• Nem Talált Eredményt

SECOND ORDER DIFFERENTIAL SUBORDINATIONS OF HOLOMORPHIC MAPPINGS ON BOUNDED CONVEX BALANCED DOMAINS IN C

N/A
N/A
Protected

Academic year: 2022

Ossza meg "SECOND ORDER DIFFERENTIAL SUBORDINATIONS OF HOLOMORPHIC MAPPINGS ON BOUNDED CONVEX BALANCED DOMAINS IN C"

Copied!
30
0
0

Teljes szövegt

(1)

2nd Order Differential Subordinations of Holomorphic Mappings Yu-Can Zhu and Ming-Sheng Liu

vol. 8, iss. 4, art. 104, 2007

Title Page

Contents

JJ II

J I

Page1of 30 Go Back Full Screen

Close

SECOND ORDER DIFFERENTIAL

SUBORDINATIONS OF HOLOMORPHIC MAPPINGS ON BOUNDED CONVEX BALANCED

DOMAINS IN C

n

YU-CAN ZHU MING-SHENG LIU

Department of Mathematics Department of Mathematics

Fuzhou University, South China Normal University,

Fuzhou, 350002 Fujian, P. R. China Guangzhou, 510631 Guangdong, P. R. China

EMail:zhuyucan@fzu.edu.cn EMail:liumsh@scnu.edu.cn

Received: 09 November, 2006 Accepted: 04 November, 2007 Communicated by: G. Kohr

2000 AMS Sub. Class.: 32H02, 30C45.

Key words: Differential subordination, biholomorphic convex mapping, convex balanced do- main, Minkowski functional.

Abstract: In this paper, we obtain some second order differential subordinations of holo- morphic mappings on a bounded convex balanced domaininCn. These results imply some first order differential subordinations of holomorphic mappings on a bounded convex balanced domaininCn. Whenis the unit disc in the complex planeC, these results are just ones of Miller and Mocanu et al. about differential subordinations of analytic functions on the unit disc in the complex planeC.

(2)

2nd Order Differential Subordinations of Holomorphic Mappings Yu-Can Zhu and Ming-Sheng Liu

vol. 8, iss. 4, art. 104, 2007

Title Page Contents

JJ II

J I

Page2of 30 Go Back Full Screen

Close Acknowledgements: The authors thank the referee for his helpful comments and suggestions to im-

prove our manuscript.

This research is partly supported by the National Natural Science Foundation of China(No.10471048), the Doctoral Foundation of the Education Committee of China(No.20050574002), the Natural Science Foundation of Fujian Province, China (No.Z0511013) and the Education Commission Foundation of Fujian Province, China (No.JB04038).

(3)

2nd Order Differential Subordinations of Holomorphic Mappings Yu-Can Zhu and Ming-Sheng Liu

vol. 8, iss. 4, art. 104, 2007

Title Page Contents

JJ II

J I

Page3of 30 Go Back Full Screen

Close

Contents

1 Introduction 4

2 Main Results and Their Proofs 7

(4)

2nd Order Differential Subordinations of Holomorphic Mappings Yu-Can Zhu and Ming-Sheng Liu

vol. 8, iss. 4, art. 104, 2007

Title Page Contents

JJ II

J I

Page4of 30 Go Back Full Screen

Close

1. Introduction

LetCnbe the space ofn complex variablesz = (z1, z2, . . . , zn)with the Euclidian inner producthz, wi = Pn

j=1zjwj and the norm kzk = p

hz, zi. A domain Ω is called a balanced domain inCn ifλz ∈ Ωfor all z ∈ Ωand λ ∈ C with|λ| ≤ 1.

The Minkowski functional of the balanced domainΩis ρ(z) = infn

t >0,z t ∈Ωo

, z ∈Cn.

Suppose that Ω is a bounded convex balanced domain in Cn, and ρ(z) is the Minkowski functional ofΩ. Thenρ(·)is a norm ofCnsuch that

Ω ={z ∈Cn:ρ(z)<1}, ρ(λz) = |λ|ρ(z) forλ∈C, z ∈Cn(see [20]).

Letpj >1 (j = 1,2, . . . , n). Then Dp =

(

(z1, z2, . . . , zn)∈Cn :

n

X

j=1

|zj|pj <1 )

is a bounded convex balanced domain, and the Minkowski functional ρ(z) of Dp satisfies

(1.1)

n

X

j=1

zj ρ(z)

pj

= 1.

ρ(z) = Pn

j=1|zj|p1/p

is the Minkowski functional of domain Bp =

(

z ∈Cn :

n

X

j=1

|zj|p <1 )

, where p >1.

(5)

2nd Order Differential Subordinations of Holomorphic Mappings Yu-Can Zhu and Ming-Sheng Liu

vol. 8, iss. 4, art. 104, 2007

Title Page Contents

JJ II

J I

Page5of 30 Go Back Full Screen

Close

Let Df(z) and D2f(z)(·,·) denote the first Fréchet derivative and the second Fréchet derivative for a holomorphic mappingf : Ω → Cnrespectively. Then they have the matrix representation

Df(z) =

∂fj(z)

∂zk

1≤j, k≤n

, D2f(z)(b,·) =

n

X

l=1

2fj(z)

∂zk∂zl bl

!

1≤j, k≤n

,

where b = (b1, b2, . . . , bn) ∈ Cn. The mapping f : Ω → Cn is called locally biholomorphic if the matrixDf(z)is nonsingular at each pointz inΩ.

The class of all holomorphic mappings f : Ω → Cn is denoted by H(Ω,Cn).

Assume f, g ∈ H(Ω,Cn). Then we say that the mapping f is subordinate to g, writtenf ≺ g or f(z) ≺ g(z), if there exists a holomorphic mappingw : Ω → Ω with w(0) = 0 such that f(z) ≡ g(w(z)) for all z ∈ Ω. If g is a biholomorphic mapping, thenf(z)≺g(z)if and only iff(Ω) ⊂g(Ω)andf(0) =g(0).

In classical results of geometric function theory, differential subordinations pro- vide some simple proofs. They play a key role in the study of some integral op- erators, differential equations, and properties of subclasses of univalent functions, etc. S.S. Miller and P.T. Mocanu et al. have obtained some deep results for differ- ential subordinations [10, 11, 12, 13,16, 14]. There is a excellent text Differential Subordinations Theory and Applications, by S.S. Miller and P.T. Mocanu [15].

