v

( {

2

,

3

} ) =

v

(

N

) =

1,whereastheworth ofanyother coalitionisequaltozero.Recall thatM

= {{

1

,

2

} , {

1

,

3

} , {

2

,

3

}}

isthesetofminimalwinningcoalitions.ItfollowsfromTheorem 4.5inDemuyncketal.(2019) thattheMSSisequal totheset

F

= {

x

X

|

P

(

x

)

M

= ∅},

sotheMSScoincideswiththeMDS.

TheequivalenceoftheMSSandtheMDSholdsingeneral;thisisthetopicofthenextsection.

5. Equivalence

BeforeshowingtherelationbetweentheMSSandMDS,we firstintroduceanotherconcept,theweak dominanceMSS, whichresultsfromreplacingthedominancecorrespondenceintheMSSbytheweakdominancecorrespondence.

Definition5.1.Let

(

N

,

v

)

be a coalition function formgame. Theset W

X isa weakdominancemyopicstableset(weak dominanceMSS)ifitisclosedandsatisfiesthefollowingthreeconditions:

1. Deterrenceofweakexternaldeviations:Foreveryx

W,g

(

x

)

W. 2. Asymptoticweakexternalstability:Forevery x

/

W,g

(

x

)

W

= ∅

.

(8)

3. Minimality:ThereisnoclosedsetWW thatsatisfiesConditions1 and2.

Theweak dominanceMSShasalsobeenstudiedinDemuyncketal.(2019) anditisexplainedtherehowmostresults establishedfortheMSScarryovertotheweakdominanceMSSforgeneralsocialenvironments.

We show next thatthe concepts ofMSSandweak dominance MSSare equivalent whenapplied to coalitionfunction formgames.

To do so, we need two lemmas first. The first one makes clear that Asymptotic external stability, Asymptotic weak externalstability,andSequentialweakdominanceareequivalent.

Lemma5.2.Let

(

N

,

v

)

beacoalitionfunctionformgame.Foreveryx

X itholdsthatf

(

x

) =

g

(

x

) =

gN

(

x

)

. Proof. Letx

X.

Lemma 9inKóczyandLauwers(2007) statesthat gN

(

x

)

isaclosedset,so g

(

x

) =

gN

(

x

)

. Since f

(

x

)

g

(

x

)

,itfollowsimmediatelythat f

(

x

)

g

(

x

) =

gN

(

x

)

.

Toshow the reverseinclusion, letsome y

gN

(

x

)

and

ε >

0 begiven. We havetoshow that there exists

Nand z

f

(

x

)

suchthatd

(

y

,

z

) < ε

.

Since y

gN

(

x

)

thereexistsasequenceofoutcomes

(

x0

, . . . ,

x

)

suchthatx0

=

x,foreveryk

=

1

, . . . ,

,xk

g

(

xk1

)

,and x

=

y.Fork

=

1

, . . . ,

,let Dkbethedeviatingcoalitionthatchangestheoutcomefromxk1toxkandPk

=

P

(

Dk

,

P

(

xk1

))

be the partners’ set of Dk in P(xk1

)

. We also define Rk

=

Pk

\

Dk and Ok

=

N

\

Pk as the setof residual playersand outsiders,respectively.Wehavethat

ui

(

xk

) =

v

({

i

}),

i

Rk

,

ui

(

xk

) =

ui

(

xk1

),

i

Ok

.

We define Wk

Dk tobe the,possiblyempty, propersubset of Dk consistingofplayersthat onlyweakly improvewhen movingfromoutcomexk1tooutcomexk,soforevery i

Wk itholdsthatui

(

xk1

) =

ui

(

xk

)

.Wedefine

δ =

min

k∈{1,...,} min

iDk\Wkui

(

xk

)

ui

(

xk1

), ε

=

min

{δ, ε },

so

δ

isthesmallestimprovementofanyofthestrictlyimprovingplayersinvolvedinanymovealongthesequence.Itholds that

δ >

0 andthereforethat

ε

>

0.Fork

∈ {

0

, . . . , }

,define

ν

k

=

n2k n2+1

.

