• Nem Talált Eredményt

Existence of positive solutions for a system of semipositone fractional boundary value problems

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Existence of positive solutions for a system of semipositone fractional boundary value problems"

Copied!
28
0
0

Teljes szövegt

(1)

Existence of positive solutions for a system of semipositone fractional boundary value problems

Johnny Henderson

1

and Rodica Luca

B2

1Baylor University, One Bear Place 97328, Waco, Texas, 76798-7328 USA

2Gheorghe Asachi Technical University, 11 Blvd. Carol I, Ias,i 700506, Romania

Received 30 December 2015, appeared 2 May 2016 Communicated by Paul Eloe

Abstract. We investigate the existence of positive solutions for a system of nonlinear Riemann–Liouville fractional differential equations with sign-changing nonlinearities, subject to coupled integral boundary conditions.

Keywords: Riemann–Liouville fractional differential equations, coupled integral boundary conditions, positive solutions, sign-changing nonlinearities.

2010 Mathematics Subject Classification: 34A08, 45G15.

1 Introduction

We consider the system of nonlinear fractional differential equations (D0α+u(t) +λf(t,u(t),v(t)) =0, t∈ (0, 1),

D0β+v(t) +µg(t,u(t),v(t)) =0, t∈ (0, 1), (S) with the coupled integral boundary conditions





u(0) =u0(0) =· · · =u(n2)(0) =0, u0(1) =

Z 1

0 v(s)dH(s), v(0) =v0(0) =· · · =v(m2)(0) =0, v0(1) =

Z 1

0

u(s)dK(s),

(BC)

where α∈(n−1,n], β∈ (m−1,m],n, m∈N, n, m≥3, Dα0+and D0β+denote the Riemann–

Liouville derivatives of orders α and β, respectively, the integrals from (BC) are Riemann–

Stieltjes integrals, and f and gare sign-changing continuous functions (that is, we have a so- called system of semipositone boundary value problems). These functions may be nonsingular or singular at t = 0 and/or t = 1. The boundary conditions above include multi-point and integral boundary conditions, as well as the sum of these in a single framework.

We present intervals for parameters λ and µ such that the above problem (S)–(BC) has at least one positive solution. By a positive solution of problem (S)–(BC) we mean a pair of

BCorresponding author. Email: rluca@math.tuiasi.ro

(2)

functions(u,v) ∈ C([0, 1])×C([0, 1]) satisfying (S) and (BC) withu(t) ≥ 0, v(t) ≥ 0 for all t ∈ [0, 1]andu(t)>0, v(t)>0 for all t ∈ (0, 1). The system (S) with the uncoupled integral boundary conditions





u(0) =u0(0) =· · · =u(n2)(0) =0, u(1) =

Z 1

0 u(s)dH(s), v(0) =v0(0) =· · ·=v(m2)(0) =0, v(1) =

Z 1

0 v(s)dK(s),

(BC1)

where the functions f andgare nonnegative, has been investigated in [6] and [11] by using the Guo–Krasnosel’skii fixed point theorem, and in [7] where in system (S) we haveλ=µ=1 and f(t,u,v)andg(t,u,v)are replaced by fe(t,v)andge(t,u), respectively, with efandgenonsingular or singular functions (denoted by (Se)). In [7] we used some theorems from the fixed point index theory and the Guo–Krasnosel’skii fixed point theorem. The semipositone case for problem (S)–(BC1) was studied in [14] by using the nonlinear alternative of Leray–Schauder type. The systems (S) and (S) with coupled integral boundary conditionse





u(0) =u0(0) =· · ·=u(n2)(0) =0, u(1) =

Z 1

0 v(s)dH(s), v(0) =v0(0) =· · ·= v(m2)(0) =0, v(1) =

Z 1

0 u(s)dK(s),

(BC2)

have been investigated in [8] and [9] (problem (S)–(BC2) with f andgnonnegative functions), in [12] (problem (S)–(BCe 2) with f and g nonnegative functions, singular or not), and in [10]

(problem (S)–(BC2) with f, gsign-changing functions). We also mention the paper [20], where the authors studied the existence and multiplicity of positive solutions for system (S) with α= β,λ=µand the boundary conditionsu(i)(0) =v(i)(0) =0,i=0, . . . ,n−2,u(1) =av(ξ), v(1) = bu(η), ξ, η ∈ (0, 1), with ξ, η ∈ (0, 1), 0 < abξη < 1, and f and g are sign-changing nonsingular or singular functions.