The geometric function theory of several complex variables has been studied by many authors. Many important results for biholomorphic convex or starlike map- pings in Cn have been obtained (see [2, 3]). Some differential subordinations of analytic functions in the complex plane are also extended toCn[4,6,8,15,22]. But there are very few results on second order differential subordinations of holomorphic mappings inCn.

In this paper, we obtain some second order differential subordinations of holo- morphic mappings on a bounded convex balanced domain Ωin Cn. These results

(6)

2nd Order Differential Subordinations of Holomorphic Mappings Yu-Can Zhu and Ming-Sheng Liu

vol. 8, iss. 4, art. 104, 2007

Title Page Contents

JJ II

J I

Page6of 30 Go Back Full Screen

Close

imply some first order differential subordinations of holomorphic mappings on a bounded convex balanced domainΩinCn. WhenΩis the unit disc in the complex planeC, these results are just those of Miller and Mocanu et al. about differential subordinations of analytic functions on the unit disc in the complex planeC.

(7)

2nd Order Differential Subordinations of Holomorphic Mappings Yu-Can Zhu and Ming-Sheng Liu

vol. 8, iss. 4, art. 104, 2007

Title Page Contents

JJ II

J I

Page7of 30 Go Back Full Screen

Close

2. Main Results and Their Proofs

In the following, we always assume that the domainΩis a bounded convex balanced domain inCnandρ(z)is the Minkowski functional ofΩ. Thenρ(·)is a norm ofCn such that

Ω ={z ∈Cn:ρ(z)<1}, ρ(λz) = |λ|ρ(z) forλ∈C, z ∈Cn.

In order to derive our main results, we need the following lemmas.

Lemma 2.1. Suppose that ρ(z) is twice differentiable in Ω− {0}, and let w ∈ H(Ω,Cn)withw(z)6≡0andw(0) = 0. Ifz0 ∈Ω− {0}satisfies

ρ(w(z0)) = max

ρ(z)≤ρ(z0)ρ(w(z)), then there exists a real numbert ≥1/2such that

(2.1)

Dw(z0)(z0),∂ρ

∂z(w0)

=tρ(w0),

and (2.2) Re

D2w(z0)(z0, z0),∂ρ

∂z(w0)

≥Re ( n

X

j,l=1

2ρ

∂zj∂zl(w0)bjbl

n

X

j,l=1

2ρ

∂zj∂zl(w0)bjbl )

−tρ(w0),

wherew0 =w(z0), Dw(z0)(z0) = (b1, b2, . . . , bn).

(8)

2nd Order Differential Subordinations of Holomorphic Mappings Yu-Can Zhu and Ming-Sheng Liu

vol. 8, iss. 4, art. 104, 2007

Title Page Contents

JJ II

J I

Page8of 30 Go Back Full Screen

Close

Proof. Sinceρ(w0) = max

ρ(z)≤ρ(z0)ρ(w(z)), then we have w0 6= 0. Otherwise, there is w(z)≡0, which contradicts the hypothesis of Lemma2.1.

Letw(z) = (w1(z), w2(z), . . . , wn(z)), γ(t) = w(eitz0) = (γ1(t), γ2(t), . . . , γn(t)).

Then we haveγj(t) = wj(eitz0) (j = 1,2, . . . , n), γ(0) =w(z0) = w0 and dγj(t)

dt =ieit

n

X

k=1

∂wj(eitz0)

∂zk zk0, dγj(t)

dt =−ie−it

n

X

k=1

∂wj(eitz0)

∂zk z0k

! ,

wherez0 = (z10, z20, . . . , zn0). SetL(t) = ρ(γ(t)) (−π ≤ t ≤ π). Some straightfor- ward calculations yield

L0(t) =

n

X

j=1

∂ρ

∂zj(γ(t))·dγj(t) dt +

n

X

j=1

∂ρ

∂zj(γ(t))·dγj(t) dt

=−2 Im

"

eit

n

X

j,k=1

∂ρ

∂zj(γ(t))· ∂wj(eitz0)

∂zk zk0

#

=−2 Im

Dw(eitz0)(eitz0),∂ρ

∂z(γ(t))

,

L00(t) = −2 Im

"

ieit

n

X

j,k=1

∂ρ

∂zj(γ(t))· ∂wj

∂zk +ie2it

n

X

j,k=1

∂ρ

∂zj(γ(t))

n

X

l=1

2wj

∂zk∂zlz0kz0l

#

−2 Im

"

i

n

X

j,k=1 n

X

l,m=1

2ρ

∂zj∂zl(γ(t))· ∂wl

∂zm ·(eitzm0)∂wj

∂zk ·(eitzk0)

#

+ 2 Im

"

i

n

X

j,k=1 n

X

l,m=1

2ρ

∂zj∂zl(γ(t))· ∂wl

∂zm ·(eitzm0) ∂wj

∂zk ·(eitz0k)

# .

(9)

2nd Order Differential Subordinations of Holomorphic Mappings Yu-Can Zhu and Ming-Sheng Liu

vol. 8, iss. 4, art. 104, 2007

Title Page Contents

JJ II

J I

Page9of 30 Go Back Full Screen

Close

NotingL(0) = max

−π≤t≤πL(t), we haveL0(0) = 0andL00(0)≤0. It follows that

(2.3) Im

Dw(z0)(z0),∂ρ

∂z(w0)

= 0,

and (2.4) Re

D2w(z0)(z0, z0),∂ρ

∂z(w0)

+ Re

Dw(z0)(z0),∂ρ

∂z(w0)

+ Re

" n X

j,l=1

2ρ

∂zj∂zl(w0)bjbl− ∂2ρ

∂zj∂zl(w0)bjbl

#

≥0.

On the other hand, by Schwarz’s Lemma inCn[19], we have ρ(w(z))

ρ(z) ≤ ρ(w0)

ρ(z0) for 0< ρ(z)≤ρ(z0).

Let

ϕ(r) = ρ(w(rz0))

ρ(rz0) = ρ(w(rz0)) rρ(z0) . Thenϕ(1) = max

0<r≤1ϕ(r). It follows that ϕ0(1) = lim

r→1

ϕ(r)−ϕ(1) r−1 ≥0.

By a simple calculation, we obtain ϕ0(1) =−ρ(w0)

ρ(z0) + 2 ρ(z0)Re

Dw(z0)(z0),∂ρ

∂z(w0)

≥0.

