• Nem Talált Eredményt

ARTICLE IN PRESS

N/A
N/A
Protected

Academic year: 2022

Ossza meg "ARTICLE IN PRESS"

Copied!
10
0
0

Teljes szövegt

(1)

ContentslistsavailableatScienceDirect

Journal of Chromatography A

jou rn al h om ep a g e : w w w . e l s e v i e r . c o m / l o c a t e / c h r o m a

Combinatorial effects of the configuration of the cationic and the anionic chiral subunits of four zwitterionic chiral stationary phases leading to reversal of elution order of cyclic ˇ 3 -amino acid

enantiomers as ampholytic model compounds

Nóra Grecsó

a,b

, Enik ˝o Forró

b

, Ferenc Fülöp

b

, Antal Péter

a

, István Ilisz

a,

, Wolfgang Lindner

c,∗

aDepartmentofInorganicandAnalyticalChemistry,UniversityofSzeged,H-6720Szeged,Dómtér7,Hungary

bInstituteofPharmaceuticalChemistry,UniversityofSzeged,H-6720Szeged,Eötvösu.6,Hungary

cDepartmentofAnalyticalChemistry,UniversityofVienna,Währingerstrasse38,1090Vienna,Austria

a r t i c l e i n f o

Articlehistory:

Received6April2016

Receivedinrevisedform4May2016 Accepted11May2016

Availableonlinexxx

Keywords:

Enantiomerseparation

Zwitterionicchiralstationaryphases N-methyl-protectedcyclicˇ3-aminoacids Temperatureeffect

a b s t r a c t

Inasystematicwayenantioseparationsofnon-methylatedandthecorrespondingN-monomethylated ampholyticcyclicß3-aminoacidswerecarriedoutonfourzwitterionicchiralstationaryphases(CSPs;

ZWIX(+)TM,ZWIX(−)TM,ZWIX(+A),ZWIX(-A)).CSPswerebasedonthecombinationsofquinineand quinidineasthecationicandof(R,R)-and(S,S)-aminocyclohexanesulfonicacidastheanionicsites.In polar-ionicmobilephasesystems,theeffectsofthecompositionofthebulksolvents,theadditives,the concentrationoftheco-andcounter-ions,thetemperature,andthestructuresoftheampholyticanalytes wereinvestigated.Thechangesinstandardenthalpy,(H),entropy,(S),andfreeenergy,(G), werecalculatedfromthelinearvan’tHoffplotsderivedfromtheln˛vs1/Tcurvesinthestudiedtempera- turerange(5–40C).UnusualtemperaturebehaviorwasobservedontheZWIX(−)TMcolumn:decreased retentiontimeswereaccompaniedbyincreasedseparationfactorswithincreasingtemperature,andsep- arationwasentropically-driven.FortheotherthreeCSPs,enthalpically-drivenenantioseparationswere observed.Viatheconsequentdeterminationoftheelutionorderoftheresolvedenantiomers,theeffects oftheabsoluteconfigurationofthechiralanionicandcationicsubunitsofthezwitterionicCSPscould beelucidated.N-methylationoftheaminoacidsledunexpectedlytoareversaloftheelutionsequence, whichcanbeinterpretedbyasubtleshiftofthehierarchicalorderofthestericallymostimportantdriving interactionsitesfromthecationictotheanionicunits,andviceversa.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Conceptually,thispaperraisestwoprincipalquestions:(i)What willbetheeffectsofasystematicvariationofthepositivelyandneg- ativelychargedchiralinteractionsiteswithinzwitterionicselectors (SOs)andtherelatedchiralstationaryphases(CSPs)?;and(ii)What effectwilltheN-monomethylationoftheaminogroupofcyclic ˇ3-amino acids (AAs) haveregarding the retention andelution sequenceoftheresolvedenantiomers?

Asgenerally accepted,thespatial structure of a chiral com- pounddescribedbytheabsoluteconfigurationofthechiralcenters

Correspondingauthors.

E-mailaddresses:ilisz@chem.u-szeged.hu(I.Ilisz), wolfgang.lindner@univie.ac.at(W.Lindner).

andtheconformationalflexibilityoftheentireSOactingaschiral hostdeterminestheextentofmolecularinteractionsandmolec- ularrecognitionoftheanalytes(selectands,SAs).Inasimplified way,thisconceptrelatestothedifferenceofGibbsfree binding energy(G)ofthe[SO-(R)-SA]andthe[SO-(S)-SA]associates thatinchromatographicterms,leadstoastereoselectivityfactor,

␣.Incombinationwiththeefficiencyofa“chiralcolumn,”itrelates totheresolutionvalueoftheenantiomers.AchiralSOmoietycanin principlebedividedintostructuralsubunits,whichmayparticipate moreorlessstronglybutsimultaneouslyintheoverallintermolec- ularinteractionprocesswiththechiralSAs.Inthecaseofionizable subunits,cationicandanionicsitesintheSOcaneachhaveindepen- dent(R)and(S)configurations.ForzwitterionicSOs,itisassumed thatthesetwositesinteractviaasimultaneouslyoccurringdou- bleionpairingeventwiththechiralzwitterionic(ampholytic)SAs, wherebythespatialenvironmentofalltheionizedsiteswillhavea http://dx.doi.org/10.1016/j.chroma.2016.05.041

0021-9673/©2016ElsevierB.V.Allrightsreserved.