Fractional differential equations describe many phenomena in various fields of engineering and scientific disciplines such as physics, biophysics, chemistry, biology, economics, control theory, signal and image processing, aerodynamics, viscoelasticity, electromagnetics, and so on (see [2–4,13,15–19]). Integral boundary conditions arise in thermal conduction problems, semiconductor problems and hydrodynamic problems.

The paper is organized as follows. Section 2 contains some auxiliary results which inves- tigate a nonlocal boundary value problem for fractional differential equations. In Section 3, we prove several existence theorems for the positive solutions with respect to a cone for our problem (S)–(BC). Finally in Section 4 some examples are given to illustrate our main results.

2 Auxiliary results

We present here the definitions of the Riemann–Liouville fractional integral and the Riemann–

Liouville fractional derivative and then some auxiliary results that will be used to prove our main results.

Definition 2.1. The (left-sided) fractional integral of orderα>0 of a function f :(0,∞)→R is given by

(I0α+f)(t) = 1 Γ(α)

Z t

0

(t−s)α1f(s)ds, t >0,

(3)

provided the right-hand side is pointwise defined on (0,∞), whereΓ(α)is the Euler gamma function defined byΓ(α) =R

0 tα1etdt,α>0.

Definition 2.2. The Riemann–Liouville fractional derivative of order α ≥ 0 for a function f :(0,)→Ris given by

(D0α+f)(t) = d

dt n

I0n+αf

(t) = 1 Γ(n−α)

d dt

nZ t

0

f(s)

(t−s)αn+1ds, t >0, wheren =bαc+1, provided that the right-hand side is pointwise defined on(0,∞).

The notation bαc stands for the largest integer not greater than α. If α = m ∈ N then Dm0+f(t) = f(m)(t)fort>0, and ifα=0 then D00+f(t) = f(t)fort>0.

We consider now the fractional differential system

(D0α+u(t) +ex(t) =0, t∈(0, 1),

D0β+v(t) +ey(t) =0, t∈(0, 1), (2.1) with the coupled integral boundary conditions





u(0) =u0(0) =· · · =u(n2)(0) =0, u0(1) =

Z 1

0 v(s)dH(s), v(0) =v0(0) =· · · =v(m2)(0) =0, v0(1) =

Z 1

0 u(s)dK(s),

(2.2)

where α∈ (n−1,n], β∈ (m−1,m], n, m∈N, n, m≥3, and H,K : [0, 1]→R are functions of bounded variation.

Lemma 2.3. If H, K : [0, 1] → R are functions of bounded variation, ∆ = (α−1)(β−1)− R1

0 τα1dK(τ) R1

0 τβ1dH(τ) 6= 0 and x,e ey ∈ C(0, 1)∩L1(0, 1), then the pair of functions (u,v)∈C([0, 1])×C([0, 1])given by

u(t) = − 1 Γ(α)

Z t

0

(t−s)α1xe(s)ds+t

α1

β−1 Γ(α−1)

Z 1

0

(1−s)α2ex(s)ds

1 Γ(α)

Z 1

0 sβ1dH(s)

Z 1

0

Z 1

s

(τ−s)α1dK(τ)

xe(s)ds

+ 1

Γ(β−1) Z 1

0 sβ1dH(s)

Z 1

0

(1−s)β2ye(s)ds

1 Γ(β−1)

Z 1

0

Z 1

s

(τ−s)β1dH(τ)

ye(s)ds

, t∈ (0, 1], u(0) =0, v(t) = − 1

Γ(β)

Z t

0

(t−s)β1ey(s)ds+ t

β1

α−1 Γ(β−1)

Z 1

0

(1−s)β2ey(s)ds

1 Γ(β)

Z 1

0 sα1dK(s)

Z 1

0

Z 1

s

(τ−s)β1dH(τ)

ey(s)ds

+ 1

Γ(α−1) Z 1

0 sα1dK(s)

Z 1

0

(1−s)α2ex(s)ds

1 Γ(α−1)

Z 1

0

Z 1

s

(τ−s)α1dK(τ)

ex(s)ds

, t∈(0, 1], v(0) =0,

(2.3)

is solution of problem(2.1)–(2.2).

