• Nem Talált Eredményt

S2.a/D 22 1 a .a 2C1/ 2 4 p .aC1/ aC32 P 1.a/ 3 5

N/A
N/A
Protected

Academic year: 2022

Ossza meg "S2.a/D 22 1 a .a 2C1/ 2 4 p .aC1/ aC32 P 1.a/ 3 5"

Copied!
12
0
0

Teljes szövegt

(1)

Miskolc Mathematical Notes HU e-ISSN 1787-2413 Vol. 20 (2019), No. 2, pp. 985–996 DOI: 10.18514/MMN.2019.2732

A NOTE ON SUMS OF A CLASS OF SERIES

SUNGTAE JUN, GRADIMIR V. MILOVANOVI ´C, INSUK KIM, AND ARJUN K. RATHIE

Received 03 November, 2018

Abstract. The aim of this note is to provide sums of a unified class of series of the form Si.a/D

X1

kD0

. 1/k a i k

! 1 2k.aCkC1/

in the most general form for anyi 2Z. For each2N, in four cases wheni D ˙2 and iD ˙.2 1/, simple explicit expressions forSi.a/are obtained, e.g.

S2.a/D 22 1 a .a 2C1/

2 4

p .aC1/

aC32 P 1.a/

3 5;

whereP.a/is an algebraic polynomial inaof degree.

ForiD1andaDn .2N/, we recover the well known sum of the series due to Vowe and Seiffert. Several other known results due to Srivastava and Kimet al. can be considered as special cases of our result.

2010Mathematics Subject Classification: 33C15; 33C90; 05A19; 33B15; 33C05; 39A10 Keywords: hypergeometric series, Bailey summation theorem, generalization of Bailey summa- tion theorem

1. INTRODUCTION AND PRELIMINARIES

In 1812, Gauss [6] defined his famous infinite series as follows:

1Cab c

´

1ŠCa.aC1/b.bC1/

c.cC1/

´2

2Š C : (1.1)

The series (1.1) is denoted by the notation

2F1

a; b c I´

;or 2F1

a; bI c I ´

;or 2F1Œa; bIcI´;

or simplyF and is popularly known as the Gauss’s function or hypergeometric func- tion.

The quantitiesa, b andc are known as the parameters (real or complex) of the series withc ¤0; 1; 2; : : : and´is termed as the variable of the series. This is

c 2019 Miskolc University Press

(2)

called the ‘Hypergeometric series’ because either aD1 and b Dc or bD1 and aDc, it reduces to the well known ‘Geometric series’.

In terms of Pochhammer’s symbol.a/n, defined by .a/nD

(a.aC1/ .aCn 1/; n2N;

1; nD0; (1.2)

the series (1.1) is represented as

1

X

nD0

.a/n.b/n

.c/n ´n nŠ:

Also, in term of Gamma function,.a/ncan be represented as .a/nD .aCn/

.a/ : Thus, from (1.1), we have

2F1

a; b c I´

D

1

X

nD0

.a/n.b/n

.c/n ´n

nŠ: (1.3)

Here, we verify that the series (1.1)

(i) is convergent for all values of´providedj´j< 1and divergent whenj´j> 1.

(ii) is convergent for´D1provided Re.c a b/ > 0and divergent for Re.c a b/0.

(iii) is absolutely convergent for ´D 1 provided Re.c a b/ > 0and con- vergent but not absolutely for 1 <Re.c a b/ 0 and divergent for Re.c a b/ < 1.

The limiting case of (1.1) is worth mentioning here. For this, if we replace´by

´=bin (1.3) and take the limit asb! 1, then since .b/n

bn ´nn;

we arrive at the following series which is in the literature known as the Kummer’s series or the confluent hypergeometric series [9]

1F1

a c I ´

D

1

X

nD0

.a/n

.c/n

´n

nŠ: (1.4)

Further, it is interesting to mention here that almost all elementary functions of mathematics and mathematical physics are special cases or limiting cases of Gauss’s hypergeometric function or the confluent hypergeometric function, see [3,15].

It is well known that whenever a2F1hypergeometric function reduces to a gamma function, then the obtained result is very useful for application. Thus, for example,

(3)

Gauss summation theorem, Gauss second, Kummer, Vandermonde and Bailey’s the- orems for the series2F1 play a vital role in the theory of hypergeometric function, especially in applied mathematics, mathematical physics and engineering.

