• Nem Talált Eredményt

BUDAPEST 455

N/A
N/A
Protected

Academic year: 2022

Ossza meg "BUDAPEST 455"

Copied!
32
0
0

Teljes szövegt

(1)

OLVASÓTERMI PÉLDÁNY Ж 455 .S ^ S

KFKI-1983-72

cHungarian Academy o f Sciences

CENTRAL RESEARCH

INSTITUTE FOR PHYSICS

BUDAPEST

GY. EGELY

BUBBLE GROWTH IN VARIABLE PRESSURE

FIELDS

(2)

2017

(3)

BUBBLE GROWTH IN VARIABLE PRESSURE FIELDS

GY. EGELY

Central Research Institute for Physics H-1525 Budapest 114, P.O.B.49, Hungary

HU ISSN 0368 5330 ISBN 963 372 112 1

K F K I - 1 9 8 3 - 7 2

(4)

A B S T R A C T

The paper presents a study for the bubble behaviour in variable pressure fields. The presentation is started with the deduction of mass momentum and energy conservation equation in spherical form, and continued until the solution is presented in a closed integral form. The paper outlines the numerical solution, too. The main object of the paper is to present a useful numerical tool for the study of growing or collapsing bubbles, in order to study the interface mass and energy transferm terms, and the interface area.

АННОТАЦИЯ

В работе исследуется поведение пузырька в бесконечной среде под влиянием изменения давления. Представленная физическая модель содержит уравнения сохра нения массы, импульса и энергии, сформулированные в сферических координатах.

В работе сначала дается вывод этих уравнений, а затем дается такая замкнутая форма решений, которая уже непосредственно пригодна для численных расчетов.

Исследование роста пузырька можно осуществить при наличии самых разнообразных внешних воздействий, но время, необходимое для расчета, сильно зависит от дли тельности транзиента.Главная цель представленного метода - это возможность ис­

следования временных поведений фазовых переходов, сопровождающихся обменом массой и энергией.

KIVONAT

A kutatási jelentés a végtelen közegben a nyomásváltozás hatására növek­

vő vagy összeomló buborék vizsgálatára készült. A bemutatott fizikai modell gömbi koordinátarendszerben, a buborék középpontjára felirt tömeg, impulzus és energiamegmaradási egyenletet oldja meg. A megoldás az egyenletek alakjá­

nak levezetésével kezdődik, majd megadja azt a zárt formát, amelyet már csak numerikusán lehet megoldani. A buboréknövekedést tetszőleges környezeti nyo­

más-idő függvény esetén lehet vizsgálni, de a számitási időszükségletet a tranziens időtartama erősen befolyásolja. A bemutatott módszer fő célja az, hogy segítségével vizsgálni lehessen kétfázisú áramlás esetén a fázisok kö­

zötti energia és tömegcsere tagokat, valamint a határfelület időbeni válto­

zását.

(5)

Contents

page

Figures

Introduction ... 1 Derivation of Equations ... 3 The Conservation of the Thermal Energy . . . 6 The Solution of the S y s t e m ... 13

Appendix 1... 14 Appendix II... 15

Comparison of Results with Test Data . . . . 20

Nomenclature ... 21

F i g u r e s ... 22

(6)
(7)

Introduction

There are three major fields in the reac t o r safety studies, where the behaviour of vapour bubbles is important

a . / Interface mass and energy transfer terms for b l o w ­ down calculations;

b . / noise analysis for boiling detection;

0 . / bubble collapse, or cavitation for coolant pump s t u d i e s ,

Vapour bubbles may grow, or collapse for two reasons:

1. / The pressure inside the bubble is different from that of the outside. The growth or collapse is controlled then by inertial forces.

2. / The temperature of vapour bubble is different from that of the bulk liquid, there is evaporation or condensation on the liquid/vapour interface. This is the thermal effect.

Usually these effects are unseparable, they act to­

gether and there is a definite interaction between them.

In practice, the pressure and temperature difference between the phases is not constant, but changing during transient processes. But the widely used analytical r e l a ­ tions are derived for steady superheat case w i t h negligible inertial effects.