(10)

2nd Order Differential Subordinations of Holomorphic Mappings Yu-Can Zhu and Ming-Sheng Liu

vol. 8, iss. 4, art. 104, 2007

Title Page Contents

JJ II

J I

Page10of 30 Go Back Full Screen

Close

If we let

t= 1 ρ(w0)Re

Dw(z0)(z0),∂ρ

∂z(w0)

,

then we havet ≥ 1/2, therefore (2.1) of Lemma 2.1 holds, and (2.2) follows from (2.3) and (2.4). This completes the proof.

Remark 1. Sinceρ(tz) =tρ(z)fort >0, then forz ∈Cn− {0}, we have (2.5) ρ(z) = dρ(tz)

dt t=1

=

n

X

j=1

∂ρ

∂zjzj+

n

X

j=1

∂ρ

∂zjzj = 2 Re

z,∂ρ

∂z(z)

.

For anyz ∈Cn− {0}, we haveρ(ρ(z)z ) = 1. Lettingw(z)≡zin (2.1), we obtain that there exists a real numbert≥ 12 such that

z,∂ρ

∂z(z)

=tρ(z)≥0, z ∈Cn− {0}.

Hence it follows from (2.5) that ρ(z) = 2

z,∂ρ

∂z(z)

, z ∈Cn− {0}.

Lemma 2.2 ([10]). Letg(ξ) = a+b1ξ +b2ξ2 +· · · be analytic in|ξ| < 1 with g(ξ)6≡0.Ifξ0 =r0e0 (0< r0 <1)andReg(ξ0) = min

|ξ|≤r0

Reg(ξ),then

(2.6) ξ0g00)≤ − |a−g(ξ0)|2 2 Re(a−g(ξ0)), and

(2.7) Re{ξ02g000) +ξ0g00)} ≤0.

(11)

2nd Order Differential Subordinations of Holomorphic Mappings Yu-Can Zhu and Ming-Sheng Liu

vol. 8, iss. 4, art. 104, 2007

Title Page Contents

JJ II

J I

Page11of 30 Go Back Full Screen

Close

Lemma 2.3. Suppose thatρ(z)is differentiable inΩ− {0}. Leth : Ω → Cn be a biholomorphic convex mapping withh(0) = 0. Then for everyz ∈Ω− {0}, we have

2

Dh(z)−1h(z),∂ρ

∂z(z)

−ρ(z)

≤ρ(z).

Proof. For eachz ∈ Ω− {0}, we letg(ξ) = hDh(z)−1(h(z)−h(ξz)),∂ρ∂z(z)i for

|ξ| ≤1. Theng(ξ)is analytic in|ξ| ≤1and g(ξ) =

Dh(z)−1h(z),∂ρ

∂z(z)

+b1ξ+· · · .

From the result in [3,7], we haveReg(ξ)>0for all|ξ|<1. Hence we obtain 0 = Reg(1) = min

|ξ|≤1Reg(ξ).

By a simple calculation, we may obtain g0(1) =−

Dh(z)−1Dh(z)(z),∂ρ

∂z(z)

=−

z,∂ρ

∂z(z)

=−ρ(z) 2 . By (2.6), we have

−ρ(z) Rea+|a|2 ≤0, wherea=D

(Dh(z)−1h(z),∂ρ∂z(z)E

. It follows that

2

Dh(z)−1h(z),∂ρ

∂z(z)

−ρ(z)

≤ρ(z).

(12)

2nd Order Differential Subordinations of Holomorphic Mappings Yu-Can Zhu and Ming-Sheng Liu

vol. 8, iss. 4, art. 104, 2007

Title Page Contents

JJ II

J I

Page12of 30 Go Back Full Screen

Close

Lemma 2.4 ([23]). Suppose thatρ(z)is twice differentiable inΩ− {0}. Iff : Ω→ Cnis a biholomorphic convex mapping, then we have

(2.8) Re ( n

X

l,m=1

2ρ

∂zl∂zmblbm

+

n

X

l,m=1

2ρ

∂zl∂zmblbm

Df(z)−1D2f(z)(b, b),∂ρ

∂z )

≥0

for everyz = (z1, z2, . . . , zn)∈Ω−{0}, b= (b1, b2, . . . , bn)∈Cnwith Re b,∂ρ∂z

= 0.

Lemma 2.5. Assume thatρ(z)is differentiable inΩ− {0}. Then

(2.9) ρ(z) = 2

z,∂ρ

∂z(z)

, z ∈Cn− {0}, and

(2.10)

2

w,∂ρ

∂z(z)

≤ρ(w), z ∈Cn− {0}, w ∈Cn.

Proof. From Remark1, we only need to prove (2.10). Letz ∈Cn− {0}and Ωz ={w∈Cn :ρ(w)< ρ(z)}.

ThenΩz is a convex domain inCn, and ∂ρ∂z(z)is the normal vector of∂Ωz atz. For every z, w ∈ Cn with ρ(z) = 1, ρ(w) = 1, we have ReD

z−w,∂ρ∂z(z)E

≥ 0. It follows that

(2.11) 2 Re

w,∂ρ

∂z(z)

≤2 Re

z,∂ρ

∂z(z)

=ρ(z) = 1.

(13)

2nd Order Differential Subordinations of Holomorphic Mappings Yu-Can Zhu and Ming-Sheng Liu

vol. 8, iss. 4, art. 104, 2007

Title Page Contents

JJ II

J I

Page13of 30 Go Back Full Screen

Close

WhenD

w,∂ρ∂z(z)E

= 0, it is obvious that (2.10) holds.

WhenD

w,∂ρ∂z(z)E

6= 0, thenρ(w)6= 0. Using ρ(z)z to substitute forzand ρ(w)w e−iθ to substitute forwin (2.11), we obtain

2 Re

w,∂ρ

∂z(z)

≤ρ(w), z ∈Cn− {0}, w∈Cn,

where θ = argD

w,∂ρ∂z(z)E

and ∂ρ∂z(λz) = ∂ρ∂z(z) for all λ ∈ (0,+∞) and z ∈ Ω− {0}. This completes the proof.

Lemma 2.6. Suppose thatρ(z)is differentiable inΩ− {0}, and leth: Ω →Cnbe a biholomorphic convex mapping withh(0) = 0. Then for everyz ∈ Ω− {0}and vectorξ ∈Cn, the inequality

2

Dh(z)−1(ξ),∂ρ

∂z(z)

≤(1 +ρ(z))2ρ(Dh(0)−1(ξ))

holds.