However, in this note, we are interested in the following Bailey’s summation the- orem [1,2] viz.

2F1

a; 1 a b I1

2

D .12b/ .12bC12/

.12bC12a/ .12b 12aC12/: (1.5) During 1992–96, Lavoieet al. [10–12] have successfully investigated the gener- alizations of the above mentioned classical summation theorems and also obtained the generalization of the classical summation theorems for the series3F2 with unit argument such as those of Watson, Dixon and Whipple.

In particular, they have generalized Bailey’s summation theorem (1.5) by obtaining a single formula containing eleven results in the form

2F1

a; 1 aCi

b I1

2

(1.6) for i D0;˙1;˙2;˙3;˙4;˙5. Later, Rakha and Rathie [17] and Kim et al. [8]

have further generalized and extended respectively, the above mentioned classical summation theorems in the most general form.

One of such kind of summation theorems will be used in this note in order to provide sums of a unified class of the series of the form

1

X

kD0

. 1/k a i k

! 1

2k.aCkC1/ (1.7)

in the most general form for anyi2Z. Otherwise, the first result of this type was ap- peared in 1987, when Vowe and Seiffert [20] evaluated the following very interesting and useful sum, viz.

n 1

X

kD0

. 1/k n 1 k

! 1

2k.nCkC1/D 2n.n 1/ŠnŠ .2n/Š

1

2nn .n2N/ (1.8) by identifying it with an Eulerian integral of the type

Z 1 0

1 t

2 n 1

tndt: (1.9)

In recent years, the sum (1.8) has gained a fair amount of attention. In 1988, Srivastava [18] established the generalization of (1.8) in the form

1

X

kD0

. 1/k a 1 k

! 1

2k.aCkC1/ D2a .a/ .aC1/

.2aC1/

1

2aa (1.10)

(4)

by employing the classical Bailey’s summation theorem (1.5) and also discussed a few more series of this type.

In 1989, Srivastava [19] gave a basic (orq ) extension of (1.10).

In 1999, Choiet al.[4] have re-derived the result (1.10) and obtained the following two results closely related to (1.10) by utilizing certain contiguous function relations for2F1due to Gauss [6,16],

1

X

kD0

. 1/k a k

! k

2k.aCk/.aCkC1/D2a 1f .aC1/g2 .2aC2/

1

2aC1 (1.11) and

1

X

kD0

. 1/k a 2 k

! k

2k.aCk/.aCkC1/ D32af .aC1/g2 .a 1/ .2aC1/

aC2 .a 1/2a 1:

(1.12) In 2009, Prodinger [14] established a more general sum of the form

n

X

kD0

. 1/k n k

! 1

2k.mCk/ .m; k2N/

and obtained as special cases, the results (1.11) and (1.12) foraDnby completely elementary tools.

In 2010, Dahlberg et al. [5] have presented an elegant and elementary proof of the identites (1.11) and (1.12) for aDn using Zeilberger algorithm and the Wilf- Zeilberger proof style.

In 2012, Kim et al. [7] generalized the sum (1.10) (and of course, Vowe and Seiffert’s sum (1.8)) and obtained the explicit expressions of (1.7) foriD0,˙1,˙2,

˙3,˙4,˙5by utilizing the generalizations of the Bailey’s summation formulas (1.6) obtained earlier by Lavoieet al.[11] and deduced a large number of very interesting results including (1.8) and (1.10).

In our present investigation, we will use the generalization of the Bailey’s summa- tion theorem (1.5) in the following two forms [17]:

2F1

a; 1 aCi

b I1

2

D 21Ci b .12/ .b/ .a i / .a/ .12b 12a/ .12b 12aC12/

i

X

rD0

i r

!. 1/r .12b 12aC12r/

.12bC12aC12r i / (1.13) fori D0; 1; 2; : : : and

2F1

a; 1 a i

b I1

2

D 21 i b .12/ .b/

.12b 12a/ .12b 12aC12/

(5)

i

X

rD0

i r

! .12b 12aC12r/

.12bC12aC12r/ (1.14) for i D0; 1; 2; : : :, as well as a general formula (containing (1.13) and (1.14)), ob- tained recently by Milovanovi´cet al.[13],

