• Nem Talált Eredményt

growth restriction the of erythrocytes pre- and full-term in neonates withintrauterine Major the differences levels of redox in status and antioxidant defencemarkers Reproductive Toxicology

N/A
N/A
Protected

Academic year: 2022

Ossza meg "growth restriction the of erythrocytes pre- and full-term in neonates withintrauterine Major the differences levels of redox in status and antioxidant defencemarkers Reproductive Toxicology"

Copied!
5
0
0

Teljes szövegt

(1)

ContentslistsavailableatScienceDirect

Reproductive Toxicology

jo u r n al h om ep age :w w w . e l s e v i e r . c o m / l o c a t e / r e p r o t o x

Major differences in the levels of redox status and antioxidant defence markers in the erythrocytes of pre- and full-term neonates with

intrauterine growth restriction

Ágnes Ferencz

a

, Hajnalka Orvos

b

, Edit Hermesz

a,∗

aDepartmentofBiochemistryandMolecularBiology,FacultyofScienceandInformatics,P.O.Box533,H-6701Szeged,Hungary

bDepartmentofObstetricsandGynaecology,UniversityofSzeged,P.O.Box533,H-6701Szeged,Hungary

a r t i c l e i n f o

Articlehistory:

Received30September2014

Receivedinrevisedform16February2015 Accepted17February2015

Availableonline24February2015

Keywords:

Antioxidantdefence IUGR

Oxidativestress Peroxynitrite Umbilicalcordblood

a b s t r a c t

Intrauterinegrowthrestriction(IUGR)isapleiotropiccomplicationofpregnancy.Prematurityandgrowth abnormalitiesarecommonriskfactorsforperinatalmorbidityandmortality.Freeradicaldamagehas beenrecognizedasacommonpathogenicmechanismofmanyneonataldiseases.Theaimofthepresent studywastocharacterizethepossiblelinksbetweenthelevelofmaturity,thebirthweightandthe antioxidantstatusofneonatesbornwithIUGR.Ourdatasuggestthatthestressmarkersmeasuredon thecordbloodofneonateswithIUGRandmature,healthyneonatesdonotnecessarilyreflecttheextent ofoxidativestress.However,significantcorrelationswerefoundbetweenthematurityoftheneonates withIUGRandtheoxidativedamage.ThematureIUGRsexhibitedONOOaccumulationandincreased lipidperoxidationmorefrequentlyascomparedwiththepre-termgroup.Theresultssuggestthatthe oxidativeinjuryinIUGRmaydependonthelevelofmaturityandthebirthweight.

©2015ElsevierInc.Allrightsreserved.

1. Introduction

Pregnancyisaphysiologicalstateassociatedwithanenhanced metabolism and an increased demand for oxygen. Premature infants are at particular risk from oxidative stress, as neither theendogenous northe passively acquiredexogenous antioxi- dantdefencesystemaccelerates inmaturationuntil late inthe third trimester [1,2]. Intrauterine growth restriction (IUGR) is one of themajor complications of pregnancy and accounts for significant neonatal mortality and morbidity [3]. The develop- mentofIUGRmaybeaconsequenceofvariousfactors,including an abnormal fetomaternal blood circulation, genetic disorders, pregnancy-inducedhypertension,pregestationaldiabetes,alean umbilicalcord,previousintrauterineinfections,apoornutritional stateofthemother,frequentcigarettesmoking[4]andtoxinor drugexposure[5].However,inthevastmajorityofthecasesthe causeremainsidiopathic.

IUGRis often complicated by intrauterinehypoxia and may inducethegenerationofreactiveoxygenspecies(ROS)andfoetal oxidativestress,resultinginseriousconsequencesforthefoetus, suchaslowbirthweightandprematurity[6].NeonateswithIUGR

Correspondingauthor.Tel.:+3662544887;fax:+3662544887.

E-mailaddress:hermesz@bio.u-szeged.hu(E.Hermesz).

aremoresusceptibletoROS-inducedoxidativedamagebecause theirenzymaticandnon-enzymaticantioxidantdefencesystems andtheabilitytoundergoinductionduringahyperoxicchallenge areimpaired[7].