We define e

(

Wk

) =

0 if Wk

= ∅

ande

(

Wk

) =

1 otherwise. We usethesequence

(

x0

,

x1

, . . . ,

x

)

ofoutcomesto definea newsequence

(

x0

,

x1

, . . . ,

x

)

ofoutcomesbysettingx0

=

x0 and,foreveryk

∈ {

1

, . . . , }

,

P

(

xk

) =

P

(

xk

),

ui

(

xk

) =

⎧ ⎪

⎪ ⎪

⎪ ⎨

⎪ ⎪

⎪ ⎪

ui

(

xk

) + ε

ν

k|Dk\Wk|

|Wk|

,

i

Wk

,

ui

(

xk

)ε

ν

ke

(

Wk

),

i

Dk

\

Wk

,

ui

(

xk

) =

v

( {

i

} ),

i

Rk

,

ui

(

xk1

),

i

Ok

.

Some ofthesedefinitionsneedsomeexplanation.Noticefirstthat thefirstlinedoesnotentailadivision byzero,sinceif i

Wk,then Wk

= ∅

.The payoff fortheoutsidersin Ok istheonly onethat directlydependson xk1 since thatpayoff cannotbemodifiedbythedeviation.Itisalsodifferentfromui

(

xk1

)

asitmayhavebeenmodifiedbypreviousdeviations, when,forexample,i

Wk1

Ok.

Compared to the sequence

(

x0

,

x1

, . . . ,

x

)

,the sequence

(

x0

,

x1

, . . . ,

x

)

is such that each strictly improving player in Dk

\

Wk donates an amount

ε

ν

k

/ |

Wk

|

to each of the players in Wk whenever the latter set is non-empty. It is also importanttoobservethatthefraction

ν

kisann2 multipleof

ν

k1 andthat

ν

=

1

/

n.

We showfirst byinduction that,foreveryk

∈ {

0

, . . . , }

,xk

X.Obviously,itholds that x0

=

x0

X.Assume that,for somek

∈ {

1

, . . . , }

,xk1

X.Weshowthatxk

X.Itholdsthat

ui

(

xk

) >

ui

(

xk

)

v

( {

i

} ),

i

Wk

,

ui

(

xk

)

ui

(

xk1

) + δε

ν

k

>

ui

(

xk1

) + δε

ui

(

xk1

)

v

({

i

}),

i

Dk

\

Wk

,

ui

(

xk

) =

v

({

i

}),

i

Rk

,

ui

(

xk

) =

ui

(

xk1

)

v

({

i

}),

i

Ok

,

Ábra

Fig. 1. An illustration of Example 3.7. Arrows indicate weak dominances, dashed lines payoff equivalence

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Essential minerals: K-feldspar (sanidine) &gt; Na-rich plagioclase, quartz, biotite Accessory minerals: zircon, apatite, magnetite, ilmenite, pyroxene, amphibole Secondary

But this is the chronology of Oedipus’s life, which has only indirectly to do with the actual way in which the plot unfolds; only the most important events within babyhood will

“The Czech Republic is sticking to its position of rejecting any mandatory quota system for redistributing asylum-seekers among European Union member states”, argued Sobotka ahead

In partition function form games (Thrall and Lucas, 1963), where the value of a coalition depends on the entire coalition structure it is embedded in, the coali- tion does not

Applied for two-sided assignment games, Solymosi (1999) proved the coincidence of the classical bargaining set and the core, by using the result of Granot and Granot (1992) who

the set of term operations of any algebra A is a function clone, and in fact every function clone is of this form; moreover, the polymorphism clone Pol(Γ) of any first-order

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the

Given n criteria, the evaluator needs to set the weight of each subset of the set of criteria, 2 n − 2 values in total (the weights of the empty set and the whole set of criteria