Proof. Without loss of generality, we may assume thathis a biholomorphic convex mapping onΩ. If not, then we can replaceh(z)byhr(z) =h(rz), where0< r <1.

For any fixed z ∈ Ω− {0}, from the proof of Theorem 2.1 in [5,9], there exist ez ∈∂Ωandµ∈(0,1)such thath(z) = µh(z)e and

1−µ≥ 1−ρ(z) 1 +ρ(z).

Letg(w) =h−1[(1−µ)h(w) +µh(z)]. Sincee his a biholomorphic convex mapping onΩ, theng ∈ H(Ω,Cn)withg(Ω) ⊂ Ωandg(0) = z. For everyξ ∈ Cn− {0},

(14)

2nd Order Differential Subordinations of Holomorphic Mappings Yu-Can Zhu and Ming-Sheng Liu

vol. 8, iss. 4, art. 104, 2007

Title Page Contents

JJ II

J I

Page14of 30 Go Back Full Screen

Close

we set

ψ(λ) = 2

g

λ ξ ρ(ξ)

,∂ρ

∂z(z)

,

thenψ(λ)is an analytic function in|λ|<1. By Lemma2.5, we obtain

|ψ(λ)| ≤ρ

g

λ ξ ρ(ξ)

<1

for all|λ|<1, and

ψ(λ) =ρ(z) + 2

Dg(0) ξ

ρ(ξ)

,∂ρ

∂z(z)

λ+· · · .

From the classical result in [1], we have|ψ0(0)| ≤1− |ψ(0)|2. It follows that

2

Dg(0)(ξ),∂ρ

∂z(z)

≤(1−ρ(z)2)ρ(ξ).

SinceDh(z)Dg(0) = (1−µ)Dh(0), then

2

Dh(z)−1Dh(0)(ξ),∂ρ

∂z(z)

≤ 1

1−µ(1−ρ(z)2)ρ(ξ)≤(1 +ρ(z))2ρ(ξ) for allξ∈Cn, z ∈Ω− {0}.

Setζ =Dh(0)(ξ), thenξ =Dh(0)−1ζ and

2

Dh(z)−1(ζ),∂ρ

∂z(z)

≤(1 +ρ(z))2ρ(Dh(0)−1(ζ)),

which completes the proof.

(15)

2nd Order Differential Subordinations of Holomorphic Mappings Yu-Can Zhu and Ming-Sheng Liu

vol. 8, iss. 4, art. 104, 2007

Title Page Contents

JJ II

J I

Page15of 30 Go Back Full Screen

Close

Theorem 2.7. Let f, g ∈ H(Ω,Cn)withf(0) = g(0), and let g be biholomorphic convex on Ω. Suppose that ρ(z) is twice differentiable in Ω− {0}. If f is not subordinate tog, then there exist pointsz0 ∈ Ω− {0}, w0 ∈ ∂Ωwith0 < ρ(z0) <

1, ρ(w0) = 1and there is a real numbert≥1/2such that 1. f(z0) =g(w0),

2.

D

Dg(w0)−1Df(z0)(z0),∂ρ∂z(w0)E

=t, and

3. ReD

Dg(w0)−1D2f(z0)(z0, z0),∂ρ∂z(w0)E

≥ −t.

Proof. Iff is not subordinate tog, then there exist points z0 ∈ Ω− {0}, w0 ∈ ∂Ω with0 < ρ(z0) <1, ρ(w0) = 1such thatf(z0) = g(w0)andf(Dr) ⊂g(Ω), where Dr ={z ∈Cn:ρ(z)< r}andr =ρ(z0).

Let w(z) = g−1(f(z)). Then w : Dr → Ω is a holomorphic mapping with w(z)6≡0andw(0) = 0satisfyingf(z) =g(w(z))forz ∈Dr. Hence

1 = ρ(w0) = max

ρ(z)≤ρ(z0)ρ(w(z)).

By a simple calculation, we have

Dw(z0)(z0) = Dg(w0)−1Df(z0)(z0),

Dg(w0)−1D2f(z0)(z0, z0) = Dg(w0)−1D2g(w0)(Dw(z0)(z0), Dw(z0)(z0)) +D2w(z0)(z0, z0).

From (2.1), there is a real numbert ≥1/2such that

Dw(z0)(z0),∂ρ

∂z(w0)

=tρ(w0) =t.

(16)

2nd Order Differential Subordinations of Holomorphic Mappings Yu-Can Zhu and Ming-Sheng Liu

vol. 8, iss. 4, art. 104, 2007

Title Page Contents

JJ II

J I

Page16of 30 Go Back Full Screen

Close

So we obtain

Dg(w0)−1Df(z0)(z0),∂ρ

∂z(w0)

=t,

and

Re

Dg(w0)−1D2f(z0)(z0, z0),∂ρ

∂z(w0)

= Re

Dg(w0)−1D2g(w0)(Dw(z0)(z0), Dw(z0)(z0)),∂ρ

∂z(w0)

+ Re

D2w(z0)(z0, z0),∂ρ

∂z(w0)

≥Re

Dg(w0)−1D2g(w0)(a, a),∂ρ

∂z(w0)

+ Re ( n

X

j,l=1

2ρ

∂zj∂zl(w0)ajal

n

X

j,l=1

2ρ

∂zj∂zl(w0)ajal

)

−t,

where a = Dw(z0)(z0) = (a1, a2, . . . , an). If we let b = (b1, b2, . . . , bn) with bj =iaj, then we have

Re

b,∂ρ

∂z(w0)

= Re

i

Dw(z0)(z0),∂ρ

∂z(w0)

= Re{it}= 0.

From Lemma2.4, we obtain Re

Dg(w0)−1D2f(z0)(z0, z0),∂ρ

∂z(w0)

(17)

2nd Order Differential Subordinations of Holomorphic Mappings Yu-Can Zhu and Ming-Sheng Liu

vol. 8, iss. 4, art. 104, 2007

Title Page Contents

JJ II

J I

Page17of 30 Go Back Full Screen

Close

≥ −Re

Dg(w0)−1D2g(w0)(b, b),∂ρ

∂z(w0)

+ Re ( n

X

j,l=1

2ρ

∂zj∂zl(w0)bjbl+

n

X

j,l=1

2ρ

∂zj∂zl(w0)bjbl )

−t

≥ −t.