(2)

ARTICLE IN PRESS

G Model

CHROMA-357568; No.ofPages10

2 N.Grecsóetal./J.Chromatogr.Axxx(2016)xxx–xxx

Fig.1. StructureofthefourcombinatoricallycomposedzwitterionicCSPsbasedonQNorQDandon(R,R)-and(S,S)-ACHSA.

directiveeffect,andthusdeterminetheresultingelutionsequence oftheresolvedenantiomers.

Onthebasisofpreviousworks[1,2],weusedfourZWIXtype CSPs,whichdifferonlyinthechiralityofthesubunits(depicted inFig.1),fortheresolutionofthecyclicˇ3-AAderivativesandto probetheinitiallyraisedquestions.

Duetotheirpharmacologicaleffects,carbocyclicˇ-AAshave gained great interest among synthetic and medicinal chemists in the past two decades, and they have become a “hot” topic inorganicand bioorganicchemistry. A considerablenumber of syntheses of carbocyclic ˇ-AA derivatives in both racemic and enantiopureformhavebeenreportedinrecentyears,andmost ofthemhavebeenreviewed[1,3].Controllingtheenantiomeric purity(e.g.underpeptidesynthesis)requiresreliable andaccu- rate analytical methods to be at hand. At an analytical level, high-performanceliquidchromatography(HPLC)isundoubtedly themostimportantmethodofchoicetoday.HPLCenantiosepara- tionsofß-AAshavebeenperformedbybothindirectand direct methods and inthe pastdecade new typesof chiral derivatiz- ingagentsandCSPshavebeenappliedforthispurposeandwere reviewedinnumerouspapers[4–11].Severalpapersdealwiththe enantioseparationofN-acylandN-aryl-protectedAAderivatives;

however,onlyfewreportscanbefoundfortheenantioresolution ofN-methylatedvariants. Enantioseparationof N-methyl-˛-AAs by ligand-exchange HPLC was reported by Brückner [12]. N- methylleucine,N-methylisoleucine,N-methyl-phenylalanine and N-methylglutamateandaspartatewasresolvedbytheapplication ofchiralderivatizingagentsbyHessetal.[13]andTsesarskaiaetal.

[14].Enantiomersof N-methylleucine andits2,4-dinitrophenyl- and 3,5-dinitrobenzoyl-derivatives were separated on Cinchona alkaloid-based CSPs [15,16]. Piette et al. reported enantiosep- aration of 3,5-dinitrobenzoyl-N-methylleucine by non-aqueous capillaryelectrophoresisusing1,3-phenylene-bis(carbamoylated quinine)asaselector[17].

Chromatographicresolutioncanbetunedbyvariationofmobile phasecomposition,mobilephaseadditives,andespeciallyinchiral chromatography,temperature.Inmostcases,theachiralandchiral (stereoselective)interactionsaresensitivetotemperature[18–21].

Therefore,duringchiralseparations,thecolumntemperatureoften hasbeenoptimizedandkeptwellcontrolled.

Thetemperaturedependenceofchromatographicretentioncan beexpressed by thevan’t Hoff equation.The differencein the changeinstandardenthalpy(H)andentropy(S)forenan- tiomerscanbeexpressedas[20]:

ln˛=−(Ho)

RT +(So) R

whereRistheuniversalgasconstant,TistemperatureinKelvin, and␣istheselectivityfactor.Ifalinearvan’tHoffplotisobtained, aplotofRln˛versus1/Thasaslopeof−(H)andanintercept of(S).Thevan’tHoffplotsinterpretedthiswayyieldappar- entchangesinstandardenthalpyandentropyvalues,inwhichthe respectivecontributionsofthechiralandachiralinteractionsare combined.Amoresophisticatedapproachshouldbebasedonthe differentiationofstereoselectiveandnon-selectivesites[21].

In this work, we present the enantioseparation of non- methylatedandN˛-monomethylatedcyclicß3-AAs(Fig.2)onthe quinine(QN)orquinidine(QD)andaminocyclohexanesulfonicacid [(R,R)-and(S,S)-ACHSA]basedandchemicallyfusedzwitterionic CSPs.FocuswasgiventotheeffectofN-methylationincompar- isontothenon-methylatedcongeners, aswellasin themobile phase composition, temperature,and the structure of thevari- antsofchiralselectorsonchromatographicperformance,including enantioselectivityand elutionorder. Theeffectsof thedifferent selectorsandtheN˛-methylationofthecyclicß3-AAsonthesepa- rationperformanceswerestudiedindetailwiththeaimtoevaluate thedrivinginfluencesoftheconfigurationofthechiralionizable subunitsofthecombinatoricallycomposedzwitterionicselector units.

(3)

Fig.2. Chemicalstructuresofampholyticcyclicˇ3-aminoacids.

2. Experimental

2.1. Chemicalsandreagents

TheN-methylatedcarbocyclic ˇ-AAswere preparedthrough thegeneralmethodologydescribedbyArvidssonetal.[22],from thecorrespondingFmoc-AAswithparaformaldehyde,viaoxazi- nanoneintermediates,followedbytriethylsilanereduction,under microwaveheating.

HPLC-grade MeOH, MeCN and THF, as wellas diethylamine (DEA)andaceticacid(AcOH)modifierswereobtainedfromVWR

International(Radnor,PA,USA).Purifiedwaterwasobtainedfrom theUltrapure WaterSystem,PuranityTUUV/UF(VWRInterna- tional).