2F1

ha; 1 aCi

b I1

2 i

D .12/ .b/ .1 a/

2b i 1 .1 aC12.iC jij//

( Ci.a; b/

.12b 12aC12/ .12bC12a b1C2ic/

C Di.a; b/

.12b 12a/ .12bC12a 12 b2ic/ )

; (1.15)

with coefficientsCi.a; b/andDi.a; b/given by C2.a; b/D

X

jD0

2 2j

!b a 2

j

bCa

2 .2 j /

j

;

D2.a; b/D

1

X

jD0

2 2jC1

!

b aC1 2

j

bCaC1

2 .2 j /

j 1

;

C2C1.a; b/D

X

jD0

2C1 2j

! b a

2

j

bCa

2 .2 jC1/

j

;

D2C1.a; b/D

X

jD0

2C1 2jC1

!

b aC1 2

j

bCaC1

2 .2 jC1/

j

;

C 2.a; b/D

X

jD0

2 2j

!b a 2

j

bCa 2 Cj

j

;

D 2.a; b/D

1

X

jD0

2 2jC1

!b aC1 2

j

bCaC1

2 Cj

j 1

;

C .2C1/.a; b/D

X

jD0

2C1 2j

! b a

2

j

bCa 2 Cj

j

;

(6)

D .2C1/.a; b/D

X

jD0

2C1 2jC1

!b aC1 2

j

bCaC1

2 Cj

j

: Clearly, fori D0, the results (1.13), (1.14) and (1.15) reduce to the Bailey’s sum- mation theorem (1.5).

The main objective of this note is to provide sums of a unified class of the series of the form

Si.a/D

1

X

kD0

. 1/k a i k

! 1

2k.aCkC1/ (1.16)

in the most general form for anyi 2Z. The results obtained earlier by Vowe and Seiffert [20] and Srivastava [18] follows as special cases of our main findings.

2. MAIN RESULTS

The following theorem gives a result on sums of a unified class of series.

Theorem 1. ForiD0; 1; 2; ;the following results hold true.

1

X

kD0

. 1/k a i k

! 1

2k.aCkC1/

D .aC1 i / 2a iC1

i

X

rD0

. 1/r i r

! .12rC12/

.aC32C12r i / (2.1) and

1

X

kD0

. 1/k aCi k

! 1

2k.aCkC1/ D .aC1/

2aCiC1

i

X

rD0

i r

! .12rC12/

.aC32C12r/: (2.2) Proof. The proofs of our results are quite straight forward. For this, in order to establish the result (2.1), we consider (1.16) fori2N0.

If we use the elementary identities n

r

!

D nŠ

.n r/ŠrŠ; .a/nD .aCn/

.a/ ; .˛ n/D. 1/n .˛/

.1 ˛/n

; then, after some simplification, the left-hand side in (2.1) becomes

Si.a/D 1 aC1

1

X

kD0

. aCi /k.aC1/k .aC2/k 1

kŠ2k Summing up the series with the help of (1.3), we get

Si.a/D 1 aC1 2F1

aCi; aC1 aC2 I1

2

: (2.3)

(7)

We now observe here that the right-hand side of (2.1) can be verified with the result (1.13) to2F1above and some calculation.

In exactly the same manner, the second result (2.2) for S i.a/, i 2N, can be

proven with the help of the known result (1.14).

Alternatively, the results given in previous theorem can be expressed in the follow- ing explicit form:

Theorem 2. For each2Nthe sum.1:16/can be expressed as S2.a/D 22 1 a

.a 2C1/

"p

.aC1/

aC32 P 1.a/

#

(2.4) and

S2 1.a/D 22 2 a .a 2C2/

"p

.aC1/

aC32 Q 1.a/

#

; (2.5)

wherePandQare polynomials of degree, defined by the recurrence relations P.a/D2Q.a 1/ .a 2 1/P 1.a 1/;

Q.a/D2.a /P 1.a 1/ .a 2/Q 1.a 1/;

)

(2.6) withP0.a/D2andQ0.a/D1.