The aim of the paper is to solve the governing e q u a ­ tions of bubble growth with no such restrictions, for the following reason:

(8)

2

During flow transients, like the Loss of Coolant Accident, the hulk liquid pressure is changing rapidly, there are even pressure oscillations sometimes, and the inertial effects could be important for the suhcooled part of boiling.

The model discussed below is based upon the following physical limitations:

1. / The liquid is incompressible. This restriction may cause error only near to the critical point.

2. / As a consequence of surface tension, the shape of the bubble is spherical.

3. / The pressure and the temperature in the liquid at a given r radius from the bubble c e n t e r is u n i ­

form. /See Fig.1,2/

4-/ The spatial distribution of pressure and t e m pera­

ture is uniform within the bubble.

5. / The v a p o u r and liquid temperature is the same at the interface.I

6. / The system has only one component, there is no dissolved gas in the liquid or in the vapour.

7. / The kinetic energy of'vapour is negligible compared to the liquid.

8. / The liquid density will be taken at the bulk liquid temperature. /It is different only in the thin ther mal boundary layer./

Only the restrictions 2,3 and 4 could be serious l i m i ­ tations, but for small bubbles, where the spatial change of pressure is still not significant, one may use the spherical approximation.

For reactor coolants, when the liquid is chemically pure the limitations 5 and 6 are not significant.

(9)

- 3 -

D e r i v a t i o n о Г liq u a tio n s

In order to be able to determine the behaviour of a bubble one must solve a set of conservation equations, namely the mass, momentum and energy.

from the conservation of m a s s /see Appendix I,/ one o b t a i n s :

" dt

/1/

The m o m e n t u m equation for sphere, w i t h angular in­

dependence :

^ Э

г2 Э г ( r 2u ) =0

/2/

d f \ therefore, excluding r = 0: ~— (r2 uJ ~ 0

Integrating the left-hand side w i t h respect to

= Г

2 dr _ TO2 dj? _ n

dt dt

r y i e l d s :

Я

as the right-hand side = 0, the velocity of liquid, u will b e :

_ dr _ djR/Я_\

" dt d t \ r ) /3/

For incompressible liquids the conservation of m o m e n t u m is the same as the conservation of kinetic energy.

(10)

4

T h e k i n e t i c e n e r g y o f the l i q u i d / t h a t is the s y s t e m , as the v a p o u r k i n e t i c e n e r g y is n e g l e c t e d / is g i v e n b y the

oO

üi U Z d V

Е ,-

Z /4/

i n t e g r a l , i . e , s u b s t i t u t i n g / 3 / i n t o / 4 / y i e l d s o O

Г r-

r . к z

g m /1? d t I Г

Rr^jToIr = 'R

42

.

г

Ш i i v i r k

\dt) Z

dO

К

/5/

I’he w o r k done against the surface tension and liquid

“R

. . .

/ 6 / pressure 1Ъ • .

Ee- \ Trifft) Ш - Jl2o(t>/iTfit)TciR

я •R

0 4M

ribs forTwr

where the first integral stands for'work done against the surface tension forces, while the second one stands for the work done against the ambient Fo£> / t/ pressure.

The relation between the vapour pressure and the pressure at the outer w a l l :

p - p (-г) _

1Й П

rw 'fteitV 1J /7/

Therefore substituting /7/ into the first term of /6/, and adding the integrals yields:

(11)

u

E t “

SQ T M t )

КГ' 'Re

'Ко

fert(T) M r )

' Ш

/8/

k i O W X d R

о ’ о

When the initial radius H Q is small enough, the se­

cond integral is negligible in /8/.

As the work done on the liquid minus the work of surface ten­

sion forces and ambient pressure is equal to the kinetic e- nergy of the liquid: Ел = , that is:

R

R i f W I T

0

d R = Z X ? t ( g ) R 3 (i)

/9/

substituting d R = ^ d t into the integrational variable, then differentiating by time both sides, one obtains:

W I T ?& ,((т) - ЩQ- ' & t j | k - 2 % ( 21? R k + 3Ü Y r

or xnin amplified and rearranged form:

R b f R H I V •) - ” | Ш - T i o W

When the effect of viscosity is taken into account, a new term is added to the right-hand side:

•< n * 2.