2.2. Apparatusandchromatography

HPLCseparations wereperformed on:A WatersBreeze sys- tem consisting of a 1525 binary pump, a 487 dual-channel absorbance detector, a 717plus autosampler, Empower 2 data manager software(WatersChromatography,Milford,MA,USA), andaLaudaAlphaRA8thermostat(LaudaDr.R.WobserGmbh,

(4)

ARTICLE IN PRESS

G Model

CHROMA-357568; No.ofPages10

4 N.Grecsóetal./J.Chromatogr.Axxx(2016)xxx–xxx

Fig.3.Effectsofthecompositionsofthebulksolventsonthechromatographic parametersfor1and3onCSP-2.

Chromatographicconditions:column,CSP-2;mobilephase,MeOH/MeCN(75/25, 50/50or25/75v/v)containing25mMDEAand50mMAcOH;flowrate,0.6mlmin−1; detection,215and230nm;temperature25C;symbols,fork1,andRSvaluesfor 1,䊏,for3,䊉.

Lauda-Königshofen,Germany);orona1100SeriesHPLCsystem fromAgilentTechnologies(Waldbronn,Germany),consistingofa solventdegasser,apump,anautosampler,acolumnthermostat, amultiwavelengthUV–visdetectorandacorona-chargedaerosol detectorfromESABiosciences,Inc.(Chelmsford,MA,USA).Data acquisitionandanalysisonthelattersystemwerecarriedoutwith ChemStationchromatographicdatasoftwarefromAgilentTech- nologies.

ThecommerciallyavailableChiralpakZWIX(+)TM(CSP-1)and ZWIX(−)TM (CSP-2)(150×3.0mmI.D.,3-␮mparticlesize)were provided by Chiral Technologies Europe (Illkirch, France). The preparation ofZWIX(+A) (CSP-3)(150×3.0mm I.D.,5-␮mpar- ticlesize)isdescribed in [23,24], andthat ofZWIX(-A)(CSP-4) (150×3.0mmI.D.,3-␮mparticlesize)in[25].

StocksolutionsofAAs(1mgml−1)werepreparedbydissolving theminthemobilephase.Fordeterminationofthedead-times(t0) ofthecolumns,amethanolicsolutionofacetonewasinjected.The flowratewas0.6mlmin−1andthecolumntemperaturewas25C ifnototherwisestated.

3. Resultsanddiscussion

3.1. Effectofnatureandconcentrationofbulksolvent componentsandmobilephaseadditives

ThefourzwitterionicCinchonaalkaloidQN-orQD-and(R,R)-or (S,S)-ACHSA-basedCSPs(Fig.1)performwellinnon-aqueouspolar organicsolventscontainingMeOHasaproticbulksolventcompo- nent(whichcansuppressH-bondinginteractions)andMeCNasan aproticbulksolventcomponent(whichisadvantageousforionic interactions,butdisadvantageousfor-interactions)[1].Addi- tionally,acidandbaseadditivesareoftenappliedtoensureionic propertiesofthemobilephase[1,24–27].

Forthechromatographicexperimentswiththecyclicß3-and N˛-monomethylatedcyclicß3-AAs,variationofvolumeratiosof MeOH/MeCN (75/25,50/50 and 25/75v/v)as bulk solventcon- taining50mMAcOHand 25mM DEAinmostcases resultedin theseparationof theenantiomers.As depictedinFig.3, inthe caseofCSP-2for1and3,withincreasingMeCN/MeOHratio,the retentioncontinuouslyincreased.Theobservedchromatographic behaviorcanbeexplainedonthebasisofthecharacteristicsofthe solventsandAAs.Nonaqueous,polarorganicsolventsarefavored

Table1

Chromatographicdata,separationfactor(k),selectivityfactor(␣),resolution(RS) andelutionsequenceoffree-andN-monomethylatedcyclicß3-aminoacidsonCSP- 1.

Compound Eluent k1 RS Elutionsequence

1 a 3.13 1.00 0.00

g 3.46 1.02 <0.3 A<B

2 a 2.55 1.71 7.07 B<A

3 a 2.82 1.00 0.00

g 2.61 1.10 0.68 A<B

4 a 1.60 1.54 3.75 B<A

5 a 3.96 1.21 1.31 A<B

6 a 2.13 1.50 3.59 B<A

7 a 6.22 1.12 0.99 B<A

8 a 2.46 2.00 9.24 B<A

9 a 3.39 1.05 0.49 A<B

f 0.70 1.11 0.69 A<B

10 a 1.47 1.38 3.37 B<A

Chromatographic conditions: column, CSP-1; mobile phase, a, MeOH/MeCN (50/50v/v)containing25mMDEAand50mMAcOH,f,H2O/MeCN(25/75v/v)con- taining25mMDEAand50mMAcOH,g,MeOH/THF(80/20v/v)containing25mM DEAand50mMAcOH;flowrate,0.6mlmin−1;detection,215and230nm.

Table2

Chromatographicdata,separationfactor(k),selectivityfactor(␣),resolution(RS) andelutionsequenceoffree-andN-monomethylatedcyclicß3-aminoacidsonCSP- 2.