For negative indices we have

S 2.a/D 2 a 2 1 .aC1/

"p

.aC2C1/

aC32C CR 1.a/

#

(2.7) and

S .2 1/.a/D 2 a 2 .aC1/

"p

.aC2/

aC12CCT 1.a/

#

; (2.8)

whereRandTare polynomials of degree, defined by the recurrence relations T.a/D2.aCC1/R 1.a/ .aC1/T 1.aC1/;

R.a/D2T.a/ .aC1/R 1.aC1/;

)

(2.9) withR0.a/D2andT0.a/D1.

The expressions.2:6/and.2:9/hold also forD0if we takeP 1.a/DR 1.a/D 0.

In proving Theorem2.2we need the following auxiliary result:

(8)

Lemma 1. For each 2 N0 the sum .1:16/ satisfies the following recurrence relations

S2C1.a/D2 ŒS2.a 1/ S2 1.a 1/ ; S2C2.a/D2 ŒS2C1.a 1/ S2.a 1/ ; S .2C1/.a/DS 2.a/ 1

2S .2 1/.aC1/;

S .2C2/.a/DS .2C1/.a/ 1

2S 2.aC1/:

9

>>

>>

>>

>>

>=

>>

>>

>>

>>

>;

(2.10)

Proof. Starting from (1.16) fori D2C1and using the identity

a 2 1

k

!

D a 2 kC1

! a 2 1 kC1

!

;

we can easily prove the first recurrence relation in (2.10). In a similar way we get the

other ones. We omit the details.

Proof of Theorem 2. In order to prove explicit expressions (2.4), (2.5), (2.7), and (2.8), we apply (1.15) to (2.3) foriD2,2 1, 2, and .2 1/, respectively, and use the corresponding coefficientsCi.a; b/andDi.a; b/.

Finally, using Lemma1we obtain the recurrence relations (2.6) and (2.9) for the polynomialsPandQandRandT, respectively.

Remark 1. The polynomials P and Q which satisfy the recurrence relations (2.6) are given, forD0; 1; : : : ; 9, by

P0.a/D2; P1.a/D4.a 1/; P2.a/D2 3a2 11aC12

; P3.a/D8.a 3/ a2 5aC10

;

P4.a/D2 5a4 70a3C427a2 1322aC1680

; P5.a/D4.a 5/ 3a4 50a3C401a2 1698aC3024

; P6.a/D2 7a6 217a5C3227a4 28967a3C159750a2

496680aC665280/ ;

P7.a/D16.a 7/ a6 35a5C623a4 6889a3C47256a2 183516aC308880/ ;

P8.a/D6 3a8 164a7C4494a6 79280a5C953387a4 7765436a3 C40967236a2 126332400aC172972800

;

P9.a/D4.a 9/ 5a8 300a7C9402a6 193944a5C2747829a4 26422764a3C164805772a2 602206800aC980179200

;

(9)

and

Q0.a/D1; Q1.a/D3a 2; Q2.a/D5a2 15aC12;

Q3.a/D7a3 49a2C126a 120;

Q4.a/D3 3a4 38a3C201a2 526aC560

;

Q5.a/D11a5 220a4C1969a3 9812a2C26532a 30240;

Q6.a/D13a6 377a5C5109a4 41119a3C202046a2 558792aC665280;

Q7.a/D15a7 595a6C11361a5 134185a4C1032120a3 5031580a2 C14102064a 17297280;

Q8.a/D17a8 884a7C22610a6 367880a5C4060433a4 30316916a3 C146566860a2 414018000aC518918400;

Q9.a/D19a9 1254a8C41382a7 886692a6C13256091a5 139709166a4C1017764108a3 4878321288a2 C13847306400a 17643225600;

respectively.

Remark2. The polynomialsRandTwhich satisfy the recurrence relations (2.9) are given, forD0; 1; : : : ; 9, by

R0.a/D2; R1.a/D4.aC3/; R2.a/D2 3a2C25aC54

; R3.a/D8.aC5/ a2C11aC34

;

R4.a/D2 5a4C130a3C1327a2C6218aC11160

; R5.a/D4.aC7/ 3a4C94a3C1193a2C7062aC16200

; R6.a/D2.7a6C371a5C8617a4C110585a3C817288a2

C3270524aC5504688/;

R7.a/D16.aC9/.a6C61a5C1663a4C25303a3C222952a2 C1067812aC2158800/;