This completes the proof.

Remark 2. Whenn = 1,Ωis the unit disc in the complex planeCandρ(z) =|z|(z ∈ C), we may obtain Lemma 1 in [14] from Theorem 2.7. Theorem 2.7 will play a key role in studying some second order differential subordinations of holomorphic mappings on a bounded convex balanced domainΩinCn.

LetΩ1be a set ofCn, and lethbe a biholomorphic convex mapping onΩ. Sup- pose thatρ(z)is twice differentiable inΩ− {0}. We defineΨ(Ω1, h)to be the class of mapsψ :Cn×Cn×Cn×Ω→Cnthat satisfy the following conditions:

1. ψ(h(0),0,0,0)∈Ω1, and

2. ψ(α, β, γ, z)∈/ Ω1 forα =h(w), D

Dh(w)−1(β),∂ρ∂z(w) E

=t, ReD

Dh(w)−1(γ),∂ρ∂z(w)E

≥ −t, andz ∈Ω, whereρ(w) = 1andt ≥1/2.

Theorem 2.8. Letψ ∈Ψ(Ω1, h). Iff ∈H(Ω,Cn)withf(0) = h(0)satisfies (2.12) ψ(f(z), Df(z)(z), D2f(z)(z, z), z)∈Ω1

for allz ∈Ω, thenf(z)≺h(z).

(18)

2nd Order Differential Subordinations of Holomorphic Mappings Yu-Can Zhu and Ming-Sheng Liu

vol. 8, iss. 4, art. 104, 2007

Title Page Contents

JJ II

J I

Page18of 30 Go Back Full Screen

Close

Proof. If f is not subordinate to h, then by Theorem 2.7, there exist points z0 ∈ Ω− {0}, w0 ∈ ∂Ωwith 0 < ρ(z0) < 1, ρ(w0) = 1 and there is a real number t≥1/2such that

f(z0) = h(w0),

Dh(w0)−1Df(z0)(z0),∂ρ

∂z(w0)

=t,

and

Re

Dh(w0)−1D2f(z0)(z0, z0),∂ρ

∂z(w0)

≥ −t.

Setα =f(z0), β =Df(z0)(z0), γ =D2f(z0)(z0, z0), then according to the defini- tion ofΨ(Ω1, h), we have

ψ(f(z0), Df(z0)(z0), D2f(z0)(z0, z0), z0)∈/ Ω1

which contradicts (2.12). Hence f(z) ≺ h(z), and the proof of Theorem 2.8 is complete.

Theorem 2.9. LetA ≥ 0, h ∈ H(Ω,Cn)be biholomorphic convex with h(0) = 0, and letψ(z) ∈ H(Ω,Cn)with ψ(0) = 0. Suppose that ρ(z)is twice differentiable inΩ− {0},k >4kDh(0)−1k, andϕ, φ: Ω1×Ω→Care holomorphic such that

Reφ(α, z)≥A+|ϕ(α, z)−1| −Re[ϕ(α, z)−1] +kρ(ψ(z))

for all (α, z) ∈ h(Ω) × Ω, where Ω1 is a domain of Cn with h(Ω) ⊂ Ω1 and kDh(0)−1k= sup

ρ(ξ)≤1

ρ(Dh(0)−1(ξ)). Iff ∈H(Ω,Cn)withf(0) = 0satisfies AD2f(z)(z, z) +φ(f(z), z)Df(z)(z) +ϕ(f(z), z)f(z) +ψ(z)≺h(z), thenf(z)≺h(z).

(19)

2nd Order Differential Subordinations of Holomorphic Mappings Yu-Can Zhu and Ming-Sheng Liu

vol. 8, iss. 4, art. 104, 2007

Title Page Contents

JJ II

J I

Page19of 30 Go Back Full Screen

Close

Proof. Without loss of generality, we may assume thatf andgsatisfy the conditions of Theorem2.9 onΩ. If not, then we can replacef(z)byfr(z) = f(rz), ψ(z)by ψr(z) =ψ(rz), andh(z)byhr(z) =h(rz), where0< r <1. We would then prove fr(z)≺hr(z)for all0< r <1. By lettingr→1, we obtainf(z)≺h(z).

Let

ψ(α, β, γ, z) = Aγ+φ(α, z)β+ϕ(α, z)α+ψ(z),

and letα = h(w), D

Dh(w)−1(β),∂ρ∂z(w) E

= t, Re D

Dh(w)−1(γ),∂ρ∂z(w) E

≥ −t, whereρ(w) = 1, t≥1/2. If we set

ψ(α, β, γ, z) =h(w) +λDh(w)(w),

then we have

λw=ADh(w)−1(γ) +φ(α, z)Dh(w)−1(β)

+ [ϕ(α, z)−1]Dh(w)−1h(w) +Dh(w)−1(ψ(z)).

Since2D

w,∂ρ∂z(w)E

=ρ(w) = 1from Remark1, we obtain

(2.13) λ= 2A

Dh(w)−1(γ),∂ρ

∂z(w)

+ 2φ(α, z)

Dh(w)−1(β),∂ρ

∂z(w)

+ 2[ϕ(α, z)−1]

Dh(w)−1h(w),∂ρ

∂z(w)

+ 2

Dh(w)−1(ψ(z)),∂ρ

∂z(w)

.

By Lemma2.3, we have 2

Dh(w)−1h(w),∂ρ

∂z(w)

−1

≤1.

(20)

2nd Order Differential Subordinations of Holomorphic Mappings Yu-Can Zhu and Ming-Sheng Liu

vol. 8, iss. 4, art. 104, 2007

Title Page Contents

JJ II

J I

Page20of 30 Go Back Full Screen

Close

By Lemma2.6, we obtain

Reλ≥ −2At+ 2tReφ(α, z) + Re[ϕ(α, z)−1]

− |ϕ(α, z)−1| −4kDh(0)−1kρ(ψ(z))

≥(2t−1){|ϕ(α, z)−1| −Re[ϕ(α, z)−1]}

+ (k−4kDh(0)−1k)ρ(ψ(z))≥0.

(2.14)

Now we verify that ψ(α, β, γ, z) ∈/ h(Ω). Suppose not, then there exists w1 ∈ Ω such thatψ(α, β, γ, z) = h(w1). From the result in [3,7,18,19], we have

−Reλ= 2 Re

Dh(w)−1(h(w)−h(w1)),∂ρ

∂z(w)

>0,

which contradicts (2.14), henceψ(α, β, γ, z) ∈/ h(Ω). By Theorem 2.8, we obtain f(z)≺h(z), and the proof is complete.