'RP + f - P

J

h

- " в . w

R v i h ' R

p

/1о/

This is a second order n o n linear ordinary differential equation, but it is easily transformed into a set of linear differential equations.

(12)

- 6

Substituting R = z ,

This system of equations gives the motion of spherical vapour must be calculated in order to close the system of equations, where T ^./t/ is the temperature of vapour being in s a t u ­ rated condition.

The conservation of the thermal energy

The thermal energy equation for spheres, in the absence of heat source, w h e n the temperature distribution is s p h e r i ­ cally symmetric is as follows:

This linear, second order partial differential equation will be transformed into a practically usable integral form.

A new variable

is introduced to replace r, so h = h/r,t/ for R = r

bubbles. It is obvious, that V0о / t / must be given and T ,/t/

b ci b

combining with /3/ y i e l d s :

E2 Ш. , X . ± s L f r i dl)

rz d t dr fa с г 2 Э г \ dr J

/

12

/

A 3 /

and

Э г

o>h = r2- dr

/ 14 /

that is

(13)

- 7 -

Instead of the temperature a new variable will be introduced, which is proportional to the energy conducted to the bubble:

U(n t) = f г 1 (тл - T(r\-t))dr’

-R

instead of r, according to /14/, the new variable

h

is introduced as

h

so ufh.-t) = / ( l - T C b ’,t))dh‘ /15/ 0

Por this new variable (See P i g » 2.)

U / h , 0/ = 0 U/0,t/ = 0

As the U/h,t/ function has been derived from T / r , t / f one may write for the first term of the left h a n d side in /12/:

9 T (r,t) ЭЫ 3h 3 U . d i a t " эн a t a t d t

b u t irv - “ R t v fr o m /13/,

at olt

э т _ 3 ü ^ o i ' R , a u

80 ы ' эи d t + a t

/1 6/

In the second term of the left hand side of /12/

2 1 = Ш 2 h. § u dt

d r 0h Эг Bt olr / 17 /

(14)

8

but ^ = 0, and substituting /14/ into /17/ one obtains:

Ю 1 =, y-Z ЭМ.

dr 3h

/18/

/16/ and /18/ is substituted into /12/ in order to eliminate T/r,t/, the result is:

щ _ W-tf-dÄ , e ! áR 1 - 2 Эй = эм

9 t 9 h dt r í d t 3 h “ dt

/19/

That is, the left hand side of /12/ is a single term now.

Transformation of the right hand side of /12/:

As A - — pi 9. from /13/ or /14/,

Э г Э Ь

but with /18/

L . 1 . 9 . ^ 3 I ) = A _3/V*3I )=

' C > i B r \ dr I fy-C Э г /

= - A , . э м )

c Э 1а \ 9 h / /

20

/

If r is expressed f r o m /13/, r^ will have the following

form: 4

r<( = R ft)

3 h _

U f a )

H

/

21

/

Therefore the combination of /20/ and /21/ yields:

зь + •'

A 3 b \ t )

a, c dh

,4 au

9 h

/

22

/

(15)

- 9 -

t Imi is Л . Ví c

9 U 3 9 h c>h

G H f

г Я ,

or

A.

°

au

m . t , r + r

a h

f H

a -

3 £ ц r/h2"

/23/

As - 0 outside the thermal boundary layer, and the m a g ­ on

nitude of r is always comparable w i t h R, for small bubbles the first term is negligible, therefore:

\*i c M - A ($h. + Л з c ^ U

at 9i-c / эь2-

or tf

4 a u A f s h Л з 'R^ a t ij)('C l "R3

+ /\) . 5. M_

' Ъ ir2-

t

Í ■/Л if ntroducing a new time variable, ^ ^ l tt / d L

0

therefore 1 Э __ d_

H 4 Э 1 3(Г

/24/

Anal l y Ш = _ L f 3 h + /(|з y y Э 0' c \

2 1 э ь2

/23/

а / o о

As r = R in the thermal boundary layer, so r = R and p

r»R = R , so the following approximation holds true:

'R3

г З -Ъ ъ 3 "Я5

V,

К -R

where cT ia the thickness of the thermal boundary layer, 'this expression for example in case of water seldom exceeds

1.0 but usually is around 10 ",

(16)

I

- l O -

I ti Hi';! омгю Kq./2b/ ' я simplified io

А 2 II ?U

\y í 3 h1 3<r /;>6/

/26/ ig a second o r d e r , .'Linear Lranaien I, heal conduction equa t:i o n , named after Fourier, /бее Appendix II. for the no I u I;:i o n . /

The so 1 útion tran a formed to the original varj able a in as

Го I Iowa: t

n / ;\ r 2($) B T i r ^ i O ,

I /к%)о1$1 / 2 Y /

. о 7 ! 1

а г I

One abonId specify in order to get the integrand, with the help of the boundary condition for the bubble.

The temperature of the vapour will be:

W T t f ) . T < - I4- f f

_

. Ш Ш

,d i

1 ?»li c| - t -|-| Эг 4 /2"/

Í H V l J d f

/ .5

"óT I 0

Э г iR ' ° 6 tained from the conservation of ene r g y at the bubble i n t e r f a o e :

-

= |rllT?vfT)GfT) * чт/ТГо(i) + ^ |/1Т(f^t) -T!i r t ( t )|

The left hand side is the energy conducted to the bubble, the first term on the right hand side is the evaporation heat,the second, is the energy requirement of w o r k against surface ten- si. on forces, the last is the w o r k agoInst the ambient nreaaur«9

(17)

Subati luting /7/ into the last term, and neglecting P -- lb, W

the sum of the second and last term wi l l be -- R2 3(Т) TT ,

jm. 3

thus after a n p l i f i o a t i o n :

A i f J

Э

р

jj{ cH (_3

lfyv(T)G(T) v j - f f - c r l T ) !

or after differentiation and rearrangement

dT dr

4

-R ~ ЗЛ *Ra

•R3 d ^ T) W TÍ +2 'RíI2

dt d t dt. /зо/

The second term is dominant in this expression, while the last is usually considerably smaller, practically negli- g i b l e ,

The final form is obtained by substituting /30/ into /28/, that is:

That is, /12/ has been transformed into a second order Volterra-type .integral equation, which has always a solution, end from numerical point of wiew in easier to sol v e ,

N o w a closed system of equations has been obtained, that is:

F

=

F / Т /

, the state variables as a function of temperature /or pressure/

(18)

12

f =z

2.1 'Rz + | - z 2 - . i 'P«t( D 1

г ш )

R(t)

? J t ) _ U j M T ) z

-R

/32/

1 + R 5- j H f 2 6 R K j Í t f í i ) d f '

- 12.

0

PoO = Poo/i/ is specified аЯ boundary condition, and the i n i ­ tial conditions are:

= R , dR

dt

t=o о 0 t=o Т / r , 0 / = T x

1

(19)

- 13 -

The S o l u t i o n o f t h e s у з lern

Obviously, bills system of' equations has no analytical solution, only numerical iterative methods may yield re­

sults. Unfortunately, the ordinary differential equations

*

have stiff behaviour, R/t/, R/t/, t may change several orders of magnitudes. The step-length control is signifi­

cant in this case, therefore a fifth order Sarafian-.Butcher method has been applied.

In the denominator of /31/, the functional has been integrated by second order approximation.

The method of iteration is a "learning" algorithm de­

vised for this system.

(20)

14 -

A p p e n d ix

1

«

Conservation of mans

The continuity for vapour:

rvi = \__ d_

R 2 ТГ dt

aft e r simplification:

d S s r + o „ d B . 3 d t T dt

for small bubbles the first term is negligible, so

rn = o v / 1 1 /

' d t Continuity for liquid:

(ft ~~ U CR| t)) = ho /12/

where U is the interface velocity, where the radius in­

crement caused by evaporation is not neglected, while in

«

R only the density variation is considered.

or

I f

Combining /II/ and /12/ yields : - up*. -

•R u

/1.3/ is as follows:

'R ,

or

= u

/13/

the interface velocity.