Compound Eluent k1 RS Elutionsequence

1 a 6.59 1.07 0.52 B<A

g 4.66 1.17 0.86 B<A

2 a 3.34 1.70 6.45 A<B

3 a 3.36 1.04 0.30 B<A

g 3.48 1.20 1.21 B<A

4 a 1.78 1.63 3.41 A<B

5 a 4.33 1.35 2.17 B<A

6 a 2.55 1.35 2.30 A<B

7 a 8.42 1.41 2.83 A<B

8 a 2.55 2.23 8.74 A<B

9 a 3.69 1.16 0.95 B<A

i 1.66 1.25 1.25 B<A

10 a 1.23 1.64 3.29 A<B

Chromatographic conditions: column, CSP-2; mobile phase, a, MeOH/MeCN (50/50v/v)containing25mMDEAand50mMAcOH,g,MeOH/THF(80/20v/v)con- taining25mMDEAand50mMAcOH,i,MeOH/THF(95/5v/v)containing25mMDEA and50mMAcOH;flowrate0.6mlmin−1;detection,215and230nm.

forCinchonaalkaloid-basedCSPs[1,23,24].Theincreasedreten- tionobserved for theapplied AAsat higherMeCN contentcan probablybeexplainedintermsofthedecreasedsolvationofthe ionizablecompounds,i.e.solvationofpolarcompoundsinamobile phasewithahigherMeCNcontentislesseffective,withtheconse- quencethattheelectrostaticinteractionsbetweentheSOandthe AAbecomestronger,resultinginhigherretention.Ataconstant acid-to-baseratiowiththechangeofbulksolventcomposition,the acid–baseequilibriumandprotonactivitymayalsochange,leading tofurthereffectsonthechromatographicbehavior.

Inthecaseof1and3,theselectivityslightlyincreasedinMeCN- richmobilephases.Thisislikelyduetoenhancedelectrostaticand H-bondinginteractions.Forresolution,bothaslightincreaseand decreasecouldbeobserved.

ApplyingMeOH/MeCNasbulksolventinsomecasesprovided onlypartialorlackofseparation(Tables1–4).Inordertoobtain betterseparations,THFwasappliedinsteadofMeCN.Incertain cases,theapplicationofTHFresultedinanimprovementinenan- tioselectivityandresolution;however,thisimprovementstrongly dependedontheSOsandAAsinvolvedintheexperiment.InFig.4, for1,3,and9onCSP-2andCSP-3,theMeOH/THFratioexerteda markedeffectontheretention.WithMeOH/THFmobilephasesys- temscontaining50mMAcOHand25mMDEA,amoderatedecrease in k1 with increasingMeOH content wasobserved. The higher

(5)

Fig.4. EffectsoftheTHFcontentinMeOH/THFmobilephaseonthek1andvaluesforAAs1,3and9onCSP-2.

Chromatographicconditions:column,CSP-2;mobilephase,MeOH/THF(98/2,95/5,90/10and80/20v/v)containing25mMDEAand50mMAcOH;flowrate,0.6mlmin−1; detection,215and230nm;temperature25C;symbols,fork1andvaluesfor1䊏,for3,䊉,andfor9,.

Table3

Chromatographicdata,theseparationfactor(k),theselectivityfactor(␣),theres- olution(RS)andelutionsequenceoffree-andN-monomethylatedcyclicß3-amino acidsonCSP-3.

Compound Eluent k1 RS Elutionsequence

1 a 1.89 1.69 2.89 B<A

g 1.44 1.66 2.87 B<A

2 a 1.41 1.00 0.00

g 0.57 1.00 0.00

3 a 1.70 1.40 1.82 B<A

g 1.27 1.39 1.40 B<A

4 a 1.33 1.00 0.00

g 0.98 1.00 0.00

5 a 1.76 1.25 1.21 B<A

6 a 1.31 1.21 1.23 A<B

7 a 2.24 1.11 0.58 B<A

8 a 1.42 1.00 0.00

g 1.20 1.00 0.00

9 a 2.00 1.10 0.46 B<A

g 1.55 1.00 0.00

10 a 1.01 1.32 1.69 A<B

Chromatographic conditions: column, CSP-3; mobile phase, a, MeOH/MeCN (50/50v/v)containing25mMDEAand50mMAcOH,g,MeOH/THF(80/20v/v) containing25mMDEAand50mMAcOH;flowrate,0.6mlmin−1;detection,215, 230nmandcoronadetector.

Table4

Chromatographicdata,theseparationfactor(k),theselectivityfactor(␣),theres- olution(RS)andelutionsequenceoffree-andN-monomethylatedcyclicß3-amino acidsonCSP-4.

Compound k1 RS Elutionsequence

1 2.80 1.80 3.73 A<B

2 1.50 1.46 3.31 B<A

3 2.47 1.51 2.21 A<B

4 1.56 1.07 0.65 B<A

5 2.38 1.24 0.90 A<B

6 1.85 1.11 0.75 B<A

7 3.00 1.44 2.53 A<B

8 1.50 1.32 2.09 A<B

9 3.36 1.14 0.68 A<B

10 1.35 1.19 1.46 B<A

Chromatographic conditions: column, CSP-4; mobile phase, a, MeOH/MeCN (50/50v/v)containing25mMDEAand50mMAcOH;flowrate,0.6mlmin−1;detec- tion,215,230nmandcoronadetector.

contentofproticMeOHprogressivelyweakenstheionicinterac- tionsbetweentheAAandtheSO;theenhancedsolvationofpolar AAsresultsinadecreaseofretention.Theselectivity(andRS,data

notshown)increasedslightlywhentheTHFcontentwasincreased from2to20%(v/v).

InastudyofzwitterionicCSPsundernon-aqueousandaqueous conditions,theadditionofwatertotheMeOH-containingeluent systemuptoawatercontentof20%(v/v)decreasedtheretention ofthepolarAAs[24].Similarly,Zhangetal.foundthatthepresence of2.0%(v/v)waterinthemobilephaseshortenedretention,but enhancedresolutionofsomeAAenantiomerpairsonzwitterionic CSPs[26].Inourcase,onCSP-1andCSP-2for1,3,and9,theaddition of2%(v/v)H2OtotheMeOHorMeOH/THF(95/5v/v)mobilephase containing50mMAcOHand25mMDEAwasalsoaccompaniedby adecreaseofabout20–25%ink1,andaslightdecrease(5–10%) for␣andRS(datanotshown).Thus,thepresenceofsuchalow concentrationofwaterinthemobilephasemightbeadvantageous becauseofthedecreased retentionobtained,withoutsignificant lossinselectivityandresolution.