Corollary 2.10. LetA ≥0, h∈H(Ω,Cn)be biholomorphic convex withh(0) = 0, and let ψ(z) ∈ H(Ω,Cn)with ψ(0) = 0. Suppose that k > 4kDh(0)−1k, ρ(z) is twice differentiable inΩ− {0}, andB(z), C(z)∈H(Ω,C)satisfy

ReB(z)≥A+|C(z)−1| −Re[C(z)−1] +kρ(ψ(z)) for all z ∈ Ω, wherekDh(0)−1k = sup

ρ(ξ)≤1

ρ(Dh(0)−1(ξ)). If f ∈ H(Ω,Cn) with f(0) = 0satisfies

AD2f(z)(z, z) +B(z)Df(z)(z) +C(z)f(z) +ψ(z)≺h(z), thenf(z)≺h(z).

(21)

2nd Order Differential Subordinations of Holomorphic Mappings Yu-Can Zhu and Ming-Sheng Liu

vol. 8, iss. 4, art. 104, 2007

Title Page Contents

JJ II

J I

Page21of 30 Go Back Full Screen

Close

Corollary 2.11. LetA ≥ 0, h ∈H(Ω,Cn)be biholomorphic convex. Suppose that ρ(z)is twice differentiable inΩ− {0}, andB(z)∈H(Ω,C)withReB(z)≥Afor allz ∈Ω. Iff ∈H(Ω,Cn)withf(0) =h(0)satisfies

AD2f(z)(z, z) +B(z)Df(z)(z) +f(z)≺h(z), thenf(z)≺h(z).

Corollary 2.12. Let h ∈ H(Ω,Cn) be biholomorphic convex withh(0) = 0. Sup- pose that ρ(z)is twice differentiable in Ω− {0}and φ : Ω1 → Cis holomorphic such thatReφ(h(z))≥0for allz ∈Ω. Iff ∈H(Ω,Cn)withf(0) = 0satisfies

f(z) +φ(f(z))Df(z)(z)≺h(z), thenf(z)≺h(z).

Remark 3. Whenn= 1, we haveDf(z)(z) =zf0(z)andD2f(z)(z, z) =z2f00(z).

From Corollary2.10, we may obtain Theorem 2 in [13], Theorem 3.1a in [15], The- orem 1 for case 1 in [12] and Theorem 1 in [14]. From Corollary 2.11, we may obtain Corollary 2.1 in [13].

Example 2.1. Letβ >0andγ ∈Cwith2 Reγ ≥β. The unit ball inCnis denoted byB = {z ∈ Cn : kzk < 1}. If u ∈ Cn with kuk = 1, then h(z) = 1−hz,uiz is a biholomorphic convex mapping onB(see [17]). By a simple calculation, we have

Re

β

z

1− hz, ui, u

+γ (2.15)

= Reγ|1− hz, ui|2+β[Rehz, ui − |hz, ui|2]

|1− hz, ui|2

≥ β|1− hz, ui|2+ 2β[Rehz, ui − |hz, ui|2] 2|1− hz, ui|2

(22)

2nd Order Differential Subordinations of Holomorphic Mappings Yu-Can Zhu and Ming-Sheng Liu

vol. 8, iss. 4, art. 104, 2007

Title Page Contents

JJ II

J I

Page22of 30 Go Back Full Screen

Close

= β(1− |hz, ui|2) 2|1− hz, ui|2 >0

for allz ∈B. Iff ∈H(B,Cn)withf(0) = 0, then by Corollary2.12, we have f(z) + Df(z)(z)

βhf(z), ui+γ ≺ z

1− hz, ui =⇒f(z)≺ z 1− hz, ui.

Example 2.2. Let A ≥ 0, β ≥ 0and γ ∈ C withReγ ≥ β/2 +A, u ∈ Cn with kuk= 1. Iff ∈H(B,Cn)withf(0) = 0, then by Theorem2.9, Corollary2.11and (2.15), we have

AD2f(z)(z, z) +

β hz, ui 1− hz, ui +γ

Df(z)(z) +f(z)

≺ z

1− hz, ui =⇒f(z)≺ z 1− hz, ui, and

AD2f(z)(z, z)+[βhf(z), ui+γ]Df(z)(z)+f(z)≺ z

1− hz, ui =⇒f(z)≺ z 1− hz, ui. Let ρ(z)be differentiable in Ω− {0}. ForM > 0, we define Ψ(M)to be the class of mapsψ :Cn×Cn×Cn×Ω→Cnthat satisfy the following conditions:

1. ρ(ψ(0,0,0,0))< M and

2. ρ(ψ(α, β, γ, z))≥M for all ρ(α) =M, 2D

β,∂ρ∂z(α)E

=tM,

2 Re D

γ,∂ρ∂z(α) E

≥(t2−t)M, and t≥1.

(23)

2nd Order Differential Subordinations of Holomorphic Mappings Yu-Can Zhu and Ming-Sheng Liu

vol. 8, iss. 4, art. 104, 2007

Title Page Contents

JJ II

J I

Page23of 30 Go Back Full Screen

Close

Theorem 2.13. Letψ ∈Ψ(M). Ifw∈H(Ω,Cn)withw(0) = 0satisfies (2.16) ρ(ψ(w(z), Dw(z)(z), D2w(z)(z, z), z))< M

for allz ∈Ω− {0}, thenρ(w(z))< M forz ∈Ω.

Proof. Suppose that the conclusion of Theorem 2.13 is false. Then there exists a pointz0 ∈Ω− {0}such thatρ(w(z0)) =M andρ(w(z))≤M forρ(z)≤ρ(z0). It impliesw0 =w(z0)6= 0.

Let

ϕ(ξ) = 2

w z0

ρ(z0

,∂ρ

∂z(w0)

, ξ ∈C.

Thenϕ(ξ)is an analytic function in|ξ|<1. By Lemma2.5, we have

|ϕ(ξ)| ≤ 2

w

z0

ρ(z0

,∂ρ

∂z(w0)

≤ρ

w z0

ρ(z0

≤ρ(w(z0))

for all|ξ| ≤ρ(z0), and ϕ(ρ(z0)) = 2

w(z0),∂ρ

∂z(w0)

=ρ(w(z0)) = max

|ξ|≤ρ(z0)|ϕ(ξ)|.