R8.a/D6.3a8C268a7C11046a6C269992a5C4228307a4

C43076572a3C277195204a2C1026169008aC1668885120/;

R9.a/D4.aC11/.5a8C500a7C23402a6C654296a5C11765429a4

(10)

C137947556a3C1023509532a2C4376435280aC8236080000/;

and

T0.a/D1; T1.a/D3aC7; T2.a/D5a2C35aC62;

T3.a/D7a3C98a2C469aC762;

T4.a/D3 3a4C70a3C633a2C2606aC4088

;

T5.a/D11a5C385a4C5599a3C41855a2C159390aC245640;

T6.a/D13a6C637a5C13559a4C158639a3C1065636a2 C3868332aC5897520;

T7.a/D15a7C980a6C28686a5C481640a4C4958895a3 C31072820a2C109138164aC165145680;

T8.a/D17a8C1428a7C54978a6C1250520a5C18186753a4

C171842052a3C1024655212a2C3512174160aC5284782720;

T9.a/D19a9C1995a8C97698a7C2888646a6C56212203a5 C740755755a4C6574624112a3C37758440004a2 C126997604208aC190253266560;

respectively.

3. CONCLUDING REMARK

In this note, an attempt has been made to provide a unified sum of the series of the form

1

X

kD0

. 1/k a i k

! 1

2k.aCkC1/

in the most general form for anyiD0;˙1;˙2; : : :.

We believe that the results obtained in this note may be potentially useful in com- binatorics, applied mathematics, mathematical physics and engineering.

REFERENCES

[1] G. E. Andrews, R. Askey, and R. Roy,Special functions. Cambridge: Cambridge University Press, 1999, vol. 71.

[2] W. N. Bailey, “Generalized hypergeometric series.” Cambridge Tracts in Mathematics and Math- ematical Physics. 32. London: Cambridge University Press. vii, 108 p. (1935)., 1935.

[3] Y. A. Brychkov,Handbook of special functions. Derivatives, integrals, series and other formulas.

Boca Raton, FL: Chapman & Hall/CRC, 2008.

(11)

[4] J. Choi, P. Zornig, and A. K. Rathie, “Sums of certain classes of series.”Commun. Korean Math.

Soc., vol. 14, no. 3, pp. 641–647, 1999.

[5] S. Dahlberg, T. Ferdinands, and A. Tefera, “A Wilf-Zeilberger approach to sums of Choi, Zorig and Rathie.” Quaest. Math., vol. 33, no. 3, pp. 341–346, 2010, doi:

10.2989/16073606.2010.507325.

[6] C. F. Gauss, “Disquisitiones generales circa serium infinitum, Thesis, Gottingen,”Ges. Werke Gottingen, Vol. II, 437-445; III 123–163, III 207–229, III 446–460, 1866.

[7] Y. S. Kim, M. P. Chaudhary, and A. K. Rathie, “On sums of certain classes of series.”Commun.

Korean Math. Soc., vol. 27, no. 4, pp. 745–751, 2012, doi:10.4134/CKMS.2012.27.4.745.

[8] Y. S. Kim, M. A. Rakha, and A. K. Rathie, “Extensions of certain classical summation theorems for the series2F1,3F2and with applications in Ramanujan’s summations.”Int. J. Math. Math.

Sci., vol. 2010, p. 26, 2010.

[9] E. E. Kummer, “Uber die hypergeometrische Reihe 1C ˛:ˇ1:x C ˛.˛1:2::.C1/ˇ .ˇCC1/1/x2 C

˛.˛C1/.˛C2/ˇ .ˇC1/.ˇC2/

1:2:3:.C1/.C2/ x3C .” J. Reine Angew. Math., vol. 15, pp. 39–83 and 127–172, 1836.

[10] J. L. Lavoie, F. Grondin, and A. K. Rathie, “Generalizations of Watson’s theorem on the sum of a

3F2.”Indian J. Math., vol. 34, no. 1, pp. 23–32, 1992.

[11] J. L. Lavoie, F. Grondin, and A. K. Rathie, “Generalizations of Whipple’s theorem on the sum of a 3F2.” J. Comput. Appl. Math., vol. 72, no. 2, pp. 293–300, 1996, doi: 10.1016/0377- 0427(95)00279-0.