To eliminate the harmful effects of ROS, cells are equipped withanefficientantioxidantdefencesystem,includingenzymes suchas superoxide dismutase (SOD), catalase (CAT),hemeoxy- genases (HOs),and low-molecular weightantioxidants suchas glutathione (GSH)and metallothioneins (MTs) [8,9]. SOD catal- yses thereduction of thesuperoxide anion (O2˙−)tohydrogen peroxide(H2O2).Inasubsequentstep,CATstimulatesthedegra- dationofH2O2tomolecularoxygenandwater[10].TheMTsare smallproteinswithunusuallyhighcysteinecontent.Thisconfers theirhighmetal-bindingand ROS-reducingproperties[11].The HOsplayrolesinhemedegradation,yieldingequimolarquantities ofbiliverdin,carbonmonoxide(CO)withimportantfreeradical- scavenging properties and free Fe ions. In mature neonates, a considerableproportionoftheplasmatotalantioxidantcapacity originatesfrombilirubin[12].HO-2isaconstitutive,andHO-1an inducibleisoformofHO,anantioxidative,anti-inflammatoryand cytoprotectiveenzymethatisinducedinresponsetocellularstress, includingoxidativestress[13].

Nitricoxide(NO)maybeanimportantfactorfortheregulation ofbloodpressureandoxygendeliverytothefoetus[14].Umbili- calcordbloodvesselslackinnervations,andendothelialcellsmust http://dx.doi.org/10.1016/j.reprotox.2015.02.008

0890-6238/©2015ElsevierInc.Allrightsreserved.

(2)

Table1

Clinicalparametersofthestudygroupsandthematernalage.Dataareexpressedasmeans±SD.Theminimumandthemaximumvaluesoftheparametersaregivenin parentheses.

Full-termneonateswithnormalweight Full-termneonateswithIUGR Pre-matureneonateswithIUGR Gestationalageatdelivery(weeks) 39.2±0.77(38–40+2) 38.741.31(37–40+4) 34.01±1.62(30–36)

Birthweight(g) 3409±455(3190–4340) 2354238.8(2090–2490) 1518±460.5(980–2120)

ThepHofbloodsamples 7.25±0.11(7.04–7.42) 7.240.088(7.1–7.36) 7.20±0.142(7.05–7.3)

1minAPGAR 8.83±1.37(6–10) 8.361.65(6–10) 7±1.63(4–9)

Maternalage(years) 29.9±5.74(22–42) 28.96.55(20–41) 29.3±7.22(21–42)

thereforeplayamajorroleinthelocalcontrolofbloodflow[15].

NOderivedfromendothelialnitricoxidesynthase(eNOS)isconsid- eredthemainvasodilatoragentinfetoplacentalvessels[16].The simultaneousgenerationofNOandO2˙−insufficientlyhighcon- centrationsinthesamecompartmentfavourstheproductionofa toxicreactionproduct,peroxynitriteanion(ONOO).ONOOand otherreactivenitrogenspeciescanaffectthecellfunctionsthrough theoxidationornitrationofvariouscellulartargets[17].

Understressconditions,genescodingformoleculesinvolved inbiologicaldefenceandcellularrepairaremarkedlyupregulated, andthechangesingeneexpressioncanbecharacteristic,sensi- tiveandmeasurableendpoints[18].Membersofthisantioxidant defencesystemareusefulbiomarkersoftheoxidant–antioxidant statusofneonateswithIUGR.Theaimofthepresentstudywas tocharacterizethepossiblelinksbetweenthelevelofmaturity, thebirthweightandtheantioxidantstatusofneonatesbornwith IUGR.Wereportdataonmacromoleculardamage,theaccumula- tionofpowerfuloxidantssuchONOO,H2O2,theactivitiesofthe antioxidantenzymesSODandCAT,andtheexpressionsofaset ofgenescodingformembersofantioxidantdefencesystem(sod1, sod2,cat,mt-1,mt-2,ho-1,ho-2andenos)fromtheaspectsofthe levelofmaturityandthebirthweightofneonateswithIUGR.

2. Materialsandmethods 2.1. Humansubjects

The blood samples were obtained from the Department of ObstetricsandGynaecologyattheUniversityofSzeged,Hungary.

The Ethics Committee of the Department of Obstetrics and Gynaecologyapprovedthestudyprotocol(149/2012).24mature neonateswithnormalweightand28matureand28premature neonateswithIUGRofeithersexwereexamined.Theneonates wereconsideredprematureiftheywerebornbeforethegesta- tionalageof37weeksandfull-termifthedeliveryoccurredafter37 weeks.Newbornsthathadahistoryofdifficultdeliveryandfoetal distress,orshowedmalformationsorevidenceofgeneticdisorders wereexcluded.Thenutritionalstatusofthemothersduringpreg- nancywassatisfactory;nocaseofmalnutritionoccurred.Smoking mothersandtheirneonateswerealsoexcludedfromthisstudy.