By a simple calculation, we have ρ(z00(ρ(z0)) = 2

Dw(z0)(z0),∂ρ

∂z(w0)

,

ρ(z0)2ϕ00(ρ(z0)) = 2

D2w(z0)(z0, z0),∂ρ

∂z(w0)

.

(24)

2nd Order Differential Subordinations of Holomorphic Mappings Yu-Can Zhu and Ming-Sheng Liu

vol. 8, iss. 4, art. 104, 2007

Title Page Contents

JJ II

J I

Page24of 30 Go Back Full Screen

Close

Using Lemma A in [10] (also see [15, p. 19]), there exists a real numbert≥1such that

2

Dw(z0)(z0),∂ρ

∂z(w0)

=tM,

2 Re

D2w(z0)(z0, z0),∂ρ

∂z(w0)

≥(t2−t)M.

By the definition ofψ, we have

ρ(ψ(w(z0), Dw(z0)(z0), D2w(z0)(z0, z0), z0))≥M,

which contradicts (2.16). Henceρ(w(z))< Mforz ∈Ω, and the proof is complete.

Theorem 2.14. Letρ(z)be differentiable inΩ−{0}. Suppose thatA(z), B(z), C(z)∈ H(Ω,C)withA(z)6= 0for allz ∈Ωsatisfy

(2.17) ReB(z)

A(z) ≥max

−1, 1

|A(z)| −ReC(z)

A(z) +ρ(ϕ(z))

|A(z)|

,

or

ReC(z)

A(z) ≥ 1

|A(z)| +ρ(ϕ(z))

|A(z)| + 1 (2.18)

and 1−2 s

ReC(z)

A(z) − 1

|A(z)|− ρ(ϕ(z))

|A(z)| ≤ReB(z) A(z) ≤ −1 for allz ∈Ω. Ifw(z)∈H(Ω,Cn)withw(0) = 0satisfies

ρ(A(z)D2w(z)(z, z) +B(z)Dw(z)(z) +C(z)w(z) +ϕ(z))<1 for allz ∈Ω, thenρ(w(z))<1forz ∈Ω.

(25)

2nd Order Differential Subordinations of Holomorphic Mappings Yu-Can Zhu and Ming-Sheng Liu

vol. 8, iss. 4, art. 104, 2007

Title Page Contents

JJ II

J I

Page25of 30 Go Back Full Screen

Close

Proof. Let

ψ(α, β, γ, z) = A(z)γ +B(z)β+C(z)α+ϕ(z),

whereρ(α) = 1,2D

β,∂ρ∂z(α)E

= t, 2 ReD

γ,∂ρ∂z(α)E

≥ (t2 −t)andt ≥ 1. From (2.9) and (2.10), we have

ρ(ψ(α, β, γ, z))≥ 2

ψ(α, β, γ, z)e−iθ,∂ρ

∂z(α)

=

|A(z)|2

γ,∂ρ

∂z(α)

+B(z)e−iθ2

β,∂ρ

∂z(α)

+C(z)e−iθ2

α,∂ρ

∂z(α)

+ 2e−iθ

ϕ(z),∂ρ

∂z(α)

≥ |A(z)|

t2+t

ReB(z) A(z) −1

+ ReC(z)

A(z)− ρ(ϕ(z))

|A(z)|

,

whereθ = argA(z). Let L(t) =t2+t

ReB(z) A(z) −1

+ ReC(z)

A(z) −ρ(ϕ(z))

|A(z)|

fort ≥1. Then we have

L0(t) = 2t+ ReB(z) A(z) −1.

IfReB(z)A(z) ≥ −1forz∈Ω, thenL0(t)≥ReB(z)A(z) + 1 ≥0. Hence we obtain mint≥1 L(t) =L(1) = ReB(z)

A(z) + ReC(z)

A(z) −ρ(ϕ(z))

|A(z)| ≥ 1

|A(z)|.

(26)

2nd Order Differential Subordinations of Holomorphic Mappings Yu-Can Zhu and Ming-Sheng Liu

vol. 8, iss. 4, art. 104, 2007

Title Page Contents

JJ II

J I

Page26of 30 Go Back Full Screen

Close

It follows thatρ(ψ(α, β, γ, z))≥1.

IfReB(z)A(z) ≤ −1forz ∈Ω, then mint≥1 L(t) =L

1 2

1−ReB(z) A(z)

=−1 4

ReB(z) A(z) −1

2

+ ReC(z)

A(z)− ρ(ϕ(z))

|A(z)|

≥ 1

|A(z)|.

It also follows thatρ(ψ(α, β, γ, z))≥1.

Hence we have ψ ∈ Ψ(1). From Theorem 2.13, we obtain ρ(w(z)) < 1 for z ∈Ω.

Remark 4. Settingn = 1, ϕ(z) ≡0, A(z) ≡ AandC(z) = 1−B(z)in Theorem 2.14, we get Theorem 4 in [13].

Corollary 2.15. Suppose thatB(z)∈ H(B,C)andA≥0satisfyReB(z)≥0for allz ∈B. Ifw(z)∈H(B,Cm)withw(0) = 0satisfy

kAD2w(z)(z, z) +B(z)Dw(z)(z) +w(z)k<1 for allz ∈B, thenkw(z)k<1forz ∈B.

Example 2.3. Letkandn1 be positive integers and letα = (α1, α2, . . . , αm)∈Cm. We defineαk = (αk1, αk2, . . . , αkm). Suppose A1, A2, . . . , An1 ∈ H(B,C) (n1 ≥ 2) satisfy

ReA1(z)≥

n1

X

k=2

|Ak(z)|

(27)

2nd Order Differential Subordinations of Holomorphic Mappings Yu-Can Zhu and Ming-Sheng Liu

vol. 8, iss. 4, art. 104, 2007

Title Page Contents

JJ II

J I

Page27of 30 Go Back Full Screen

Close

forz ∈ B, where B is the unit ball inCn. Ifw(z) = (w1(z), w2(z), . . . , wm(z)) ∈ H(B,Cm)withw(0) = 0satisfies

m

X

υ=1

n

X

j,l=1

2wυ(z)

∂zj∂zl zjzl+

n

X

j=1

∂wυ(z)

∂zj zj +

n1

X

k=1

Ak(z)[wυ(z)]k

2

<1

for allz ∈B, thenPm

υ=1|wυ(z)|2 <1for allz ∈B.