3.2. Influenceofthecounter-ionconcentration

Forbothanion-andcation-exchangetypeSOsunderpolar-ionic conditions,apredominantion-exchange-drivenretentionmecha- nismhasbeenconfirmed[27],andintheion-pairingprocess,the counter-ionspresentinthemobilephaseactascompetitors.Thus, retentioncanbeadjustedbyvariationoftheconcentrationsofthe counter-ions.Incaseslikethis,theretentioncanbedescribedby thesimpledisplacementmodel[28];theplotoflogkvs.logcresults inalinearrelationship,wheretheslopeofthestraightlineispro- portionaltotheeffectivechargeinvolvedintheion-exchange.The effectsofcounter-ionconcentrationfor1,2,7,8,9,and10(selected AAsexhibitedcis-ortrans-configurationswithprimaryaminoorN- monomethylatedstructure)wereinvestigatedintheMeOH/MeCN (50/50v/v)mobilephasesystemcontainingAcOHandDEA.The concentrationsofAcOHandDEAwerevariedfrom12.5mMupto 100mMandfrom6.25mMupto50mM,respectively,whilethe acidtobaseratiowasmaintainedat2:1.Underthestudiedcondi- tions,linearrelationshipswerefoundbetweenlogk1andlogcAcOH, withslopesvaryingaround0.20–0.35(Fig.5).Theobservedslopes practicallywereinvariantwiththestructuresofAAs.According tothesimple displacementmodel,theslopesoftheseplotsare determinedbytheratiooftheeffectivechargesofthesoluteand thecounter-ions.Thedataobtainedwiththefour,inacombina- torialfashion,modulatedZWIXcolumnsrevealedthatingeneral, anincreasingcounter-ionconcentrationresultedinreducedreten- tionfactors,asexpectedforion-exchangers.Onacation-exchange

(6)

ARTICLE IN PRESS

G Model

CHROMA-357568; No.ofPages10

6 N.Grecsóetal./J.Chromatogr.Axxx(2016)xxx–xxx

Fig.5.Effectsofcounter-ionconcentrationonthek1valuesfor1,2,7,8,9and10onthefourCinchonaalkaloid-basedCSPs.

Chromatographicconditions:column,CSP-1CSP-4;mobilephase,MeOH/MeCN(50/50v/v)containingDEA/AcOHinconcentration6.25/12.5,12.5/25.0,25.0/50,and 50/100mM/mM;flowrate,0.6mlmin−1;detection,215and230nm;temperature25C;symbols,for1䊏,for2,䊉,for7,,for8,for9,,andfor10,*.

CSP,assuminga“singleionic”ion-exchangemechanism,slopesof logkvs.logcplotsaround0.9havebeenreportedforthesepara- tionofdifferentchiralamines[23].However,theslopesofthelog kvs.logcplotsinthisstudywere0.20-0.35.Thesevaluesindicate amarkeddifferencebetweenthezwitterionicanda“singleionic”

ion-exchangemechanism.In thecase ofzwitterionicCSPs,with increasedcounter-ion concentration, retention can be reduced.

However,almostanorderofmagnitudeincreaseintheconcen- trationof thecounter-ions(from 12.5mMto100mM)resulted onlyin40–50%reductionintheretentionfactor.Underthestud- iedconditionsonallthefourCSPs,practicallyidenticalslopeswere obtainedforeachenantiomer,i.e.theindividualenantioselectiv- itycharacteristicsremainedalmostconstantwhenthecounter-ion concentrationwasvaried(datanotshown).Thisisinlinewiththe generalobservationconcerningthebehaviorof enantioselective ion-exchangers[2].

3.3. Comparisonofseparationperformancesofthefour combinatoricallycomposedzwitterionicCSPs

For the purpose of comparison, all of the CSP separations investigatedwerecarriedoutatconstantmobilephasecomposi- tion(MeOH/MeCN(50/50v/v)containing25mMDEAand50mM AcOH).ThedatainTables1–4revealthatretentiononthestud- iedCSPsforthefirsteluting enantiomerfollowed thesequence

CSP–2>CSP–1>CSP–4>CSP-3(exceptfor10)withk1 varyingin therangefrom1.01–8.42.

Comparingthetwopairs ofcolumnsbased onQN,and pos- sessingtheACHSAsubunitswithoppositeconfiguration[CSP-1vs.

CSP-3],orbasedonQD,andpossessingtheACHSAsubunitswith oppositeconfiguration[CSP-2vs.CSP-4],itbecameevidentthat higherk1 valueswereobtainedonCSP-1andCSP-2thanonthe pseudoenantiomericCSP-3andCSP-4(exceptfor10)phases.The samewasvalidforvaluesof␣(exceptionswere1,3,5,and9on CSP-1/CSP-3and1and3onCSP-2/CSP-4).