Bloodwastakenfromtheumbilicalartery,beforethebirthof theplacenta.BloodcoagulationwasinhibitedbyEDTA.Theblood sampleswerecentrifugedat3000rpmfor20minat4C,andthe plasmaandthebuffycoatwereremoved.Theredbloodcell(RBC) phasewaswashedtwicewith2volumesofisotonicsalinesolu- tionatpH7.0.Thesampleswerestoredat−80Cuntilprocessing (Table1).

2.2. RNAextraction,reversetranscriptionandPCRamplification

Approximately,100mgoffrozenRBCwerehomogenizedinRNA Beereagent(Tel-Test,Inc.)andtotalRNAswerepreparedaccord- ingtotheproceduresuggestedbythemanufacturer.TotalRNAwas routinelytreatedwith100URNAse-freeDNAseI(ThermoScien- tific)toavoidanyDNAcontamination.

For the quantification of mt-1and mt-2,sod1 and sod2, cat, enos,ho-1and ho-2mRNAs,reverse transcription followedPCR amplifications(RT-PCRs)wereperformed.First-strandcDNAswere synthesizedbyusing5␮gtotalRNAsastemplates,200pmolof each dNTP(ThermoScientific),200UMaximaH MinusReverse Transcriptase(ThermoScientific)and500pmolrandomhexamer primers(Sigma)inafinalvolumeof20␮L,andincubatedfor10min at37C,followedby1hat52C.Onemicroliterreversetranscrip- tionproductwasaddedto25␮LDreamTaqGreenPCRMasterMix 2x(ThermoScientific).AmplificationwasperformedinaPTC200 PeltierThermalCycler(MJResearch)using15cyclesof95Cfor 30s,55Cfor30s,and72Cfor30sforthe18SrRNA,usedasinter- nalreferenceand30cyclesformt-1andmt-2,sod1andsod2,cat, enos,ho-1andho-2mRNAs,respectively.Theamplifiedproducts weredetectedona2%agarosegel.TherelativelevelsofmRNAsare expressedasratios(mRNA/18SrRNA).

2.3. Primers

The following primer sets were selected: sod1: F: aagatg- gtgtggccgatgtg and R: ctacagctagcaggataacag; sod2: F: caag- gctcaggttggggttgandR:gctgggatcattagggtagtatg;cat:F:cacagaa- gatggtaactgggandR:ggcgatgtccatctggaatc;enos:F:cactgagcccgtg- gcagtagandR:ggcaggcagcgccaccgacg;mt-1:F:atggaccccaactgctc- ctg and R: gttcccacatcaggcacagc; mt-2: F: atggaccccaactgctcctg and R:cggtcacggtcagggttgtac;ho-1: F:gctgctggtggcccacgcttand R: ctctggtccttggtgtcatgg; ho-2: F: tggcccacgcatacacccgc and R:

ggtctctctggccagtgtgga.Forthenormalizationofsods,cat,enos,mts andhosmRNAs,thelevelofcarp18SrRNAwasusedasinternal standard, detectedwithprimerpairs F:gaaacggctaccacatccaagg, andR:ccgctcccaagatccaactacg.

2.4. Densitometry

Imagesoftheethidiumbromide-stainedagarosegelsweredig- itizedwithaGDS7500GelDocumentationSystemandanalyzed withtheGelBase/GelBlotTMProGelAnalysisSoftware(UVP).

2.5. Enzymeactivitymeasurement

TheRBCswerehemolysedbytheadditionofdistilledwaterata ratioof1:9.ExceptforSODactivitydeterminations,thealiquotsof thehemolysateswereuseddirectly.Thequantityofproteinwas determinedwithFolin reagent, using bovineserumalbuminas standard[19].Biomate5Double-BeamUV–visphotometerrecor- ding (ThermoSpectronic)wasusedforSOD measurementsand GENESYS10SUV–visspectrophotometer(ThermoScientific)was usedforalltheotherparameters.

SOD(EC1.15.1.1)activitywasdeterminedonthebasisofthe inhibition of the epinephrine–adrenochrome autoxidation [20].

Spectrophotometricmeasurementwascarriedoutat480nm.The resultswereexpressedinU/mgprotein.

CAT(EC1.11.1.6)activitywasdeterminedspectrophotometri- callyat240nmbythemethodofBeersandSizer[21]andspecific

(3)

Fig.1.ThelevelsofONOO,H2O2,lipidperoxidation(TBARS),andtheCATactivity inthecordredbloodcellsofmature,healthyneonates(C)andneonateswithIUGR.

Datawereexpressedasmeans±SEMfrommeasurementson24/56samples.

