• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
10
0
0

Teljes szövegt

(1)

volume 7, issue 4, article 127, 2006.

Received 08 May, 2006;

accepted 10 August, 2006.

Communicated by:B. Yang

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

A REFINEMENT OF VAN DER CORPUT’S INEQUALITY

DA-WEI NIU, JIAN CAO, AND FENG QI

School of Mathematics and Informatics Henan Polytechnic University

Jiaozuo City, Henan Province 454010, China

EMail:nnddww@hotmail.com EMail:21caojian@163.com

Research Institute of Mathematical Inequality Theory Henan Polytechnic University

Jiaozuo City, Henan Province 454010, China

EMail:nnddww@hotmail.com URL:http://rgmia.vu.edu.au/qi.html

c

2000Victoria University ISSN (electronic): 1443-5756 136-06

(2)

A Refinement of van der Corput’s Inequality Da-Wei Niu, Jian Cao and Feng Qi

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of10

J. Ineq. Pure and Appl. Math. 7(4) Art. 127, 2006

http://jipam.vu.edu.au

Abstract

In this note, a refinement of van der Corput’s inequality is given.

2000 Mathematics Subject Classification:Primary 26D15.

Key words: Refinement, van der Corput’s inequality, Harmonic number.

The authors were supported in part by the Science Foundation of the Project for Fostering Innovation Talents at Universities of Henan Province, China

Contents

1 Introduction. . . 3 2 Lemmas . . . 6 3 Proof of Theorem 1.1 . . . 8

References

(3)

A Refinement of van der Corput’s Inequality Da-Wei Niu, Jian Cao and Feng Qi

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of10

J. Ineq. Pure and Appl. Math. 7(4) Art. 127, 2006

http://jipam.vu.edu.au

1. Introduction

Letan≥0forn∈Nsuch that0<P

n=1(n+ 1)an<∞, andSn=Pn m=1

1 m, the harmonic number. Then van der Corput’s inequality [5] states that

(1.1)

X

n=1 n

Y

k=1

a1/kk

!Sn1

< e1+γ

X

n=1

(n+ 1)an,

whereγ = 0.57721566. . . stands for Euler-Mascheroni’s constant. The factor e1+γin (1.1) is the best possible.

In 2003, Hu in [3] gave a strengthened version of (1.1) by

(1.2)

X

n=1 n

Y

k=1

a1/kk

!Sn1

< e1+γ

X

n=1

n− lnn 4

an.

Recently, Yang in [7] obtained a better result than Hu’s inequality (1.2) as

(1.3)

X

n=1 n

Y

k=1

a1/kk

!Sn1

< e1+γ

X

n=1

n− lnn 3

an.

Moreover, he also extended (1.1) in [7] as follows

(1.4)

X

n=1 n

Y

k=1

a1/(k+β)k

!Sn(β)1

< e1+γ(β)

X

n=1

n+ 1

2+β

an,

(4)

A Refinement of van der Corput’s Inequality Da-Wei Niu, Jian Cao and Feng Qi

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of10

J. Ineq. Pure and Appl. Math. 7(4) Art. 127, 2006

http://jipam.vu.edu.au

whereβ ∈(−1,∞),Sn(β) =Pn k=1

1 k+β, and γ(β) = lim

n→∞

" n X

k=1

1

k+β −ln(n+β)

# .

Applyingβ = 0in (1.4) leads to

(1.5)

X

n=1 n

Y

k=1

a1/kk

!Sn1

< e1+γ

X

n=1

n+ 1

2

an,

which improved inequality (1.1) clearly, but is not more accurate than (1.2) and (1.3).

In [1], among other things, the authors established a sharper inequality than (1.1), (1.2), (1.3) and (1.5) as follows

(1.6)

X

n=1 n

Y

k=1

a1/kk

!Sn1

< e1+γ

X

n=1

n

1− lnn 3n−1/4

an.

The purpose of this note is to refine further inequality (1.6). Our main result is the following.