ThebehavioroftwopairsofCSPsbasedonQDorQNmoietyand possessingACHSAunitwiththesameconfiguration[CSP-2vs.CSP- 3andCSP-1vs.CSP-4]isalsoworthelaborating.Itwasobserved thatinthecasewhentheACHSAunitpossessesa1”R,2”Rconfig- uration,theQD-basedCSP(CSP-2)exhibitedhigherk1valuesthan theQN-basedCSP(CSP-3),whilewhentheACHSAunitpossesses a1”S,2”Sconfiguration,QN-basedCSP-1exhibitedhigherk1val- uesthantheQD-basedCSP-4.Thehigherk1valuesgenerallywere accompaniedwithhigherselectivities(exceptionswereSAs1and 3onCSP-2/CSP-3andSAs1,3,5,7,and9onCSP-1/CSP-4).The chromatographicallyvisibleeffectofthestructureoftheQN/QD and(R,R)/(S,S)-ACHSAsubunitsoftheSOonk,␣,andRSturnsout toberathercomplex.However,intermsoftheelutionorderofthe resolvedcyclicß3-AAenantiomers,trendscanclearlybeseento dependonQD/QNand(R,R)/(S,S)-ACHSAsubunits(discussedlater).

(7)

Table5

Thermodynamicparameters,(H),(S),Tx(S),(G),correlationcoefficients(R2)andQtemperatureoffree-andN-monomethylatedcyclicß3-aminoacidson CinchonaalkaloidandACHSAbasedCSPs.

Compound Column Correlationcoefficients(R2) −(H)(kJmol−1) −(S)(Jmol−1K−1) −Tx(S)298K(kJmol−1) −(G)298K(kJmol−1) Q

1 CSP-2 0.9911 −0.7 −2.8 −0.8 0.1 0.8

CSP-4 0.9951 5.5 13.5 4.0 1.5 1.4

CSP-3 0.9951 6.0 15.8 4.7 1.3 1.3

2 CSP-2 0.9942 2.9 5.4 1.6 1.3 0.5

CSP-4 0.9908 5.4 14.9 4.4 1.0 1.2

CSP-1 0.9914 3.0 5.7 1.7 1.3 1.8

7 CSP-2 0.9923 1.3 1.5 0.5 0.8 0.2

CSP-4 0.9909 2.4 5.0 1.5 0.9 1.6

CSP-1 0.9941 0.7 1.6 0.5 0.2 1.6

CSP-3 0.9990* 0.4 0.3 0.1 0.3 3.9

0.9975** 2.1 6.2 1.8 0.3 1.1

8 CSP-2 0.9922 5.2 10.7 3.2 2.0 0.6

CSP-4 0.9973 2.5 6.0 1.8 0.7 1.4

CSP-1 0.9934 4.3 8.6 2.6 1.7 1.7

Chromatographicconditions:columns,CSP-1–CSP-4;mobilephase,a,MeOH/MeCN(50/50v/v)containing25mMDEAand50mMAcOH;flowrate,0.6mlmin−1;detection, 215,230nmandcoronadetector;R2,correlationcoefficientofvan’tHoffplot,lnvs1/Tcurves;Q=(H)/298×(S)

*Temperaturerange5–20C.

**Temperaturerange20–40C.

ItseemsthattheQD-basedCSP-2andCSP-4ensureamorepro- nouncedstericallytriggeredenvironment fortheintermolecular interactionsbetweenSOandAA.ThefourCinchonaalkaloid-based zwitterionicCSPsdisplayacomplementarycharacter.Thisbehav- iorrevealsagaintheimportanceofthestericandspatialposition oftheionicinteractionsiteswithintheSOmoieties.

3.4. Effectsofthestructureoftheanalytes(non-methylated versusN-monomethylatedSAsandcis/trans-isomers)on chromatographicbehaviorandelutionsequence

ItisfullyconsistentforallAAsandforallthefourCSPsthatk valuesweresmallerforN-methylatedcyclicß3-AAscomparedto thenon-methylatedones.However,␣andRSvalueschangedin differentways.WithreversedelutionorderonCSP-1andCSP-2, despitethelowerkvalues,theenantioselectivityandtheRSwere higherforN-methylatedAAs; onCSP-3and CSP-4the␣andRS

valueschangedparallelwithkvalues,i.e.theywerelowerforN- methylatedAAs(exceptionswere9and10).Itwasalsoobserved thatthepresenceofadoublebondinthemolecule(1vs.3or2vs.

4)generallyresultedinlowerk,␣,andRSvalues.Themorepolar moleculeswithadoublebondprobablyweresomewhatmoresol- vatedinthemethanolcontainingmobilephaseresultinginsmaller k,␣,andRSvalues.Acomparisonofcyclohexylskeleton-containing AAswithcis-vs.trans-configurations(5vs.7and6vs.8)revealed thatAAswithtrans-configuration(7and8)inmostcasesexhib- itedhigherk,␣,andRSvalues(exceptionswere5vs.7onCSP-1 andCSP-3and6vs.8onCSP-3).7onallfourCSPsexhibitedthe largestkvalues.Probablythestericarrangementintrans-isomerof carboxyl-andamino-(orN-methylamino)-groupsfavorstheinter- actionswiththecationic-andanionic-sitesoftheSO.Subsequently, itbecameevidentthatwithswitchingthecolumnsfromCSP-1to CSP-2orCSP-3toCSP-4orfromCSP-1toCSP-3orfromCSP-2to CSP-4,theelutionsequencecouldbereversed(exceptionwas7).

Thisisinlinewiththepreviouslyobtainedresults,aswitchfrom theQNbasedselectorCSP-1tothepseudoenantiomericQDbased CSP-2ledtoareversaloftheelutionorder.(1,3,5,and9hadan elutionorderA<BonCSP-1andanelutionorderB<AonCSP-2.)

However, a reversal of elution order became evident when changingfromtheQNbasedCSP-1tothealsoQNbasedCSP-3.