CATactivitywasexpressedinBergmeyerunits(BU)/mgprotein(1 BU=decompositionof1gH2O2/minat25C).

2.6. Lipidperoxidationestimationassay

Thelevelofthiobarbituricacid-reactivesubstances(TBARS)is regardedasanappropriateindicatoroftheextentoflipidperoxi- dation(LPO)[22].LPOwasestimatedbyaTBARSassayat532nm againstablankthatcontainedthethiobarbituricacid(TBA)reagent (0.15g/mLTCA,3.75×103g/mLTBAand0.25MHCl)asdescribed bySerbinovaetal.[23].

2.7. DeterminationofH2O2production

FortheassayofH2O2,0.05mg/mLhorseradishperoxidaseand 0.1mg/mLo-dianisidineinsodiumphosphatebuffer(100mM,pH 6.5) was used. The H2O2 concentration was determined spec- trophotometrically at 400nm and was calculated as nmol/mg protein[24].

2.8. DeterminationofONOOproduction

ONOOwasassayedbydilutingsamplesinto1.0MNaOH(60:1) andmeasuringtheincrease inabsorbanceat302nm.Asacon- trol,sampleswereaddedto100mMpotassiumphosphate(pH7.4) (60:1).ThedecreaseinabsorbancewasmeasuredatneutralpHas ONOOdecomposes[25]

2.9. Statisticalanalysis

Statisticaldifferenceswerecalculatedwithone-wayanalysis ofvariance(ANOVA)(MedCalcStatisticalSoftwareversion9.4.2.0,

Fig.3.FoldofchangeinthelevelsofONOO-,H2O2,lipidperoxidation(TBARS),and theCATactivityinthecordredbloodcellsofmatureandprematureneonateswith IUGR.Fornormalizationthelevelsofmature,healthyneonateswereusedasrefer- ence.Significantdifferencewasacceptedata/bp0.05.(a)Asignificantdifference betweenthemature,healthyneonatesandneonateswithIUGR.(b)Asignificant differencebetweenthematureandprematureneonateswithIUGR.

Broekstraat,Belgium)withaStudent–Newman–Keuls follow-up test.Significantdifferencewasacceptedata,bp≤0.05,aap≤0.01 andaaap≤0.001.

3. Results

3.1. Comparativestudiesofmature,healthyneonatesand neonateswithIUGR

Thelevelsofoxidantmolecules(H2O2andONOO)andthio- barbituricacid-reactivesubstances(TBARS)andtheactivityofthe H2O2-degradingCATdidnotdiffersignificantlybetweentheIUGR andcontrolgroups(Fig.1).

AsconcernsthemRNAlevelsofgenescodingforantioxidant molecules, significantly lower amounts were measured for cat (∼20%),ho-1(∼40%)andho-2(∼50%)intheIUGRgroupthaninthe controls.Themt-2mRNAlevelwasapproximately1.5-foldhigher intheneonateswithIUGRthaninthecontrolgroup(Fig.2).As aconsequenceoftherelativelyhighindividualfluctuations,the averagesoftheamountsofmt-1,sodsandenosmRNAdidnotdiffer significantly(Fig.2).

3.2. Comparativestudiesofmatureandprematureneonateswith IUGR

TherewasnosignificantdifferenceinthelevelofH2O2orthe activityofCATbetweenthematureandpre-termneonateswith IUGR.However,thematuregroupexhibiteda1.5-foldhigheraccu- mulationofONOO,andalsoahigherTBARSlevel(Fig.3).Thelevels ofONOO andTBARSforthepre-termIUGRneonateswerewas moresimilartothoseforthenormalcontrols.

2 2.5

Relative level of mRNA

C IUGR

mt-1 mt-2 ho-1 ho-2 sod-2 sod-1 cat enos a

a

aa

aa C

IUGR C IUGR

0 0.5 1 1.5

C IUGR

Fig.2. mRNAexpressionlevelofantioxidantgenesinthecordredbloodcellsofmature,healthyneonates(C)andneonateswithIUGR.Fornormalizationthelevelof18S rRNAwasusedasaninternalstandard.Datawereexpressedasmeans±SEMfrommeasurementson24/28samples.ap<0.05,aap<0.01.1.

