• Nem Talált Eredményt

Find the sum of the fixedpoints of the DE! MCQ

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Find the sum of the fixedpoints of the DE! MCQ"

Copied!
10
0
0

Teljes szövegt

(1)

22

Exercise (1). Time-independent DE, one dimension. Qualitative behaviour, linearization.

Let d

dty= (y−3)(y−2)(y−1), y(0) = 1.5.

Subexercise (A). Find the sum of the fixedpoints of the DE!

MCQ. A: 4 B: 5 C: 6 D: 7 E: 8

Subexercise (B). Write down the linear approximation of the DE around the smallestyf ix fixedpoint as dtd∆y= a∆y ! How much isa?

MCQ. A: 1 B: 2 C: 3 D: 4 E: 5

Subexercise (C). With the given initial condition fory(0), how much is limt→∞y(t) ? (If limt→tcy(t) =±∞for sometc>0, then answer±∞.)

MCQ. A: 3 B: ∞ C: 1 D:−∞ E: 2

Subexercise (D). With the given initial condition for y(0), how much is limt→−∞y(t) ? (If limt→tcy(t) =±∞

for sometc<0, then answer±∞.) MCQ. A: 2 B: ∞ C: 3 D: 1 E:−∞

Subexercise (E). Plot the t→y(t) solutions of the DE!

MCQ.

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.5

1.0 1.5 2.0 2.5 3.0 3.5

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.5

1.0 1.5 2.0 2.5 3.0 3.5

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.5

1.0 1.5 2.0 2.5 3.0 3.5

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.5

1.0 1.5 2.0 2.5 3.0 3.5

(2)

Exercise (2). Time-independent DE, one dimension. Qualitative behaviour, linearization.

Let d

dty= (y−2)(y−1), y(0) = 1.5.

Subexercise (A). Find the sum of the fixedpoints of the DE!

MCQ. A: 1 B: 2 C: 3 D: 4 E: 5

Subexercise (B). Write down the linear approximation of the DE around the smallestyf ix fixedpoint as dtd∆y= a∆y ! How much isa?

MCQ. A: -2 B: -1 C: 0 D: 1 E: 2

Subexercise (C). With the given initial condition fory(0), how much is limt→∞y(t) ? (If limt→tcy(t) =±∞for sometc>0, then answer±∞.)

MCQ. A:−∞ B: ∞C: 2 D: 1

Subexercise (D). With the given initial condition for y(0), how much is limt→−∞y(t) ? (If limt→tcy(t) =±∞

for sometc<0, then answer±∞.) MCQ. A: 1 B: 2 C: ∞ D:−∞

Subexercise (E). Plot the t→y(t) solutions of the DE!

MCQ.

0.0 0.2 0.4 0.6 0.8 1.0 0.5

1.0 1.5 2.0 2.5

0.0 0.2 0.4 0.6 0.8 1.0 0.5

1.0 1.5 2.0 2.5

0.0 0.2 0.4 0.6 0.8 1.0 0.5

1.0 1.5 2.0 2.5

0.0 0.2 0.4 0.6 0.8 1.0 0.5

1.0 1.5 2.0 2.5

Exercise (3). Time-independent DE, two dimensions. Qualitative behaviour, linearization.

Let

d dt~y =

f1 f2

=

(y1−1) (y2−3) (y1−4) (y2−1)

.

Subexercise (A). Find the sum of the coordinates of the smallest~yf ix fixed point!

MCQ. A: 0 B: 1 C: 2 D: 3 E: 4

(3)

Subexercise (B). Write down the linear approximation of the DE around the smallest ~yf ix as dtd∆~y = A∆~y ! How much is the sum of the elements ofA ?

MCQ. A: -6 B: -5 C: -4 D: -3 E: -2

Subexercise (C). Plot the phase portrait of the DE!

MCQ. 0 1 2 3 4 5

0 1 2 3 4

Exercise (4). Time-independent DE, two dimensions. Qualitative behaviour, linearization.

Let

d dt~y =

f1

f2

=

(y1−1) (y2−3) (y1−4) (y2−3)

.

Subexercise (A). Find the sum of the coordinates of that~yf ix fixed point where y1 = 1 ! MCQ. A: 2 B: 3 C: 4 D: 5 E: 6

Subexercise (B). Write down the linear approximation of the DE around the smallest ~yf ix as dtd∆~y = A∆~y ! How much is the sum of the elements ofA ?

MCQ. A: -4 B: -3 C: -2 D: -1 E: 0

Subexercise (C). Plot the phase portrait of the DE!