Thisfactcorroboratesthatinessencetheabsoluteconfigurations ofallthechiralsubunits(theQNandtheACHSAsubunit)determine ina concertedfashion theoverall spatiallyorientedinteraction sitesoftheparticularZWIXselectorwiththeampholyticAAs.As already outlinedabove, a simultaneouslyoccurringdouble ion-

pairingeventisenvisionedandastrongelectrostaticinteraction betweentheconfigurationallydefinedchiralACHSAunitoftheSO andtheprimaryaminogroupoftheAAseemtoberesponsiblefor thedirectingeffect,whichleadstotheobservedenantioselectivity.

Inotherwords,switchingfroman(R,R)-toa(S,S)-ACHSAsubunit leadstoareversaloftheelutionsequenceof theprobedenan- tiomers.ExactlythesametrendcanbeseenfortheQD-basedCSPs (CSP-2andCSP-4).Asaconsequenceofthesesystematicstudies, itbecomes evidentthatalsotheCSP-3 andCSP-4behavepseu- doenantiomericallytoeachotherforthegivencyclicˇ3-AAs.

In comparison to the non-methylated cyclic ˇ3-AAs we observed a reversal of the elution sequence for the N- monomethylatedanalogues(seeTables1–4).Thiseffectwasvery surprisingasitindicatesthatinthecaseofCSP-1andCSP-2the basicQNsitebecomesnowmoredominantthantheACHSAsite.

ThesameargumentappliesforthecomparisonofCSP-3andCSP-4.

Inotherwords,thereexistsasubtlebuthierarchicallyswitched balancebetweenthesterically drivingsubunits ofthezwitteri- onicCSPs(SOs)in termsoftheoverallobservedintermolecular recognitionphenomenaforagivensetofampholyticanalytes.This determinesconsequentlytheenantioselectivityandelutionorder oftheAAs.

Switching from the cis-configurated 5 and 6 to the trans- configurated 7 and 8 (Fig.2 and Tables 1–4), we observed an exception oftheabovediscussedtrend.In essence,theactively involved and sterically demanding intermolecular interaction motifsoftheAAandtheSOsitesaredifferent.These,however, determinetheelutionorder.

Selectedchromatogramswithindicationofelutionsequences aredepictedinFig.6.

3.5. Temperaturedependenceandthermodynamicparameters

Inordertoinvestigatetheeffectsoftemperatureonchromato- graphicbehavior, a variable-temperaturestudy wascarriedout on all fourCinchona alkaloid-based CSPsover thetemperature range5–40C.Experimentaldatacollectedfor1,2,7,and8onthe fourcolumnswiththemobilephaseMeOH/MeCN(50/50v/v)con- taining25mMTEAand50mMAcOHarelistedinSupplementary material(TableS1).

Thetabulateddataindicatethattheretentiondecreasedinall cases withincreasing temperature.Transfer oftheSAfrom the mobilephasetothestationaryphaseisgenerallyanexothermic processand consequentlyk decreaseswithincreasingtempera- ture.Thechangesobservedintheselectivityandresolutionwith

(8)

ARTICLE IN PRESS

G Model

CHROMA-357568; No.ofPages10

8 N.Grecsóetal./J.Chromatogr.Axxx(2016)xxx–xxx

Fig.6.Selectedchromatogramsfor1–10.

Chromatographicconditions:column,for1,3and7CSP-4,for2,4,6,8and10CSP-1andfor5and9CSP-2;mobilephase,for1and7MeOH/MeCN(50/50v/v)containing 6.25mMDEAand12.5mMAcOH,for2-6and8MeOH/MeCN(50/50v/v)containing25mMDEAand50mMAcOH,for9MeOH/THF(95/5v/v)containing25mMDEAand 50mMAcOHandfor10MeOH/MeCN(50/50v/v)containing12.5mMDEAand25mMAcOH;flowrate,0.6mlmin−1;detection,215,230nmandcoronadetector;temperature 25C,exceptfor2and8itwas5C

temperaturewerenotconsistent.Inmostcases,␣andRSdecreased withincreasingtemperature.However,onCSP-2for1,␣andRS slightlyincreasedwithincreasingtemperatureundertheapplied conditions.Increasingtemperaturemayimprovethepeaksymme- tryandefficiency,andthereforeresolutionmayalsoimprove.Such unusualbehaviorwasrecentlyobservedforenantioseparationof unusualAAsonCinchonaalkaloid-basedCSPs[29–32]andforan entirelydifferentchiralchromatographicsystembyChankvetadze etal.[33].

Sincetheeffectoftemperatureontheenantiomerseparationis complex,anextensivestudyrelatingtothethermodynamicswas carriedout.Accuratechromatographicdatawerecollectedtocon- structvan’tHoffplotsandthethermodynamicparameterswere calculatedfromtheslopesandinterceptsofplotsofln␣vs.1/T (Table5).

Thedifferencesinthechangesinstandard enthalpy(H) provideinformationontherelativeeaseoftransferofAAsfromthe mobiletothestationaryphase.Anegative(H)valueindicates anexothermictransferofAAsfrommobiletostationaryphase.The (H)valuesrangedfrom−6.0to+0.7kJmol−1.

Thedifferencesinentropy(S)isameasureofthelossofthe degreeoffreedomortheenergybalanceofdesolvation/solvation processwhenAA-SOcomplexisformingduringtheadsorptionpro- cess.Thetrendinthechangein(S)issimilartothatin(H).