(4)

Proof. We denote by c1 = 1

β1 Γ(α−1)

Z 1

0

(1−s)α2ex(s)ds− 1 Γ(β−1)

Z 1

0

Z 1

s

(τ−s)β1dH(τ)

ye(s)ds

+ 1

Γ(β−1) Z 1

0

τβ1dH(τ)

Z 1

0

(1−s)β2ey(s)ds

1 Γ(α)

Z 1

0 τβ1dH(τ)

Z 1

0

Z 1

s

(τ−s)α1dK(τ)

xe(s)ds

, and

d1= 1

α−1 Γ(β−1)

Z 1

0

(1−s)β2ye(s)ds− 1 Γ(α−1)

Z 1

0

Z 1

s

(τ−s)α1dK(τ)

xe(s)ds

+ 1

Γ(α−1) Z 1

0 τα1dK(τ)

Z 1

0

(1−s)α2ex(s)ds

1 Γ(β)

Z 1

0

τα1dK(τ)

Z 1

0

Z 1

s

(τ−s)β1dH(τ)

ey(s)ds

. Then the continuous functionsuandvfrom (2.3) can be written as





u(t) =c1tα11 Γ(α)

Z t

0

(t−s)α1ex(s)ds=c1tα1−I0α+xe(t), t∈ (0, 1], u(0) =0, v(t) =d1tβ11

Γ(β)

Z t

0

(t−s)β1ey(s)ds=d1tβ1−I0β+ye(t), t∈ (0, 1], v(0) =0.

Because D0α+u(t) = c1Dα0+(tα1)−D0α+I0α+xe(t) = −xe(t) and D0β+v(t) = d1D0β+(tβ1)− D0β+I0β+ey(t) = −ye(t) for all t ∈ (0, 1), we deduce that u and v satisfy the system (2.1). In addition, we haveu(0) =u0(0) =· · ·= u(n2)(0) =0 andv(0) =v0(0) =· · · =v(m2)(0) =0.

A simple computation shows us thatu0(1) =R1

0 v(s)dH(s)andv0(1) =R1

0 u(s)dK(s), that is









c1(α−1)− 1 Γ(α−1)

Z 1

0

(1−s)α2ex(s)ds=

Z 1

0

d1sβ11 Γ(β)

Z s

0

(s−τ)β1ey(τ)dτ

dH(s), d1(β−1)− 1

Γ(β−1)

Z 1

0

(1−s)β2ey(s)ds=

Z 1

0

c1sα11 Γ(α)

Z s

0

(s−τ)α1ex(τ)dτ

dK(s). Therefore we deduce that(u,v)is solution of problem (2.1)–(2.2).

Lemma 2.4. Under the assumptions of Lemma2.3, the solution(u,v)of problem(2.1)–(2.2)given by (2.3)can be written as





 u(t) =

Z 1

0

G1(t,s)xe(s)ds+

Z 1

0

G2(t,s)ey(s)ds, t∈[0, 1], v(t) =

Z 1

0 G3(t,s)ye(s)ds+

Z 1

0 G4(t,s)ex(s)ds, t∈[0, 1],

(2.4)

where 

























G1(t,s) =g1(t,s) + t

α1

Z 1

0 τβ1dH(τ)

Z 1

0 g1(τ,s)dK(τ)

, G2(t,s) = (β−1)tα1

Z 1

0 g2(τ,s)dH(τ), G3(t,s) =g2(t,s) + t

β1

Z 1

0 τα1dK(τ)