Theorem 1.1. Forn ∈ N, letSn = Pn m=1

1

m, the harmonic number. Ifan ≥ 0 forn∈Nand

0<

X

n=1

n

1− lnn 2n+ lnn+ 11/6

an <∞,

(5)

A Refinement of van der Corput’s Inequality Da-Wei Niu, Jian Cao and Feng Qi

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of10

J. Ineq. Pure and Appl. Math. 7(4) Art. 127, 2006

http://jipam.vu.edu.au

then

(1.7)

X

n=1 n

Y

k=1

a1/kk

!Sn1

< e1+γ

X

n=1

e

6(6n+1)γ−9 (6n+1)(12n+11)n

1− lnn 2n+ lnn+ 11/6

an,

whereγ = 0.57721566. . . is Euler-Mascheroni’s constant.

Remark 1. Let

An=e1+γe

6(6n+1)γ−9 (6n+1)(12n+11)n

1− lnn 2n+ lnn+ 11/6

forn∈N. Numerical computation showsA1 = 4.40. . . < e1+γ

1− 3−1/4ln 1

= 4.84. . . and A2 = 7.99. . . < e1+γ

2− 6−1/42 ln 2

= 8.51. . .. and A3 = 11.95. . . < e1+γ

3− 9−1/43 ln 2

= 12.70. . .. When n ≥ 4, inequality 2n +

11

6 + lnn <3n− 14 is valid, which can be rearranged as 1− lnn

2n+ lnn+ 11/6 ≤1− lnn 3n−1/4. This implies that inequality (1.7) is a refinement of (1.6).

(6)

A Refinement of van der Corput’s Inequality Da-Wei Niu, Jian Cao and Feng Qi

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of10

J. Ineq. Pure and Appl. Math. 7(4) Art. 127, 2006

http://jipam.vu.edu.au

2. Lemmas

In order to prove our main result, some lemmas are necessary.

Lemma 2.1 ([4]). Forn∈N,

(2.1) 1

2n+ 1/(1−γ)−2 < Sn−lnn−γ < 1 2n+ 1/3. The constants 1−γ1 −2and 13 in (2.1) are the best possible.

Lemma 2.2 ([2,6]). Ifx >0, then

(2.2)

1 + 1

x x

< e

1− 1

2x+ 11/6

. Lemma 2.3. Forn∈N,

(2.3) Bn,

(n+ 1)Sn+1 nSn

nSn

< e1+γe

6(6n+1)γ−9 (6n+1)(12n+11)n

1− lnn 2n+ lnn+ 11/6

.

Proof. By virtue of Lemma2.2, it follows that

(n+ 1)Sn+1 nSn

Sn+1nSn

=

1 + Sn+ 1 nSn

Sn+1nSn

< e

1− Sn+ 1

2nSn+ 11(Sn+ 1)/6

< e

1− 1

2n+ 11/6

.

(7)

A Refinement of van der Corput’s Inequality Da-Wei Niu, Jian Cao and Feng Qi

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of10

J. Ineq. Pure and Appl. Math. 7(4) Art. 127, 2006

http://jipam.vu.edu.au

Applying Lemma2.1yields Bn <

e

1− 1

2n+ 11/6

Sn+1

(2.4)

< e1+2n+1/31 +γ+lnn

1− 1

2n+ 11/6

1+2n+1/31 +γ+lnn

. Taking advantage of inequalities 1− 1x−x

> eforx > 1ande−x1+x1 for x >−1leads to

(2.5)

1− 1

2n+ 11/6 lnn

≤exp

− lnn 2n+ 11/6

≤ 2n+ 11/6 2n+ 11/6 + lnn and

1− 1

2n+ 11/6

2n+1/31 +1+γ

exp

1 2n+ 1/3

(2.6)

<exp

1

2n+ 1/3− 1 +γ

2n+ 11/6 − 1

(2n+ 11/6)(2n+ 1/3)

= exp

− 6(6n+ 1)γ−9 (6n+ 1)(12n+ 11)

.

Combination of (2.4), (2.5), (2.6) gives (2.7) Bn< e1+γ−

6(6n+1)γ−9 (6n+1)(12n+11)

n− nlnn

2n+ lnn+ 11/6

. Lemma2.3is proved.

