• Nem Talált Eredményt

PHYSICSBUDAPEST INSTITUTE FOR RESEARCH CENTRAL 'Hungarian 'Academy of'Sciences CHEMICAL AND TOPOLOGICAL SHORT-RANGEORDER IN METALLIC GLASSES KFKI-1980-90 TK. {££ их

N/A
N/A
Protected

Academic year: 2022

Ossza meg "PHYSICSBUDAPEST INSTITUTE FOR RESEARCH CENTRAL 'Hungarian 'Academy of'Sciences CHEMICAL AND TOPOLOGICAL SHORT-RANGEORDER IN METALLIC GLASSES KFKI-1980-90 TK. {££ их"

Copied!
12
0
0

Teljes szövegt

(1)

T K . {££ и х

KFKI-1980-90

I . V I N C Z E T . KEMÉNY

A iSi S C H A A FS M A A . 1 O V A<5

F , V A N DER WOUDE

CHEMICAL AND TOPOLOGICAL SHORT-RANGE ORDER IN METALLIC GLASSES

' Hungarian 'Academy of'Sciences CENTRAL

RESEARCH

INSTITUTE FOR PHYSICS

BUDAPEST

(2)
(3)

KFKI-1980-90

CHEMICAL AND TOPOLOGICAL SHORT-RANGE ORDER IN METALLIC GLASSES

I. Vincze*+ , T. Kemény, A.S. Schaafsma*, A. Lovas, F. van der Woude*

Central Research Institute for Physics H-1525 Budapest 114, P.O.B. 49, Hungary

♦Solid State Physics Laboratory, University of Groningen, The Netherlands

To appear in the Proceedings of the Conference on Metallic Claeses:

Science and Technology, Budapest, Hungary, June 30 - July 4, 1980;

Paper S-19

HU ISSN 0368 5330 ISBN 963 371 736 1

On leave from the Central Research Institute for Physics, Budapest

(4)

АННОТАЦИЯ

Ближний порядок металлических стекол /Fe,Ni/В, полученных быстрым ох­

лаждением расплава, очень похож на порядок аналогичного кристаллического ма­

териала /Fe^B: тетрагональный, Ni~B: орторомбический/. В области большой кон­

центрации атомов N1 распределение атомов переходных металлов не случайное.

Атомы Ni чаще попадают на места, соседствующие с большим числом атомов бора.

KIVONAT

Olvadék gyorshütésével előállított (Fe,Ni)В üvegek rövidtávú rendje igen hasonló a megfelelő kristályos anyagéhoz (FegB: tetragonális, Ni^B: ortorom- bos). Az átmeneti fématomok eloszlása nem véletlenszerű a Ni-dus összetétel­

tartományban; a Ni atomok nagyobb gyakorisággal kerülnek a több В szomszéd­

dal rendelkező helyekre.

(5)

ABSTRACT

The atomic a r r a n g e m e n t in m e l t - q u e n c h e d (Fe,Ni)B glasses clo s e l y resembles that of the crystalline c o u nterparts (FeßB is tetragonal, N i 3B is o r t h o r h o m b i c ) . The d i s t r i b u t i o n of transition metal atoms

is not r a n d o m at h i g h Ni concentrations: Ni atoms prefer a n e i g h ­ bourhood wit h a h i g h e r boron coordination.

In the study of chemical shor t - r a n g e order M ö s s b a u e r s p e c ­ troscopy is very u s e f u l because of its s e n sitivity to nearest- neighbour environments. Two types of infor m a t i o n can be obtained

from M ö s s b a u e r experiments: 1. the iron hyperfine field is p r o ­ portional to the iro n magnetic m o m e n t in t r a n sition m e t a l - m e t a l ­

loid glasses and it is d e t ermined [1] m a i n l y by the number of nearest m e t a l l o i d neighbours. Thus the hyperfine field d i s t r i b u ­ tion gives the d i s t r i b u t i o n of the local m e t a l l o i d c o o r d i n a t i o n number a r ound iron atoms. 2. the g e o m e t r i c a l arran g e m e n t of m e t a l ­ loid neighbours is reflected in the qua d r u p o l e interaction.