(4)

mt-1 mt-2 ho-1 ho-2 sod-2 sod-1 cat enos 0

0.5 1 1.5 2 2.5 3 3.5 4.5

Fold of induction

mature IUGR

premature IUGR ab

aa aa

b aaa

b

a

aa aa mature IUGR

premature IUGR ab

aa

b aaa

b

a

aa aa mature IUGR

premature IUGR ab

aa

b aaa

b

a

aa aa 4

mature IUGR

premature IUGR ab

aa

b aaa

b

aa aa mature IUGR

premature IUGR ab

aa

b aaa

b

aa aa mature IUGR

premature IUGR ab

aa

b aaa

b

aa aa mature IUGR

premature IUGR ab

aa

b aaa

b

aa aa mature IUGR

premature IUGR ab

aa

b aaa

b

aa aa mature IUGR

premature IUGR ab

aa

b aaa

b

aa aa mature IUGR

premature IUGR ab

aa

b aaa

b

aa aa mature IUGR

premature IUGR ab

aa

b aaa

b

aa aa

Fig.4. FoldofchangesinthemRNAlevelsofantioxidantgenesinthecordredbloodcellsofmatureandprematureneonateswithIUGR.Levelsofmature,healthyneonates wereusedasreferences.Significantdifferencewasacceptedata,bp0.05,aap0.01,aaap0.001.(a)Asignificantdifferencebetweenthemature,healthyneonatesand neonateswithIUGR.(b)AsignificantdifferencebetweenthematureandprematureneonateswithIUGR.

MarkeddifferenceswerealsoobservedbetweenthemRNAlev- elsofselectedparametersinthegroupsofmatureandpremature IUGRneonates.Therewasa∼60%differenceinthelevelofthemt-1 andmt-2mRNAs.ThemRNAlevelsofbothgeneswereapproxi- matelydoubledinthematureIUGRneonatesascompared with thepre-termIUGRsandalsothenormalcontrols(Fig.4A).Thetran- scriptionproductsofthehogeneswereconsiderablylowerinboth IUGRgroups;inthematureIUGRs,thelevelsofho-1andho-2mRNA were∼50%and40%ofthoseforthecontrol.IntheprematureIUGR group,bothmRNAlevelswerelowerby25%,thoughthesechanges werenotsignificant.ThelevelofcatmRNAwaslikewiselowerin bothIUGRgroups:asignificant∼25%decreasesweredetected.The transcriptsofthesodgenesinthematureIUGRgroupwere∼1.5- foldthosemeasuredinthecontrolandprematureIUGRgroups.In theprematureIUGRgroup,theenosmRNAwas∼3-foldthatinthe matureIUGRgroup(Fig.4B).Inthiscase,thematureneonateswith orwithoutIUGRexhibitedsimilarmRNAlevels.

4. Discussion

Since IUGRis postulatedto bea pleiotropic complicationof pregnancy,theidentificationofunitmarkermoleculesorreaction pathwaysconnectedwiththisdisorderposesanumberofdifficul- ties.VariousstudieshavefocusedontheantioxidantstatusofIUGR orprematureneonates,butonlybriefaccountshavebeengivenas concernsthecomparisonofprematureandfull-termneonateswith IUGRfromanyaspect.Themajorfindingofthepresentstudyisthe importanceoftheage-basedgroupingofneonateswithIUGR.Sig- nificantdifferencesinthelevelsofspecificstressmarkersrelative tothecontrolgroupwereobservedonlywhenthefull-termand pre-termIUGRneonatesweregroupedseparately.

Ahigherdegreeofoxidativestresswasdetectedinthecord bloodofmatureIUGRneonatesascomparedwiththecontroland pre-termIUGRgroups;thelevelofONOOwasalmosttwiceas high,indicatingincreasedO2˙andNOproduction.Thesimulta- neousgenerationofNOandO2˙inrelativelyhighconcentrations inthesamecompartmentfavoursproductionofthetoxicreaction productONOO[17].AlthoughONOOitselfisnotafreeradical,it isapowerfuloxidant,whosetoxicityismanifestedamongothers inLPO[17]andwhichplaysaroleinthepathophysiologyofIUGR [26].

TheelevatedONOOandO2˙levelsinthecordbloodofmature neonateswithIUGRwereclearlyreflectedbyanincreasedlevelof TBARS.NO,however,isaJanus-facedmolecule.Sincetheumbili- calcordbloodvesselslackinnervations,theNOproductioninthe endothelialcellsplaysamajorroleinthelocalcontrolofbloodflow andinoxygendeliverytothefoetus[15].Inthisstudy,wehave

demonstratedasignificantlyhigherlevelofthemRNAofeNOSin thecordbloodsamplesofunderdevelopedneonateswithIUGR.In thesecases,theincreaseineNOSexpressionwasnotparalleledby ONOOaccumulation,suggestinganunalteredlevelofO2˙.Thisis inaccordwiththefactthattherewerenosignificantdifferencesin theexpressionsofthesodgenes,andtheactivityofSODwasalso unaltered(datanotshown).Additionally,nosignificantchanges wereobservedintheTBARSlevelinthecordbloodofthepremature neonateswithIUGR.Aninsufficientlevelofvasodilatationofthe umbilicalvesselsandreducedeNOSactivitywereearlierreported tobeassociatedwithneonateswhoweresmallforgestationalage [16].