(4)

MCQ. 1 2 3 4

1 2 3 4 5

Exercise (5). Time-independent DE, two dimensions. Qualitative behaviour, linearization.

Let

d dt~y =

f1

f2

=

(y1−1) (y2−3) y1−4

.

Subexercise (A). Find the sum of the coordinates of the~yf ix fixed point!

MCQ. A: 5 B: 6 C: 7 D: 8 E: 9

Subexercise (B). Write down the linear approximation of the DE around the~yf ix as dtd∆~y=A∆~y ! How much is the sum of the elements ofA ?

MCQ. A: 3 B: 4 C: 5 D: 6 E: 7

Subexercise (C). Plot the phase portrait of the DE!

(5)

MCQ.

3.4 3.6 3.8 4.0 4.2 4.4 4.6 2.4

2.6 2.8 3.0 3.2 3.4 3.6

3.4 3.6 3.8 4.0 4.2 4.4 4.6 2.4

2.6 2.8 3.0 3.2 3.4 3.6

3.4 3.6 3.8 4.0 4.2 4.4 4.6 2.4

2.6 2.8 3.0 3.2 3.4 3.6

3.4 3.6 3.8 4.0 4.2 4.4 4.6 2.4

2.6 2.8 3.0 3.2 3.4 3.6

Exercise (6). Hom.Lin. DE. Radioactiv decay: I →II →. . . Let

A=

−2 0 2 −3

, d

dt~y =A~y, ~y(0) = 2

6

.

Subexercise (A). Find the smallest eigenvalue ofA ! MCQ. A: -5 B: -4 C: -3 D: -2 E: -1

Subexercise (B). Find the~v1 and~v2 eigenvectors corresponding to the λ1< λ2 eigenvalues. Normalize them by the condition (~vi)2 = 1, i= 1,2.Assemble them into a matrixS = (~v1, ~v2) matrixot. How much is the sum of the elements ofS ?

MCQ. A: 32 B: 52 C: 72 D: 92 E: 112

Subexercise (C). The solution of the DE can be written as

~ y(t) =

2

X

i=1

Cieλit~vi.

How much isC1, if~y(0) satisfies the given initial condition?

MCQ. A:−1 B: 0 C: 2 D: 4 E: 5

Subexercise (D). Compute the matrix exponentialetA ! How much is e1.4·A

21 ? MCQ. A: 0.0575301 B: 0.0646293 C: 0.0726046 D: 0.081564 E: 0.091629

Exercise (7). Hom.Lin. DE. Overdamped oscillator Let

¨

y+ay˙+by= 0, A=

0 1

−6 −5

, d

dt~y=A~y, ~y(0) = 2

6

.

(6)

Subexercise (A). Find the smallest eigenvalue ofA ! MCQ. A: -5 B: -4 C: -3 D: -2 E: -1

Subexercise (B). Find the~v1 and~v2 eigenvectors corresponding to the λ1< λ2 eigenvalues. Normalize them by the condition (~vi)1 = 1, i= 1,2.Assemble them into a matrixS = (~v1, ~v2) matrixot. How much is the sum of the elements ofS ?

MCQ. A:−5 B:−3 C: −1 D: 0 E: 1

Subexercise (C). The solution of the DE can be written as

~ y(t) =

2

X

i=1

Cieλit~vi.

How much isC1, if~y(0) satisfies the given initial condition?

MCQ. A:−13 B: −12 C: −10 D:−8 E: −7

Subexercise (D). Compute the matrix exponentialetA ! How much is e1.4·A

21 ? MCQ. A: -0.17259 B: -0.193888 C: -0.217814 D: -0.244692 E: -0.274887

Exercise (8). Hom.Lin. DE. Underdamped oscillator.

Let

¨

y+ay˙+by= 0, A=

0 1

−5 −2

, d

dt~y=A~y, ~y(0) = 2

6

.

Subexercise (A). Find the absolute value of the imaginary part of the eigenvalues ofA ! MCQ. A:−4 B:−3 C: −1 D: 1 E: 2

Subexercise (B). Find the~v1 and~v2 eigenvectors corresponding to the λ1< λ2 eigenvalues. Normalize them by the condition (~vi)1 = 1, i= 1,2.Assemble them into a matrixS = (~v1, ~v2) matrixot. How much is the sum of the real parts of the elements ofS ?

MCQ. A:−2 B: 0 C: 2 D: 3 E: 4

Subexercise (C). The solution of the DE can be written as

~ y(t) =

2

X

i=1

Cieλit~vi.