It has been s h o w n [2] that in the m e l t - q u e n c h e d s t o i c h i o ­ metric (Fe,Ni)^B glasses both the iron hyperfine field and q u a d ­ rupole splitting closely follow those of the c r y stalline c o u n ­ terparts i n d i cating that the local s y m m e t r y in the amorphous and crystalline s t r u cture is similar and chan g i n g w i t h Ni s u b s t i t u ­ tion. The m e t a s t a b l e tetragonal Fe^B c o m p o u n d formed during crystallization is [3] isostructural to Fe^P and has three cry- stallographically inequivalent iron sites in equal numbers wit h 2B, 3B and 4B n e a r e s t neighbours. For the substitution of Ni the

(6)

2

tet r a g o n a l structure transforms [4] into the- orthor h o m b i c s t ruc­

ture of Ni^B (Co^B). This cementite type of crystal contains two c r y s t a l l o g r a p h i c a l l y i n equivalent Ni sites w i t h 2B and 3B nearest n e i ghbours in a 1:2 ratio. The differences in the e n vironments are clearly r e f l ected in the M ö s s b a u e r s pectra of Fig. 1. The dif f e r e n c e in the a t omic a r rangements of the tetragonal and o r ­ t h o r hombic unit cells is also r e f l e c t e d in the densities.

- 6 - 4 - 2 0 2 4 6

velocity (m m /s ) - - - -

Fig. 1. Mössbauer spectra of crystalline Fe$B (tetragonal) and (Fe„ 77N i n _„) ,5 (orthorhombic) at 5 K. The

Uо о U • О r ó

continuous line is the fitted curve

(7)

3

T h e orthorhombic structure is m o r e densely packed: on l y half of the observed 10% increase in the density of Ni^ B comp a r e d to Fe^B can be explained by the atomic w e i g h t differences. Fig. 2 shows that the density of (Fe,Ni)8qB 2q glasses [5] follows this trend.

Sfg/cnr) 8.3

8.1

a Fe Т В

80

-x x

20

о Со

о Ni

7.9

7.7

7.5iíFe,B

0;

\

< V"

7.3

20 40 60

$NLB3

*SCo В

X

80

Fig. 2. Densities of amorphous Feeo-x^x^20 ^ ~ ^° arLl^

alloys taken from Ref. 5. The dashed lines correspond to simple atomié weight differences assuming the packing of Fe^^B^^ or ^ q o^ 203 resV>eo^ ^ e l y . The densities of crystalline Fe.B, C o 7B and N i 7B are

- 7 7 Ó Ó О

also shown.

Ano t h e r ma n i f e s t a t i o n of the change in the local e n v i r o n ­ ments of (Fe,Ni)В glasses is the В c o ncentration dep e n d e n c e of

the Curie temperatures {Fig. 3). The T c cannot be m e a s u r e d in the

Fig. 3. Curie temperatures of amorphous

{Fe Ni ) г, г, В 0r 1-x x 7 5+y 25-y alloys measured by Mössbauer and DSC methods

У = 5* l

(y = °>

= 1 0).

(8)

4

whole concentration range because c r y s t allization occurs at lower temperatures. However, it is clear from Fig. 3 that decreases on the Fe-rich side w i t h decreasing В co n c e n t r a t i o n while the opposite is valid for the Ni-rich side. These opposite trends i n ­ dicate the different electron structure of these glasses due to the different atomic structure.

The change in the topological arra n g e m e n t at the Fe by Ni substitution can be seen easily in the fine structure of the Mössbauer spectra {Fig. 4 ). The second line is always narrower

_____ i______ I______ I______I______I______ I______ I_______

-6 - U -2 0 . 2 U 6

velocity (mm/s) ---

Fig. 4. Typical Mössbauer spectra of amorphous {Fe3N i )q qB^q measured at 5 К

(9)

5

than the fifth line (numbering is from left to right)'but in the case of F e 0_B„_ the width of the lines 1 and 6 is about equal

ZU

(Г, ~ Г ,) while Г., > Г, was found on the Ni-rich side. The former is a result of the c o m p e n s a t i o n of the co r r e l a t e d isomer shift and quadrupole shift d i stribution (all of them - including the hyperfine field - are d e t ermined by the diffe r e n t metal l o i d c o n ­ figurations) . In the case of Ni based gla s s e s the q u a d rupole i n ­ teraction is about 50% stronger [2] due to the different local surroundings which o v e r c o mpensates the e f f e c t of isomer shift and results in and Г’2 < Г,- (the qua d r u p o l e interactions i n ­ fluence the lines 1,6 and 2,5 in opposite ways). It is w o r t h w h i l e to emphasize that this type of asymmetry is c haracteristic for environments o c c u r i n g in the orthor h o m b i c structure as it can be seen from the M ö s s b a u e r spec t r u m of the crystalline m a t e r i a l shown in Fig. lb.