EvidencehasrecentlybeenaccumulatingthatCO,bestknown foritstoxicity,canfunctioninasimilarmannertoNO[27]ormay eveninteractwiththeNO-producingpathway[28].COisformed primarilyasaproductofhemedegradation,whichiscatalysedby theHOs.Theobservationof substantialHOactivityin thecord tissuessupportsthepossibilityoftheaccumulationofCOinsuf- ficientlyhighamountstoplayaroleinfetoplacentalbloodflow regulation[29].Ourstudypresentsevidencethattheexpressions ofthehogenesaremarkedlylowinIUGRneonates(regardlessof thelevelofmaturity)versuscontrols.Thoughthelowexpressions ofbothhogeneswerecharacteristicforbothIUGRgroups,asig- nificantdifferencewasobservedonlyforthefull-termneonates withIUGR.Deficienciesin HO-1 havepreviously beenfoundto beassociatedwithpregnancydisorders,suchasrecurrentmiscar- riages,IUGRandpre-eclampsia[30].Ourresultssupportthis:the lowerexpressionofhoinIUGRneonatesmightresultinadecreased COlevelandunsatisfactoryfetoplacentalbloodflow.Moreoverour datarelatingtotheselectedantioxidantmoleculessuggestthatho couldserveasanindicativemarkerprovidingapossiblelinktothe IUGRphenotype.

ThepresenceofIUGRinfull-termneonateswasaccompaniedby significantlyhigherlevelsofexpressionofbothmtgenes.MT,an importantproteinwhichbindsbivalentmetals,playsasignificant roleinnumerous cellularmetabolicprocesses,suchasinmain- tainingZnandCuhomeostasisandin CdandHgdetoxification.

Additionally,anincreasedMTlevelwasdemonstratedbyZapata etal.in theerythrocytesofpregnantwomen[31].ElevatedMT levelshavebeenattributedtotheproliferationanddifferentiation ofbloodcellsintheprocessoferythropoiesis,theprotectiverole oferythrocytesagainsttheactionoffreeradicals,andincreased levelsofestrogenandprogesterone,hormoneswhichinducethe synthesisofMT[32].Astatisticallysignificantincreaseinthelevel ofMTproteinhasadditionallybeenrevealedin theplasmaand RBCs of pregnantwomen and of theirneonateswith IUGR[4].

ThepossiblephysiologicalfunctionsofMTintheplacentainclude

(5)

temporaryZnstorageandregulationoftheZnflowtothefoetus, whilerestrictingtoxicmetaltransfer[33]andprotectionagainst theembryotoxic andteratogeniceffects ofa Zndeficiency [34], whichmaybecausedbycigarettesmoke,alcohol,gestationalinfec- tionandexposuretoenvironmentalcontaminants,includingheavy metalsandendocrinedisrupters[35].

Froman analysisof theparameters relating tothedifferent IUGRgroups,wecanconcludethatfull-termneonateswithIUGR areatespeciallyhighrisk.Pre-termneonates,atgestationalages of33–36weeksdemonstratelessdamageintheintegrityofthe lipidmolecules,asignificantaccumulationoftheharmfuloxidant ONOOcannotbedetected,andtheexpressionsofgenescodingfor antioxidantmarkersarelessaffected.ThesignificantlylowerLPOin theprematureneonatesmaybecorrelatedwiththedecreasedsen- sitivityoftheRBCstooxygenradicals,orwiththefactthattheRBCs ofprematurenewbornscontainasmallerquantityofunsaturated fattyacids[36].Thisphenotypeisnotwithoutprecedent.TheGSH andNADPHlevelsprovedtobelowerinthosewithgestationalages oflessthan33weeksthaninpre-terminfantswithgestationalages of33–36weeks,andthelevelsofthesemarkerswereaslowinfull- term,small-for-ageinfantsasinpre-terminfantswithgestational agesoflessthan33weeks[7].