W e a r to the critical point this relation yields conside rable error.

(21)

- 15 -

A pp end ix I I « (

The solution of the Fourier equation

The equation i s : — У =

L

Э bz A 9 V / 11 . 1 /

•’or 1J the initial and boundary conditions are respectively:

U f h . O ) --0

Ufo.r) -0

/ 1 1 . 2 /

Л n t г о d u c i n g

P-Í'C

,ran s formát i o n .

/ И . З / /11.4/

D

j eq./II.l/ will be solved by Laplace

& Л П

U i h , t r ) = 0

h - ^ c o

/ И . 5 / The formal transformation yields: üL-M- - 5 LL

d h 2 D

oO

w h e r e ^ = u (h,;.s) " J & UihiV") d v 0

This is a second order linear ordinary differential equation.

The general form of the solution will be:

hii±- r »4 I

a n d f r o m / 1 1 . 4 /

theref ore

u^Ae Ь 4-Be

= 0

du dh

d u

dh

h ■- oo

h = oO Ae°° + БеГ °°=0

i el ding A - 0 , that is , U »33 &

/11.6/

(22)

и

S tar I, i lift f r o m the d e f i n i t i o n of• u i M b j i f , - П ь ‘,о)си;

we obtain

bo

h=0

O T fh.t) _ 1 ^ T ( 0 ,t) _ r f ( )

э ь

'\\z D'r '

n t '

Therefore X { F ( r ) } - f ( s )

du_

d h h =0

-f is)

/11.7/

After the derivation of eq. /11.6/ wi th respect to h twice, and combining with eq. /11.7/ the result is

therefore

3 *f(s)

23

Now u will have the following form:

U ( h,s) = |is)‘ ~r &

- Ш

/ГГ. я/

The inverse Laplace transformation will be carried out not for u , but for , as this is more favourable;

х " й ! - | “ - т , - т ( ы

№.. u T(k,')-T, -i'f-llf (Ble,"1

(23)

- 17

The inverse transformation has been carried out by / A / table, yielding

T(h,<r) = b + l |

*r Г

J

F(0 j L

(<r-Js)

MD(r-i)

/11.10/

0

tor, one obtains

I ol(b|£)

is substituted into the nomina- h2

-/

0

— a & = = - e d f Г 2 (Г- £

Transformation to original variables:

As the transformed time variable is S = J ^(x')dx' 0

one may replace d£ with dx , because of äi =-rV ) d*

one obtains

K M b v f f

r * £ ~ e - dx

J

0

L X

and

t

Г

r f n t ) - T r §

r3 - "R3

| L . e i z o y W y t y f v y d c ,

г < -il dX

0

(24)

18

or at the bubble wall

t № ) - ta

f i Г *< * >r = m ) It

J I1

/ i i . i i /

о

Finally, when R ^ o O, that is, for a plane, in eq. /11.11/ R is regarded as a constant, therefore

dx

yielding £

г э л

V , Э.Г . Ж

ír J l l - x

0

T li) =1, - \

Inasmuch as S' . 1 inequality is not fulfilled, a correction is to be applied. Applying the method of suc­

cessive approximation . T is approximated as T = T *~ + T * * + T * * * +,

T * , as the first approximation is given by /11.11/

By similar methods, as T* was obtained, an inequality is derived for T :

t

T**(t) á b \ A f 0(*R,S)

4 3 \ ?i-cT J

and

1

Л A

i

r

frC'-V T(t) J

0

0

eou)

f n - d£ á T**(t)

ъ

(25)

19

where 0(ТЦ) •= T„ — Т*0?,1)

According to the calculations, the correction was very smal], usually negligible.

A. E r d é l y i et al.: T a b l e s of I n t e g r a l T r a n s f o r m s . Vol. 1., M c G r o w Hill

(26)

20

C o m p arison о F results with test dat a

The pre v i o u s l y p r e s e n t e d numerical model has been c o m p a r e d with three test data. The dat a has bee n p u b l ished by M. Niino in the

"Study of Single Bubble G e n e r a t i o n and G r o w t h by Laser beam", P h . D. T hesis Univ. of T o h o k u , Japan, 1975, and by Hewitt and Parker in the "Bubble G r o w t h and Coll a p s e in Liquid Nitrogen", ASME Jour nal of Heat Transfer, V o l . 90, 1968, pp. 22-26.