How much isC1, if~y(0) satisfies the given initial condition?

MCQ. A:−2 B:−1 C: 1 D: 3 E: 4

Subexercise (D). Compute the matrix exponentialetA ! How much is e1.4·A

21 ? MCQ. A: -0.129664 B: -0.145665 C: -0.16364 D: -0.183833 E: -0.206518

Exercise (9). Hom.Lin. DE. Jordan decomposition.

Theorem: For any complex square A matrix there exists an S such that SAS−1 is block diagonal with blocks choosen from the following list

J1 = λ

, J2 = λ 1

0 λ

, J3=

λ 1 0 0 λ 1 0 0 λ

, . . . .

Subexercise (A). Constant velocity motion.

¨

y= 0, d dt~y=

0 1 0 0

~ y=A~y.

(Here~y= (y,y)˙ T.) How much is (exp(0.9A))12?

(7)

MCQ. A: 0.713138 B: 0.801139 C: 0.9 D: 1.01106 E: 1.13582 Subexercise (B). Constant accerelation.

d3y

d3 = 0, d dt~y =

0 1 0 0 0 1 0 0 0

~y=A~y.

(Here~y= (y,y,˙ y)¨T.) How much is (exp(0.9A))13 ?

MCQ. A: 0.360513 B: 0.405 C: 0.454977 D: 0.511121 E: 0.574194 Subexercise (C). Radioactive decay, I →II →. . ..

d dt~y=

−2 0 3 −2

~ y=A~y.

(Itt~y= (yI, yII)T.) How much is (exp(0.9A))21 ?

MCQ. A: 0.353643 B: 0.397282 C: 0.446307 D: 0.501381 E: 0.563252 Subexercise (D). Critically damped oscillator. Leta= 3,

¨

y+ 2ay˙+a2y= 0, d dt~y=

0 1

−a2 −2a

~ y=A~y.

(Here~y= (y,y)˙ T.) How much is (exp(0.2·A))12 ?

MCQ. A: 0.0689153 B: 0.0774194 C: 0.086973 D: 0.0977055 E: 0.109762 Exercise (10). Impulse response, distributions.

Dirac-delta: δ(t) = 0, hat6= 0, Z

−∞

δ(t)dt= 1.

Heaviside theta: θ(t) =

(0, hat <0, 1, hat >0,

????: K(t) =

(0, hat <0, t, hat >0., hf(t), φ(t)i=

Z −∞

f(t)φ(t)dt hf0(t), φ(t)i=

Z −∞

f0(t)φ(t)dt=− Z −∞

f(t)φ0(t)dt=−hf(t), φ0(t)i Then

θ0(t) =δ(t),

K0(t) =θ(t), K00(t) =θ0(t) =δ(t).

Subexercise (A). Ifφ(t) = (1 +t2)−1, then how much is

−hθ(t), φ0(t)i.

MCQ. A: -1 B: 0 C: 1 D: 2 E: 3 Subexercise (B).

1

3G0(t) =δ(t), G(−1) = 0.

How much isG(0.3) ?

MCQ. A: 2 B: 3 C: 4 D: 5 E: 6

(8)

Subexercise (C).

G0(t) + 3G(t) =δ(t), G(−1) = 0.

How much isG(0.3) ?

MCQ. A: 0.322156 B: 0.36191 C: 0.40657 D: 0.45674 E: 0.513102 Subexercise (D).

G0(t) + 3G(t) =δ(t), G(1) = 0.

How much isG(0.3) ?

MCQ. A: -0.4936 B: -0.3702 C: -0.2468 D: -0.1234 E: 0.

Subexercise (E).

G00(t) + 3G(t) =δ(t), G(−1) = 0, G0(−1) = 0.

How much isG(0.3) ?

MCQ. A: 0.393451 B: 0.442003 C: 0.496546 D: 0.55782 E: 0.626655 Subexercise (F).

G00(t) + 5G0(t) + 6G(t) =δ(t), G(−1) = 0G0(−1) = 0.

How much isG(0.3) ?

MCQ. A: 0.100329 B: 0.112709 C: 0.126617 D: 0.142242 E: 0.159795 Subexercise (G).

G00(t) + 2G0(t) + 5G(t) =δ(t), G(−1) = 0G0(−1) = 0.

How much isG(0.3) ?

MCQ. A: 0.209149 B: 0.234958 C: 0.263951 D: 0.296523 E: 0.333114

Subexercise (H). Have you managed to plot the retarded Green function solutions of the following DE? (Just answer ”A: Yes”.)