5. Conclusions

Ourdatafurnishevidencethatthereisextremeheterogeneityin ROSproductionandintheactivationoftheantioxidantdefencesys- temwithinneonateswithIUGR,whichisbluntedbytheuseofmean measurements.Intergroupingbasedongestationalageandbirth- weight,yieldedevidencethatthemolecularresultsinthepre-term IUGRgroupwereoftensimilartothoseforthemature,appropriate- for-ageneonates.However,thebackgroundoftheIUGRphenotype ispleiotropic,andmeasurementsofvariousantioxidantsprovide onlyapartiallyadequatepictureoftheoverallconditionofthe neonates.Data emergingfromdifferentapproaches tothetopic present evidenceonly of theinvolvement of additionalmarker moleculesinthedevelopmentofIUGRdisorders.Ourstudyindi- catesthatthelevelsofexpressionofthemtandhogenesaregood candidatesthroughwhichtocharacterizetheIUGRphenotype.

Conflictofintereststatement

Theauthorsdeclarethattherearenoconflictsofinterest.

References

[1]FinerN,LeoneT.Oxygensaturationmonitoringforthepreterminfant:the evidencebasisforcurrentpractice.PediatrRes2009;65:375–80.

[2]PerroneS,Tataranno ML,StazzoniG, BuonocoreG.Biomarkers ofoxida- tive stress infetal and neonataldiseases. J Matern FetalNeonatal Med 2012;25:2575–8.

[3]ThorntonJG,HornbuckleJ,VailA,SpiegelhalterDJ,LeveneM.Infantwell- beingat2yearsofageintheGrowthRestrictionInterventionTrial(GRIT):

multicentredrandomisedcontrolledtrial.Lancet2004;364:513–20.

[4]BizonA,Milnerowicz-NabzdykE,ZalewskaM,ZimmerM,MilnerowiczH.

Changesinpro/antioxidantbalanceinsmokingandnon-smokingpregnant womenwithintrauterinegrowthrestriction.ReprodToxicol2011;32:360–7.

[5]KalanithiLE,IlluzziJL,NossovVB,FrisbaekY,Abdel-RazeqS,CopelJA,Norwitz ER.Intrauterinegrowthrestrictionandplacentallocation.JUltrasoundMed 2007;26:1481–9.

[6]BuonocoreG,PerroneS.Biomarkersofoxidativestressinthefetusandnew- born.HaematRep2006;2:103–7.

[7]LeeYS,ChouYH.Antioxidantprofilesinfulltermandpretermneonates.Chang GungMedJ2005;28:846–51.

[8]McFarlandVA,InouyeLS,LutzCH,JarvisAS,ClarkeJU,McCantDD.Biomarkers ofoxidativestressandgenotoxicityinliversoffield-collectedbrownbullhead, Ameiurusnebulosus.ArchEnvironContamToxicol1999;37:236–41.

[9]GeorgeSC,HogmanM,PermuttS,SilkoffPE.Modelingpulmonarynitricoxide exchange.JApplPhysiol2004;96:831–9.

[10]ThibeaultDW.Theprecariousantioxidantdefensesofthepreterminfant.Am JPerinatol2000;4:167–81.

[11]AschnerM,SyversenT,SouzaDO.Metallothioneins:mercuryspecies-specific inductionandtheirpotentialroleinattenuatingneurotoxicity.ExpBiolMed 2006;231:1468–73.

[12]SedlakTW,SnyderSH.Bilirubinbenefits:cellularprotectionbyabiliverdin reductaseantioxidantcycle.Pediatrics2004;113:1776–82.

[13]OtterbeinLE,ChoiAM.Hemeoxygenase:colorsofdefenseagainstcellular stress.AmJPhysiolLungCellMolPhysiol2000;279:1029–37.

[14]Myatt L, BrewerA,Brockman DE. Theactionof nitricoxidein theper- fused human fetal-placental circulation. AmJ Obstet Gynecol 1991;164:

687–92.

[15]FoxSB,KhongTY.Lackofinnervationofhumanumbilicalcord.Animmuno- histologicalandhistochemicalstudy.Placenta1990;11:59–62.

[16]KrauseBJ,PrietoCP,Mu ˜noz-UrrutiaE,SanMartínS,SobreviaL,Casanello P.Roleofarginase-2andeNOSinthedifferentialvascularreactivityand hypoxia-inducedendothelialresponseinumbilicalarteriesandveins.Placenta 2012;33:360–6.

[17]RadiR,PeluffoG,AlvarezMN,NaviliatM,CayotaA.Unravelingperoxynitrite formationinbiologicalsystems.FreeRadicBiolMed2001;30:463–88.

[18]NuwaysirEF,BittnerM,TrentJ,BarrettJC,AfshariCA.Microarraysandtoxico- logy.Theadventoftoxicogenomics.MolCarcinogen1999;24:153–9.