In fact, if we let

ψ(α, β, γ, z) = γ+β+

n1

X

k=1

Ak(z)αk

forkαk= 1,hβ, αi=t,Rehγ, αi ≥t2−tandt≥1, then we have kψ(α, β, γ, z)k ≥

hγ, αi+hβ, αi+A1(z) +

n1

X

k=2

Ak(z)hαk, αi

≥Re{hγ, αi+hβ, αi+A1(z)} −

n1

X

k=2

|Ak(z)|

m

X

j=1

j|k+1

!

≥t2+ ReA1(z)−

n1

X

k=2

|Ak(z)| ≥1.

Henceψ ∈ Ψ(1) for ρ(z) = q Pn

j=1|zj|2. According to Theorem 2.13, we have Pm

υ=1|wυ(z)|2 <1for allz ∈B.

(28)

2nd Order Differential Subordinations of Holomorphic Mappings Yu-Can Zhu and Ming-Sheng Liu

vol. 8, iss. 4, art. 104, 2007

Title Page Contents

JJ II

J I

Page28of 30 Go Back Full Screen

Close

References

[1] J.B. CONWAY, Functions of One Complex Variable (Second Edition), Springer-Verlag, New York, 1978.

[2] I. GRAHAM ANDG. KOHR, Geometric Function Theory in One and Higher Dimensions, Dekker, New York, 2003.

[3] S. GONG, Convex and Starlike Mappings in Several Complex Variables, Sci- ence Press/Kluwer Academic Publishers, 1998.

[4] S. GONG, A note on partial differential inequalities, Chin. Ann. of Math., 5A(6) (1984), 771–780 (Chinese).

[5] S. GONG AND T. LIU, Distortion theorems for biholomorphic convex map- pings on bounded convex circular domains, Chin. Ann. of Math., 20B(3) (1999), 297–304.

[6] S. GONGANDS.S. MILLER, Partial differential subordinations and inequali- ties define on complete circular domains, Comm. Partial Diff. Equation, 11(11) (1986), 1243–1255.

[7] S. GONGANDT. LIU, Criterion for the family ofεstarlike mappings, J. Math.

Anal. Appl., 274 (2002), 696–704.

[8] H. HAMADA, G. KOHRAND M. KOHR, First order partial differential sub- ordinations on bounded balanced pseudoconvex domains in Cn, Mathematica (Cluj), 41(64) (1999), 161–175.

[9] T. LIU AND G. REN, The growth theorem of convex mapping on bounded convex circular domains, Science in China (Series A), 41(2) (1998), 123–130.

(29)

2nd Order Differential Subordinations of Holomorphic Mappings Yu-Can Zhu and Ming-Sheng Liu

vol. 8, iss. 4, art. 104, 2007

Title Page Contents

JJ II

J I

Page29of 30 Go Back Full Screen

Close

[10] S.S. MILLER AND P.T. MOCANU, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 289–305.

[11] S.S. MILLER AND P.T. MOCANU, Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157–171.

[12] S.S. MILLERANDP.T. MOCANU, On some classes of first-order differential subordinations, Michigan Math. J., 35 (1985), 185–195.

[13] S.S. MILLERAND P.T. MOCANU, Differential subordinations and inequali- ties in the complex plane, J. Diff. Equation, 67(2) (1987), 199–211.

[14] S.S. MILLERANDP.T. MOCANU, Averaging operator and generalized Robin- son differential inequality, J. Math. Anal. Appl., 173 (1993), 459–467.

[15] S.S. MILLER AND P.T. MOCANU, Differential Subordinations Theory and Applications, New York, Marcel Dekker Inc. 2000.

[16] P.T. MOCANU, Second order averaging operators for analytic functions, Rev.

Roumaine Math. Appl., 33(10) (1988), 875–881.

[17] K. ROPERAND T. SUFFRIDGE, Convex mappings on the unit ball ofCn, J.

d’Analyse Math., 65 (1995), 333–347.

[18] T.J. SUFFRIDGE, Starlike and convex maps in Banach spaces, Pacific J. Math., 46(2) (1973), 475–489.

[19] T.J. SUFFRIDGE, Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions, Lecture Notes in Math., 599 (1976), 146–159.

[20] A.E. TAYLORANDD.C. LAY, Introduction to Functional Analysis, New York:

John Wiley & Sons Inc., 1980, 111–115.

(30)

2nd Order Differential Subordinations of Holomorphic Mappings Yu-Can Zhu and Ming-Sheng Liu

vol. 8, iss. 4, art. 104, 2007

Title Page Contents

JJ II

J I

Page30of 30 Go Back Full Screen

Close

[21] YUCAN ZHU AND HEZENG LIN, First-order differential subordinations, Acta Sci. Nature Unvi. Sunyatseni, 30(4) (1991), 114–118 (Chinese).

[22] YUCAN ZHU, Differential subordinations of holomorphic mappings in Ba- nach spaces, J. of Fuzhou University, 30(4) (2002), 430–434 (Chinese).

[23] YUCAN ZHU, Criteria of biholomorphic convex mappings on bounded convex balanced domains, Acta Math. Sinica, 46(6) (2003), 1153–1162 (Chinese).

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

and Yang C.-C., Some further results on the zeros and growths of entire solutions of second order linear differential equations, Kodai Math.. and Yang C.-C., On the zeros

Abstract: In this paper, we define two mappings associated with the Hadamard inequality, investigate their main properties and give some refinements.... Mappings Associated

Abstract: In this paper, by the Minkowski’s inequalities we define two mappings, investi- gate their properties, obtain some refinements for Minkowski’s inequalities and some

In this paper, this problem will be solved for the case N = 2, for tested convex sets of class C 4 and testing convex sets of class C 2 , as stated in Theorem 2.2 below. From now on,

In order to refine inequalities of (1.1), the author of this paper in [2] defined the following some notations, symbols and mappings... Wang [7] proved some results for

In this paper, we obtain some second order differential subordinations of holomor- phic mappings on a bounded convex balanced domain Ω in C n.. These results imply some first

KWON, Nonexistence of finite order solutions of certain second order linear differential equations, Kodai Math. GUNDERSEN, Finite order solutions of second order linear

In this paper we establish some results concerning the partial sums of mero- morphic p-valent starlike functions and meromorphic p-valent convex functions.. 2000 Mathematics