G0+G=δ, G00+G=δ,

G00+ 3G0+ 2G=δ, G00+ 2G0+ 5G=δ, MCQ. A: Igen/Yes

Exercise (11). Inhom. Lin. DE.

Let

χ[a,b](t) =

(1, ha t∈[a, b], 0, ha t6∈[a, b].

Subexercise (A). Leta= 2.

G0(t) +aG(t) =δ(t), G(−1) = 0, G(t) =θ(t)e−at. UseG to obtain the solution of the DE

y0(t) +ay(t) =χ[1,2](t), y(−∞) = 0 fort >2-re! How much isy(3) ?

MCQ. A: 0.0463618 B: 0.0520828 C: 0.0585098 D: 0.0657299 E: 0.073841 Subexercise (B). Leta= 2.

G0(t) +aG(t) =δ(t), G(t) =θ(t)e−at. UseG to obtain the solution of the DE

y0(t) +ay(t) =χ[1,2](t), y(0) = 7 fort >2-ra! How much isy(3) ?

(9)

MCQ. A: 0.0675281 B: 0.0758611 C: 0.0852223 D: 0.0957388 E: 0.107553 Subexercise (C). Leta= 2

G0(t) +aG(t) =δ(t), G(−1) = 0, G(t) =θ(t)e−at. UseG to obtain the solution of the DE

y0(t) +ay(t) =θ(t), y(0) = 0

fort >0 ! (That is the unit step response.) How much time is necessary fory to reach the 90 percent of the value of y(∞) ? (This is the rise time of the system. It might be defined as the time between the 10 and 90 percent values ofy(∞).)

0.0 0.5 1.0 1.5 2.0 2.5

0.1 0.2 0.3 0.4 0.5 0.6

MCQ. A: 0.912256 B: 1.02483 C: 1.15129 D: 1.29336 E: 1.45296 Subexercise (D). Leta= 2

G0(t) +aG(t) =δ(t), G(−1) = 0, G(t) =θ(t)e−at. UseG to obtain the solution of the DE

y0(t) +ay(t) =θ(t), y(0) = 0

fort >0 ! What is the settling time of the system, i.e. where is that time moment after which the the value of y will stay in the ±2% neighbourhood of y(∞) ?

MCQ. A: 1.2281 B: 1.37965 C: 1.5499 D: 1.74115 E: 1.95601 Exercise (12). Inhom. Lin. DE.

Let

χ[a,b](t) =

(1, ha t∈[a, b], 0, ha t6∈[a, b].

Subexercise (A). Lett1= 3., A=

−2 0 2 −3

, etA=

e−2t 0

−2e−3t+ 2e−2t e−3t

.

UseetA to obtain the solution of the DE d

dt~y(t) =A~y(t) + 0

1

[1,2](t)), ~y(−∞) = 0

0

fort >2 ! How much is~y(3.)2 ?

(10)

MCQ. A:{0.0124953}B: {0.0140372} C: {0.0157694}D: {0.0177154} E:{0.0199015}

Subexercise (B). Lett1 = 3., A=

−2 0 2 −3

, etA=

e−2t 0

−2e−3t+ 2e−2t e−3t

.

UseetA to obtain the solution of the following DE d

dt~y(t) =A~y(t) + 0

1

[1,2](t)), ~y(0) = 7

8

.

How much is~y(3.)2 ?

MCQ. A:{0.0442687}B: {0.0497315} C: {0.0558684}D: {0.0627625} E:{0.0705074}

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Any direct involvement in teacher training comes from teaching a Sociology of Education course (primarily undergraduate, but occasionally graduate students in teacher training take

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the

In this article, I discuss the need for curriculum changes in Finnish art education and how the new national cur- riculum for visual art education has tried to respond to

The plastic load-bearing investigation assumes the development of rigid - ideally plastic hinges, however, the model describes the inelastic behaviour of steel structures

A heat flow network model will be applied as thermal part model, and a model based on the displacement method as mechanical part model2. Coupling model conditions will

These different absorption bands find their explanation in the infiltration of the different mass-quantity of the cations and their measure (ion- radius). The qualitative

The present paper reports on the results obtained in the determination of the total biogen amine, histamine and tiramine content of Hungarian wines.. The alkalized wine sample

Hugo Bockh, the major geologist in Hungarian petroleum and natural gas prospecting drew the attention of Hungarian geologists in 1911 and subsequently in 1914 to