The da t a is plotted in a paper by 0. Jones, Jr and N. Zuber:

"Bubble G r o w t h in Varia b l e Pressure Fields" ASME J o u r n a l of Heat Transfer, Vol. 100, Aug. 1978, p p . 453-459.

On Fig. 1. and Fig. 2. water has been used in the experiment, while in case of Fig. 3., liquid nitrogen. The experi m e n t a l r e ­ sults of bubble radius m e a s u r e m e n t s are plotted on the radius curves as black dots. The a g r e e m e n t is re a s o n a b l e b e t w e e n the calculated and m e a s u r e d values. It has to be e m p h asized that the method is general, the pressure h istory a r o u n d the b u b b l e could be arbitrary. Smooth pressure functions are, however, mo r e c o n ­ v e n i e n t to calculate, jumps or sudden cha n g e s require mo r e c o m ­

putational time.

In case of Fig. 1. and Fig. 2. at the b e g i n n i n g of the c a l c u l a ­ tions the time has been plotted logarithmically. This period, although starts in real time, requires a significant pro t i o n of all c o mputational time.

The m e t h o d is appr o p r i a t e for b ubble c o l l a p s e calculation, until the bubble radius becomes smaller then the critical radius.

(27)

21

Nomenclature г

t R(t)

u P p. < u T

radius, independent variable t i m e , in d e pe n d e n t variable—

b u bble radius

initial b u bble radius at t = О veloc i t y

pressure

ambient pressure temperature

initial temperature bubble v olume

pressure at the outer w a l l of bubble

State variables

p t <T) liquid den s i t y

Eh

>Q. v a p o u r den s i t y о (T) surface tension P s a t (T) s a t uration pressure

A(T) liquid heat conductivity c o e f f i c i e n t с (T) liquid speci f i c heat

G (T) e v a p o r a t i o n heat V (T) dynamic v i s c o s i t y

(28)
(29)

108

о =

со

m

о

О

6

[ BAR ]*

1.4

г

b \ )

1

T r ....

\ i A

/ж)*

h \

% Ir

1 /

P

^3

1

F

1 [ i M J x ..

4=

0.2

___LТ “ ~ * . 0 . 1

R [ M / S E C 3

Л____ L 1---- Г

1.6

__ I ..1

1 1 4

*

*

*

0.4

* 4 0.2

W A T E R

(30)
(31)

4

(32)

(о 1. ^ <Р '\

Kiadja a Központi Fizikai Kutató Intézet Felelős kiadó: Gyimesi Zoltán

Szakmai lektor: Katona Tamás Nyelvi lektor: Dús Magdolna

Példányszám: 225 Törzsszám: 83-452 Készült a KFKI sokszorosító üzemében Felelős vezető: Nagy Károly

Budapest, 1983. junius hó

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Despite the fact that the tinder samples were collected at the same time and same location from Fagus sylvatica trees, Fomes fomentarius and Tramates gibbosa had a different

But this is the chronology of Oedipus’s life, which has only indirectly to do with the actual way in which the plot unfolds; only the most important events within babyhood will

Major research areas of the Faculty include museums as new places for adult learning, development of the profession of adult educators, second chance schooling, guidance

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the

In this article, I discuss the need for curriculum changes in Finnish art education and how the new national cur- riculum for visual art education has tried to respond to

In these lectures we have treated the calculation of the ground state energy and the field contribution to the mass for a simple model and our main interest has been to study

m-N0 2 acetophenone m-NH 2 acetophenone m-OH acetophenone m-OCH 3 acetophenone m-Cl acetophenone m-Br acetophenone m-N(CH 3)2 acetophenone m-CN acetophenone m-COOH

The results of the tests show that the increase in the coe ffi - cient of Skempton (B) from 13% to 90% induces a reduction of both the initial sti ff ness of the soil and the