Z 1

0 g2(τ,s)dH(τ)

, G4(t,s) = (α−1)tβ1

Z 1

0 g1(τ,s)dK(τ), ∀t, s∈[0, 1],

(2.5)

(5)

and









g1(t,s) = 1 Γ(α)

(tα1(1−s)α2−(t−s)α1, 0≤s≤ t≤1, tα1(1−s)α2, ≤t ≤s≤1, g2(t,s) = 1

Γ(β)

(tβ1(1−s)β2−(t−s)β1, 0≤s≤ t≤1, tβ1(1−s)β2, 0≤t ≤s≤1.

(2.6)

Proof. By Lemma2.3and relation (2.3), we conclude

u(t) = 1 Γ(α)

Z t

0

[tα1(1−s)α2−(t−s)α1]xe(s)ds+

Z 1

t tα1(1−s)α2xe(s)ds

Z 1

0 tα1(1−s)α2ex(s)ds

+(β−1)tα1

∆Γ(α−1)

Z 1

0

(1−s)α2xe(s)ds

t

α1

∆Γ(α) Z 1

0 τβ1dH(τ)

Z 1

0

Z 1

s

(τ−s)α1dK(τ)

ex(s)ds

+ t

α1

∆Γ(β−1) Z 1

0

Z 1

0 τβ1(1−s)β2dH(τ)

ye(s)ds

Z 1

0

Z 1

s

(τ−s)β1dH(τ)

ey(s)ds

= 1

Γ(α) Z t

0

[tα1(1−s)α2−(t−s)α1]xe(s)ds+

Z 1

t tα1(1−s)α2xe(s)ds

β−1

∆Γ(α−1)

Z 1

0 tα1(1−s)α2xe(s)ds+ 1

∆Γ(α) Z 1

0 τα1dK(τ)

Z 1

0 τβ1dH(τ)

× Z 1

0

tα1(1−s)α2xe(s)ds

+ β−1

∆Γ(α−1)

Z 1

0

tα1(1−s)α2xe(s)ds

t

α1

∆Γ(α) Z 1

0 τβ1dH(τ)

Z 1

0

Z 1

s

(τ−s)α1dK(τ)

xe(s)ds

+ t

α1

∆Γ(β1) Z 1

0

Z 1

0 τβ1(1−s)β2dH(τ)

ye(s)ds

Z 1

0

Z 1

s

(τ−s)β1dH(τ)

ye(s)ds

= 1

Γ(α) Z t

0

[tα1(1−s)α2−(t−s)α1]xe(s)ds+

Z 1

t tα1(1−s)α2xe(s)ds

+ t

α1

∆Γ(α) Z 1

0 τβ1dH(τ)

Z 1

0

Z 1

0 τα1(1−s)α2dK(τ)

xe(s)ds

Z 1

0

Z 1

s

(τ−s)α1dK(τ)

xe(s)ds

+ t

α1

∆Γ(β−1) Z 1

0

Z 1

0 τβ1(1−s)β2dH(τ)

ye(s)ds

Z 1

0

Z 1

s

(τ−s)β1dH(τ)

ye(s)ds

.

(6)

Therefore, we obtain u(t) = 1

Γ(α) Z t

0

[tα1(1−s)α2−(t−s)α1]ex(s)ds+

Z 1

t tα1(1−s)α2ex(s)ds

+ t

α1

∆Γ(α) Z 1

0 τβ1dH(τ)

Z 1

0

Z s

0 τα1(1−s)α2dK(τ)

xe(s)ds +

Z 1

0

Z 1

s

τα1(1−s)α2dK(τ)

xe(s)ds−

Z 1

0

Z 1

s

(τ−s)α1dK(τ)

xe(s)ds

+ t

α1

∆Γ(β−1) Z 1

0

Z s

0

τβ1(1−s)β2dH(τ)

ey(s)ds +

Z 1

0

Z 1

s τβ1(1−s)β2dH(τ)

ye(s)ds−

Z 1

0

Z 1

s

(τ−s)β1dH(τ)

ye(s)ds

= 1

Γ(α) Z t

0

[tα1(1−s)α2−(t−s)α1]ex(s)ds+

Z 1

t tα1(1−s)α2ex(s)ds

+ t

α1

∆Γ(α) Z 1

0 τβ1dH(τ)