[19]LowryOH,RosebroughEA,FarrAL,RandallRJ.ProteinmeasurementwithFolin phenolreagent.JBiolChem1951;193:265–75.

[20]Misra HP, Fridovich I. Therole ofsuperoxide anionin the autoxidation ofepinephrineandasimpleassayforsuperoxidedismutase. JBiolChem 1972;247:3170–5.

[21]BeersJrRF,SizerIW.Catalaseassaywithspecialreferencetomanometric methods.Science1953;117:710–2.

[22]NogueiraCW,QuinhonesEB,JungEAC,ZeniG,RochaJBT.Anti-inflammatory andantinociceptiveactivityofbiphenyldiselenide.InflammRes2003;52:

56–63.

[23]SerbinovaE,KhwajaS,ReznickAZ,PackerL.Thiocticacidprotectsagainst ischemia-reperfusioninjuryintheisolatedperfusedLangendorffheart.Free RadicRes1992;17:49–58.

[24]VillegasE,GillilandSE.HydrogenperoxideproductionbyLactobacillusdel- brueckiiSubspLactisIat5C.JFoodSci1998;63:1070–4.

[25]HuieRE,PadmajaS.ThereactionofNOwithsuperoxide.FreeRadicResCom 1993;18:195–9.

[26]NanettiL,GiannubiloSR,RaffaelliF,CurziCM,VigniniA,MoroniC,etal.Nitric oxideandperoxynitriteplateletlevelsinwomenwithsmall-for-gestational- agefetuses.BJOG2008;115:14–21.

[27]JohnsonRA,KozmaF,ColombariE.Carbonmonoxide:fromtoxintoendoge- nousmodulatorofcardiovascularfunctions.BrazJMedBiolRes1999;32:1–14.

[28]MoncadaS,PalmerRM,HiggsEA.Nitricoxide:physiology,pathophysiology, andpharmacology.PharmacolRev1991;43:109–42.

[29]VremanHJ,WongRJ,KimEC,NabsethDC,MarksGS,StevensonDK.Haem oxygenaseactivityinhumanumbilicalcordandratvasculartissues.Placenta 2000;21:337–44.

[30]ZhaoH,WongRJ,KalishFS,NayakNR,StevensonDK.Effectofhemeoxygenase- 1deficiencyonplacentaldevelopment.Placenta2009;30:861–8.

[31]ZapataCL,SimõesTM,DonangeloCM.Erythrocytemetallothioneininrelation tootherbiochemicalzincindicesinpregnantandnonpregnantwomen.Biol TraceElemRes1997;57:115–24.

[32]KägiJH,SchäfferA.Biochemistryofmetallothionein.Biochemistry1988;27:

8509–15.

[33]GoyerRA,HaustMD,CherianMG.Cellularlocalizationofmetallothioneinin humantermplacenta.Placenta1992;13:349–55.

[34]DavisSR,CousinsRJ.Metallothioneinexpressioninanimals:aphysiological perspectiveonfunction.JNutr2000;130:1085–8.

[35]McAleer MF, TuanRS.Cytotoxicant-induced trophoblast dysfunction and abnormalpregnancyoutcomes:roleofzincandmetallothionein.BirthDefects ResCEmbryoToday2004;72:361–70.

[36]VargaSI,NovákZ,PatakiL,PatocskaiM,MatkovicsB.Theinfluenceofantioxi- dantsontheoxidativestressofredbloodcells.ClinChimActa1992;205:241–4.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

A correlation with a similar pattern was detected between gestational weight gain and the degree of growth restriction within the IUGR group: a more severe growth

In the current study we observed that aEEG done before six hours of age may show a normal like pattern in a relatively high proportion (15%) of term neonates pre- senting with

The in vitro antioxidant activity was evaluated by trapping the ABTS and hydroxyl radicals as well as the inhibition of the enzyme acetyl-cholinesterase and hemolysis of erythrocytes

Keywords: folk music recordings, instrumental folk music, folklore collection, phonograph, Béla Bartók, Zoltán Kodály, László Lajtha, Gyula Ortutay, the Budapest School of

Major research areas of the Faculty include museums as new places for adult learning, development of the profession of adult educators, second chance schooling, guidance

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the

In this article, I discuss the need for curriculum changes in Finnish art education and how the new national cur- riculum for visual art education has tried to respond to

Usually hormones that increase cyclic AMP levels in the cell interact with their receptor protein in the plasma membrane and activate adenyl cyclase.. Substantial amounts of