[12] J. L. Lavoie, F. Grondin, A. K. Rathie, and K. Arora, “Generalizations of Dixon’s theorem on the sum of a3F2.”Math. Comput., vol. 62, no. 205, pp. 267–276, 1994, doi:10.2307/2153407.

[13] G. V. Milovanovi´c, R. K. Parmar, and A. K. Rathie, “A study of generalized summation theor- ems for the series2F1with an applications to Laplace transforms of convolution type integrals involving Kummer’s functions1F1.”Appl. Anal. Discrete Math., vol. 12, no. 1, pp. 257–272, 2018.

[14] H. Prodinger, “Sums of Choi, Zornig, and Rathie - an elementary approach.” Quaest. Math., vol. 32, no. 2, pp. 265–267, 2009, doi:10.2989/QM.2009.32.2.8.801.

[15] A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev,Integrals and series. Volume 3: More special functions. Transl. from the Russian by G. G. Gould. New York: Gordon and Breach Science Publishers, 1990.

[16] E. D. Rainville, “Special functions.” New York: The Macmillan Company. XII, 365 p. (1960)., 1960.

[17] M. A. Rakha and A. K. Rathie, “Generalizations of classical summation theorems for the series

2F1and3F2with applications.”Integral Transforms Spec. Funct., vol. 22, no. 11, pp. 823–840, 2011, doi:10.1080/10652469.2010.549487.

[18] H. M. Srivastava, “Sums of a certain family of series.”Elem. Math., vol. 43, no. 2, pp. 54–58, 1988.

[19] H. M. Srivastava, “Sums of a certain class of q-series.”Proc. Japan Acad., Ser. A, vol. 65, no. 1, pp. 8–11, 1989, doi:10.3792/pjaa.65.8.

[20] M. Vowe and H.-J. Seiffert, “Aufgabe 946.”Elem. Math., vol. 42, no. 4, pp. 111–112, 1987.

Authors’ addresses

Sungtae Jun

General Education Institute, Konkuk University, Chungju 380-701, Korea E-mail address:sjun@kku.ac.kr

(12)

Gradimir V. Milovanovi´c

Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia, &, Faculty of Sciences and Math- ematics, University of Niˇs, 18000 Niˇs, Serbia

E-mail address:gvm@mi.sanu.ac.rs

Insuk Kim

Department of Mathematics Education, Wonkwang University, Iksan 570-749, Korea E-mail address:iki@wku.ac.kr

Arjun K. Rathie

Department of Mathematic, Vedant College of Engineering and Technology (Rajasthan Technical University), Bundi, Rajasthan, India

E-mail address:arjunkumarrathie@gmail.com

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Experimental results were confronted with calculated single-particle cross sections ( σ sp ) and momentum distri- butions of neutron removal from p 1=2 , p 3=2 , f 5=2

T h e three kinds of components of a biological membrane are (a) the core formed by phosphatides, sterols and other lipids, (b) macromolecules covering this double layer, (c)

The three major schemes for the lunar mission were the direct approach involving no rendezvous, rendezvous of two parts of the mission payload in Earth orbit, and use of a

Ве1%уо%уазгаИ КНтка, Сазг1гоеп1его16ргаг Тапзгёк 8 Рёсзг Тикотапуе%уе1ет, АкаМпоз ОгуозЫкотапуг Каг, 1.зг.. Ве1%уд%уазгаЫ КНтка, КагсНо16%шг ёз

F-dúr szonáta, No.1 op.5/1 g-moll szonáta, No.2 op.5/2 C-dúr szonáta, No.4 op.102/1 D-dúr szonáta, No.5 op.102/2. 12 variáció Handel Júdás Makkabeus egy témájára, WoO 45

Vagy egyszerűen, túl- erőben voltak, többen lehettek, mint azok heten, és arra ment a harc, hogy kifosszák őket, ami nyilván sikerült is nekik, mert különben jóval több

If the 95% confidence interval is calculated for the expected value from 100 different sample, than approximately 95 interval contains the true expected value out of the 100.

rendelet megfosztotta a munkáltatókat attól a lehetőségtől, hogy a szokásos munkavégzési hely szerinti bíróságok előtt pereljenek, továbbá lehetővé tette,