Z 1

0

Z s

0 τα1(1−s)α2dK(τ)

xe(s)ds +

Z 1

0

Z 1

s

[τα1(1−s)α2−(τ−s)α1]dK(τ)

xe(s)ds

+ t

α1

∆Γ(β−1) Z 1

0

Z s

0

τβ1(1−s)β2dH(τ)

ey(s)ds +

Z 1

0

Z 1

s

[τβ1(1−s)β2−(τ−s)β1]dH(τ)

ye(s)ds

=

Z 1

0 g1(t,s)xe(s)ds+t

α1

Z 1

0 τβ1dH(τ)

Z 1

0

Z 1

0 g1(τ,s)dK(τ)

xe(s)ds

+(β−1)tα1

Z 1

0

Z 1

0 g2(τ,s)dH(τ)

ye(s)ds

=

Z 1

0 G1(t,s)xe(s)ds+

Z 1

0 G2(t,s)ey(s)ds.

In a similar manner, we deduce v(t) =

Z 1

0 g2(t,s)ye(s)ds+ t

β1

Z 1

0 τα1dK(τ)

Z 1

0

Z 1

0 g2(τ,s)dH(τ)

ye(s)ds

+(α−1)tβ1

Z 1

0

Z 1

0 g1(τ,s)dK(τ)

xe(s)ds

=

Z 1

0 G3(t,s)ye(s)ds+

Z 1

0 G4(t,s)ex(s)ds.

Therefore, we obtain the expression (2.4) for the solution(u,v)of problem (2.1)–(2.2) given by relations (2.3).

Lemma 2.5. The functions g1, g2 given by(2.6)have the properties

a) g1, g2 : [0, 1]×[0, 1] → R+ are continuous functions, and g1(t,s) > 0, g2(t,s) > 0 for all (t,s)∈(0, 1]×(0, 1).

b) g1(t,s) ≤ h1(s), g2(t,s) ≤ h2(s)for all (t,s) ∈ [0, 1]×[0, 1], where h1(s) = s(1Γ(s)α2

α) and h2(s) = s(1Γ(s)β2

β) for all s∈[0, 1].

(7)

c) g1(t,s)≥tα1h1(s), g2(t,s)≥tβ1h2(s)for all(t,s)∈[0, 1]×[0, 1]. d) g1(t,s)≤ Γtα(1

α), g2(t,s)≤ Γtβ(1

β), for all(t,s)∈[0, 1]×[0, 1]. Proof. Part a) of this lemma is evident.

b) The functiong1 is nondecreasing in the first variable. Indeed, fors≤ t, we have

∂g1

∂t (t,s) = 1

Γ(α)[(α−1)tα2(1−s)α2−(α−1)(t−s)α2]

= 1

Γ(α−1)[(t−ts)α2−(t−s)α2]≥0.

Then, g1(t,s)≤g1(1,s)for all(t,s)∈ [0, 1]×[0, 1]withs ≤t.

Fors≥ t, we obtain

∂g1

∂t (t,s) = 1 Γ(α−1)t

α2(1−s)α2 ≥0.

Hence, g1(t,s)≤ g1(s,s)for all(t,s)∈[0, 1]×[0, 1]withs≥ t.

Therefore, we deduce that g1(t,s) ≤ h1(s) for all (t,s) ∈ [0, 1]×[0, 1], where h1(s) = g1(1,s) = Γ(1

α)s(1−s)α2 fors ∈[0, 1]. c) Fors≤t, we have

g1(t,s) = 1

Γ(α)[tα1(1−s)α2−(t−s)α1]

1

Γ(α)[tα1(1−s)α2−(t−ts)α1] =tα1h1(s). Fors≥ t, we obtain

g1(t,s) = 1 Γ(α)t

α1(1−s)α2 ≥tα1h1(s).