The d i s tribution of iron atoms in d i f f e r e n t local e n v i r o n ­ ments is given by the hyperfine field distribution, p(H). The narrowing of this d i s t r i b u t i o n corresponds to a sharper, mo r e

"ordered" distri b u t i o n of iron atoms. Fig. 5 and 6 show that in the B 2q and B^,- o f f - s t o i c h i o m e t r i c gl a s s e s the d i s t r i b u t i o n of Fe environments is n a r r o w e r for higher Ni concentrations. In the

Fig. 5. Typical iron hyperfine field distributions of amorphous (Fe3Ni) measured at S К

(10)

6

case of (Fe,Ni)^B glasses the standard deviation of the iron hyperfine field distribution, is constant. (This appar e n t con­

centration independence is due to compen s a t i n g c o n c e n t r a t i o n d e ­ pendences [4] of the iron hyperfine field with d i f f erent number of В neighbours as the constancy of for the d i f f erent crystal structures s h o w s ) . As a result of this comparison we had to con­

clude that the narrowing of p(H) is c aused by the increasing

number of iron atoms mostly on o f f - s t o i c h i o m e t r i c c r y s t allographic sites, w h i c h are not present in (Fe,Ni)^B. This is the first d i ­ rect evidence that the distribution of transition m e tal atoms is not random at high Ni concentrations in (Fe,Ni)B glasses: the Fe atoms prefer less В neighbours than the Ni atoms. The pres e n c e of stronger N i -В than Fe-B interaction is also suggested by recent simple cluster calculation of M e s s m e r [6].

Fig. 6. Standard deviation of the iron hyperfine distributions in amorphous (Fe1 Ni )7 r, B 0l._ measured at 5 K. Empty

1 CC CC ( О I у а и у

circles stand for crystalline {Fe3Ni)^B compounds.

We are grateful to Prof. A.J. D ekker for s t i m u l a t i n g d i s ­ cussions. This wor k forms part of the research p r o g r a m of the Foundation for Fundamental Research on M atter (FOM), w i t h finan­

cial support from the Netherlands O r g a n i z a t i o n for the A d v a n c e ­ ment of Pure Rese a r c h (ZWO).

(11)

7

REFERENCES

[1] I. Vincze, F. van der W o ude and J. Balogh, J. de Physique £1 (1980) Cl-257.

[2] I. Vincze, F. van der Woude, T. Kemény and A.S. Schaafsma, J. Magn. Magn Mat. 15-18 (1980) 1336; A.S. Schaafsma, I.

Vincze, F. van der Woude, T. Kemény and A. Lovas, Interna­

tional Conference of L iquid and A m o r phous Metals, Grenoble 1980, to be p u b l i s h e d in J. de Physique.

[3] U. Herold and U. Köster, Z. Metallk. 6_9 (1978) 326; W.B.

Pearson, Handbook of Lattice Spacings and Structure of Metals V o l . 2, Pergamon Press, O xford (1967).

[4] T. Kemény, I. Vincze, J. Balogh, L. Gránásy, В. Fogarassy, F. Hajdú and E. Sváb, this conference (T-14).

[5] R.C. O'Handley, R. Hasegawa, R. Ray and C.P. Chou, Appl. Phys Letters 29^ (1976) 330.

[6] R.P. Messmer, submitted to Phys. Rev. B; this conference (S-ll).

(12)

Kiadja a Központi Fizikái Kutató Intézet Felelős kiadó: Tompa Kálmán

Szakmai lektor: Hargitai Csaba Nyelvi lektor: Hargitai Csaba Gépelte: Végvári Istvánné

Példányszám: 220 Törzsszám: 80-630 Készült a KFKI sokszorosító üzemében Felelős vezető: Nagy Károly

Budapest, 1980. október hó

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

The absolut full energy peak efficiency and the dependence of the sensitivity on the source-detector geometry was determined for a CANBERRA type Ge/Li/

Two methods suitable to analyze very large amounts of data obtained by means of fast timing technique are presented together with preliminary results of

finement described in detail previously £l3,l^]. The obtained relations are, however, more generally valid than the model itself. /Examples of similar quark models

The library belonging to the ORIGEN program contains decay data and three group constants for isotopes of structural materials, for fission products and

1/ The Ks decay is inside a certain fiducial volume of the chamber and directed into a charge exchange event /coplanarity condition/.. X

The systematic error as an accessory effect to the random error induced in the reading of neutron moisture gauges by the variation in the dry bulk density of the

HUNGARJAN ACADEMY OF SCIENCES CENTRAL RESEARCH INSTITUTE FOR

pseudofermion Green’s function in Sec.7» The first few terms in the power expansion of the static susceptibility with respect to the exchange coupling reproduce the