(8)

A Refinement of van der Corput’s Inequality Da-Wei Niu, Jian Cao and Feng Qi

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of10

J. Ineq. Pure and Appl. Math. 7(4) Art. 127, 2006

http://jipam.vu.edu.au

3. Proof of Theorem 1.1

Forn∈Nand1≤k ≤n, let

(3.1) ck = [(k+ 1)Sk+1]kSk (kSk)kSk−1 with assumptionS0 = 0, then

(3.2)

n

Y

k=1

c1/kk

! 1

Sn

= 1

(n+ 1)Sn+1

.

By using the discrete weighted arithmetic-geometric mean inequality and interchanging the order of summations,

X

n=1 n

Y

k=1

a1/kk

!Sn1

=

X

n=1

" n Y

k=1

(ckak)1/k

#Sn1 n Y

k=1

c1/kk

!Sn1

(3.3)

X

n=1 n

Y

k=1

c1/kk

!Sn1

1 Sn

n

X

k=1

ckak k

X

n=1

1 (n+ 1)Sn+1Sn

n

X

k=1

ckak k

=

X

k=1

ckak

k

X

n=k

1 (n+ 1)SnSn+1

=

X

k=1

ckak k

X

n=k

1

Sn − 1 Sn+1

(9)

A Refinement of van der Corput’s Inequality Da-Wei Niu, Jian Cao and Feng Qi

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of10

J. Ineq. Pure and Appl. Math. 7(4) Art. 127, 2006

http://jipam.vu.edu.au

=

X

k=1

ckak kSk

=

X

k=1

(k+ 1)Sk+1 kSk

kSk

ak=

X

n=1

Bnan.

Substituting (2.7) into (3.3) leads to (1.7). The proof of Theorem1.1 is com- plete.

(10)

A Refinement of van der Corput’s Inequality Da-Wei Niu, Jian Cao and Feng Qi

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of10

J. Ineq. Pure and Appl. Math. 7(4) Art. 127, 2006

http://jipam.vu.edu.au

References

[1] J. CAO, D.-W. NIU AND F. QI, An extension and a refinement of van der Corput’s inequality, Int. J. Math. Math. Sci., 2006 (2006), Article ID 70786, 10 pages.

[2] CH.-P. CHEN ANDF. QI, On further sharpening of Carleman’s inequality, Dàxué Shùxué (College Mathematics), 21(2) (2005), 88–90. (Chinese) [3] K. HU, On van der Corput’s inequality, J. Math. (Wuhan), 23(1) (2003),

126–128. (Chinese)

[4] F. QI, R.-Q. CUI, CH.-P. CHEN,ANDB.-N. GUO, Some completely mono- tonic functions involving polygamma functions and an application, J. Math.

Anal. Appl., 310(1) (2005), 303–308.

[5] J.G. VAN DER CORPUT, Generalization of Carleman’s inequality, Proc.

Akad. Wet. Amsterdam, 39 (1936), 906–911.

[6] Z.-T. XIE AND Y.-B. ZHONG, A best approximation for constant e and an improvment to Hardy’s inequality, J. Math. Anal. Appl., 252 (2000), 994–998.

[7] B.-CH. YANG, On an extension and a refinement of van der Corput’s in- equality, Chinese Quart. J. Math., 22 (2007), in press.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

In [5], Qi studied a very interesting integral inequality and proved the following result..

Characterizations of Tracial Property via Inequalities Takashi Sano and Takeshi Yatsu.. Title

On a Conjecture of de La Grandville and Solow concerning Power Means Grant Keady and Anthony Pakes.. Title

The authors were supported in part by the Science Foundation of the Project for Fostering Innovation Talents at Universities of Henan Province,

[2] CHAO-PING CHEN AND FENG QI, An alternative proof of monotonicity for the extended mean values, Aust. KUANG, Applied Inequalities, 2nd ed., Hunan Education Press, Changsha,

Note On The Normal Family Junfeng Xu and Zhanliang Zhang.. Title

Inequalities for Inscribed Simplex and Applications Shiguo Yang and Silong Cheng.. Title

Some Convexity Properties for a General Integral Operator Daniel Breaz and Nicoleta BreazJ. Title