Hence, we conclude thatg1(t,s)≥ tα1h1(s)for all (t,s)∈[0, 1]×[0, 1]. d) For all(t,s)∈[0, 1]×[0, 1]we have

g1(t,s)≤ 1 Γ(α)t

α1(1−s)α2t

α1

Γ(α).

In a similar manner we obtain the corresponding inequalities forg2, withh2(s) = s(1Γ(s)β2

β)

fors∈ [0, 1].

Lemma 2.6. If H, K:[0, 1]→Rare nondecreasing functions, and∆>0, then Gi, i=1, . . . , 4,given by(2.5)are continuous functions on[0, 1]×[0, 1]and satisfy Gi(t,s)≥0for all(t,s)∈ [0, 1]×[0, 1], i= 1, . . . , 4. Moreover, ifex, ye∈C(0, 1)∩L1(0, 1)satisfyxe(t)≥0,ye(t)≥0for all t ∈ (0, 1), then the solution(u,v)of problem(2.1)–(2.2)given by(2.4)satisfies u(t)≥0, v(t)≥0for all t ∈[0, 1]. Proof. By using the assumptions of this lemma, we haveGi(t,s)≥0 for all(t,s)∈[0, 1]×[0, 1], i=1, . . . , 4, and sou(t)≥0,v(t)≥0 for allt ∈[0, 1].

(8)

Lemma 2.7. Assume that H, K : [0, 1] → R are nondecreasing functions, ∆ > 0, and that R1

0 τα1dK(τ) > 0, R1

0 τβ1dH(τ) > 0. Then the functions Gi, i = 1, . . . , 4satisfy the inequal- ities

a1)G1(t,s)≤σ1h1(s), ∀(t,s)∈[0, 1]×[0, 1], where σ1 =1+ 1

∆(K(1)−K(0))

Z 1

0 τβ1dH(τ)>0.

a2)G1(t,s)≤δ1tα1, ∀(t,s)∈[0, 1]×[0, 1], where δ1 = 1

Γ(α)

1+ 1

Z 1

0

τβ1dH(τ)

Z 1

0

τα1dK(τ)

>0.

a3)G1(t,s)≥$1tα1h1(s), (t,s)∈[0, 1]×[0, 1], where

$1 =1+ 1

Z 1

0 τβ1dH(τ)

Z 1

0 τα1dK(τ)

>0.

b1)G2(t,s)≤σ2h2(s), ∀(t,s)∈[0, 1]×[0, 1], whereσ2 = β1(H(1)−H(0))>0.

b2)G2(t,s)≤δ2tα1, ∀(t,s)∈[0, 1]×[0, 1], whereδ2= ∆Γ(1

β1)

R1

0 τβ1dH(τ)>0.

b3)G2(t,s)≥$2tα1h2(s), ∀(t,s)∈[0, 1]×[0, 1], where$2= β1R1

0 τβ1dH(τ)>0.

c1)G3(t,s)≤σ3h2(s), ∀(t,s)∈[0, 1]×[0, 1], where σ3 =1+ 1

∆(H(1)−H(0))

Z 1

0 τα1dK(τ)>0.

c2)G3(t,s)≤δ3tβ1, ∀(t,s)∈ [0, 1]×[0, 1], where δ3= 1

Γ(β)

1+ 1

Z 1

0

τα1dK(τ)

Z 1

0

τβ1dH(τ)

>0.

c3)G3(t,s)≥$3tβ1h2(s), ∀(t,s)∈[0, 1]×[0, 1], where

$3 =1+ 1

Z 1

0 τα1dK(τ)

Z 1

0 τβ1dH(τ)

= $1 >0.

d1)G4(t,s)≤ σ4h1(s), ∀(t,s)∈[0, 1]×[0, 1], whereσ4 = α1(K(1)−K(0))>0.

d2)G4(t,s)≤ δ4tβ1, ∀(t,s)∈[0, 1]×[0, 1], whereδ4 = ∆Γ(1

α1)

R1

0 τα1dK(τ)>0.

d3)G4(t,s)≥ $4tβ1h1(s), ∀(t,s)∈ [0, 1]×[0, 1], where $4 = α1R1

0 τα1dK(τ)>0.

Proof. From the assumptions of this lemma, we obtain K(1)−K(0) =

Z 1

0 dK(τ)≥

Z 1

0 τα1dK(τ)>0, H(1)−H(0) =

Z 1

0 dH(τ)≥

Z 1

0 τβ1dH(τ)>0.

By using Lemma2.4 and Lemma2.5, we deduce for all (t,s)∈[0, 1]×[0, 1]

(9)

a1)

G1(t,s) =g1(t,s) + t

α1

Z 1

0

τβ1dH(τ)

Z 1

0

g1(τ,s)dK(τ)

≤h1(s) + 1

Z 1

0 τβ1dH(τ)

Z 1

0 h1(s)dK(τ)

=h1(s)

1+ 1

∆(K(1)−K(0))

Z 1

0 τβ1dH(τ)

= σ1h1(s). a2)

G1(t,s)≤ t

α1

Γ(α)+ t

α1

Z 1

0 τβ1dH(τ)

Z 1

0

τα1 Γ(α)dK(τ)

= tα1 1 Γ(α)

1+ 1

Z 1

0 τβ1dH(τ)

Z 1

0 τα1dK(τ)

=δ1tα1. a3)

G1(t,s)≥tα1h1(s) + t

α1

Z 1

0 τβ1dH(τ)

Z 1

0 τα1h1(s)dK(τ)

=tα1h1(s)

1+ 1

Z 1

0 τβ1dH(τ)

Z 1

0 τα1dK(τ)

= $1tα1h1(s). b1)

G2(t,s) = (β−1)tα1

Z 1

0 g2(τ,s)dH(τ)≤ β−1

Z 1

0 h2(s)dH(τ)

= β−1

∆ (H(1)−H(0))h2(s) =σ2h2(s). b2)

G2(t,s)≤ (β−1)tα1

Z 1

0

τβ1

Γ(β)dH(τ) =δ2tα1. b3)

G2(t,s)≥ (β−1)tα1

Z 1

0 τβ1h2(s)dH(τ) =$2tα1h2(s). c1)

G3(t,s) = g2(t,s) + t

β1

Z 1

0 τα1dK(τ)

Z 1

0 g2(τ,s)dH(τ)

≤h2(s) + 1

Z 1

0

τα1dK(τ)

Z 1

0

h2(s)dH(τ)

=h2(s)

1+ 1

∆(H(1)−H(0))

Z 1

0 τα1dK(τ)

= σ3h2(s). c2)

G3(t,s)≤ t

β1

Γ(β)+ t

β1

Z 1

0

τα1dK(τ)

Z 1

0

τβ1 Γ(β)dH(τ)

= t

β1

Γ(β)

1+ 1

Z 1

0 τα1dK(τ)

Z 1

0 τβ1dH(τ)

=δ3tβ1.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Agarwal, Double positive solutions of (n, p) boundary value problems for higher order difference equations, Comput. Agarwal, Existence theorems for a system of difference equations

Nieto, Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, Bound..

Sun, Positive solutions of boundary value problems for systems of non- linear second order ordinary differential equations, Acta Math.. O’Regan, Positive solvability of systems

[16] Chengjun Yuan, Multiple positive solutions for (n-1, 1)-type semipositone conjugate boundary value problems of nonlinear fractional differential equations, Electronic Journal

Nieto, Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory, Topological Methods in

Keywords: fractional differential equations, fractional integral boundary conditions, Lyapunov-type inequalities, boundary value problems, existence and uniqueness of solutions..

The paper deals with the existence and multiplicity of positive solutions for a system of higher-order singular nonlinear fractional differential equations with nonlocal

Zhang, Existence of three positive solutions of m-point boundary value problems for some nonlinear fractional differential equations on an infinite interval, Comput.. Zhang,