Undertheconditionswhere(H)hasnegativevalues,(S) wasalsonegative[andthepositive(H)wasaccompaniedby thepositive(S)].Anegative(S)indicatesanincreasein order and/or loss in the degrees of freedom of the adsorbed

enantiomers. The (S) values ranged from −15.8 to +2.8Jmol1K1. The interactions of 1 and 2 withCSP-4 and 1 or8withCSP-3orCSP-2,respectivelywerecharacterizedbythe lowest(H)and(S)valuesreflectingathermodynamically unfavorableprocess.

Whentheselectivityincreasedwithincreasingtemperature, (H)and(S)werepositive(e.g.,1onCSP-2).Inthiscase, thechangeintheadsorptionenthalpywithincreasingtempera- turehadapositiveeffectontheenantioselectivity.ForthisAAin thistemperaturerange,enantioresolutionisentropically-driven, andtheselectivityincreaseswithincreasingtemperature.Ther- modynamically,thisunusualbehavior maybeattributedtothe positive(S)values,indicatingtheimportanceoftheentropy contributiontothechiralseparation.Ontheotherhand,thepos- itive(S)compensatedthepositive(H)andresultedina negative(G).

Therelative contributionoftheenthalpicandentropicterms to the free energy of adsorption can be visualized by the enthalpy/entropyratiosQ=(H)/298x(S)(Table5).Com- parison of theQ values for the SAs ondifferent CSPsrevealed that the enantioselective discrimination was in most cases enthalpically-driven(Q>1)butforallinvestigatedSAsonCSP-2 theentropiccontributiontothefreeenergysurpassestheenthalpic one(Q<1).For7onCSP-3,theln␣vs.1/Tcurvecanbedivided intotwolinearrangesbetween5–20Cand20–40C,respectively.

Whilethesignofthesloperemainedthesameinbothregions, theentropiccontributiontothefreeenergyintheregion20–40C

(9)

ismoreexpressed(Q=1.1)denotingamoresignificantrearrange- mentinthesolventsphere.

Comparisonofthe(G)valuesforthefourcolumnsdemon- stratedthatinmostcaseslower(G)wereobtainedonCSP-2or CSP-4.ItseemsthattheQD-basedCSPsunderwentmoreefficient bindingwiththeSAsstudied.

4. Conclusions

Theenantiomers of non-methylatedand N-monomethylated cyclic ß3-AAs were separated onfour zwitterionicCSPs, which containedthestronglyacidicchiral(R,R)-and(S,S)-ACHSAsub- units fused with the weakly basic chiral QN- or QD subunits.

Theseparationscouldbeaccomplishedinpolar-ionicmodeand thechromatographicretentionbehaviorandresolutionprovedto dependonthenatureandconcentrationofthebulksolventandthe acidandbasemodifiers,thetemperature,andtheN-methylation ofthecyclicß3-AAs.Thevaluesofthethermodynamicparameters, suchas (H), (S)and (G), dependedon thestruc- tures of theanalytes and onthechiral selectorsused.Most of theseparationswereenthalpically-driven,butentropically-driven separationswerealsoobserved.OfthestudiedCSPs,theQDbased CSP-2 and CSP-4 appeared more suitable for the direct enan- tioseparation of non-methylated and N-monomethylated cyclic ß3-AAs.

Particularlystrikingweretheresultsobtainedfortheinvestiga- tionofthemolecularrecognitionphenomenaofthesystematically variedzwitterionicCSPs.Inasystematicfashion,thesefourCSPs werescreenedfortheresolutionoffiveˇ3-AAsandfiverelated N-monomethylatedˇ3-AAs.Throughtheconsequentelucidation oftheelutionordersoftheenantiomersofthisparticularsetof probesitbecameevidentthat:

(i)ThepairsofCSP-1andCSP-2,andofCSP-3andCSP-4behave pseudo-enantiomericallytoeachother,thustheelutionorderof thestructurallysimilaranalytes1,3,5,and9werereversed.

(ii)TheQNbasedCSP-1andCSP-3,differinginthechiralityof theACHSAsubunits,ledalsotoareversaloftheelutionorderof thescreenedprobes,whichindicatesthatbothchiralsubunitsare simultaneouslyinvolvedintheintermolecularrecognitionprocess.

However,fornon-methylatedˇ3-AAstheabsoluteconfigurationof theanionicACHSAsubunitsiteprovidedthedominantdirecting effect.

(iii)FortheN-methylatedcongenersofthenon-methylatedˇ3- AAs,anunexpectedreversalofelutionorderwasnoticed,which indicatesthatinthesecasesthecationicCinchonaalkaloidinter- action site becomes the dominant and elution order-directing interactionsite.

EffortstoelucidatethesediverseandsurprisingandsubtleSO- AAinteractionphenomenaonamolecularlevelbyspectroscopic, X-ray,andcomputermodelingstudiesarecurrentlyunderway.

Fromananalyticalpointofviewitisadvantageoustoelutethe minorenantiomerinfrontofthemajorenantiomer,soitmakes indeedsensetohaveasetofsimilarCSPsavailablewhichoffer thereversalofelutionorder.InthecaseofChiralpakZWIX(+)TM andZWIX(−)TM thisconceptisalreadyestablished.Insummary, fromtheexploredexamplesofenantiomerseparationsandelu- tionordersitbecomesevidentthat zwitterionicchiral selectors composed of oppositely charged chiral subunits which inter- act simultaneously viaelectrostatic forces withe.g. ampholytic analyteshaveagreatpotential.Fusingchiralsubunitsinacombi- natorialwayofferthepotentialtooptimizetheoverallstructure of the SO to discriminate most efficiently the enantiomers of givenSAs.ItbecamealsoevidentthatsuchcomplexSOsmaynot alwayswork perfectlyand a loss of enantioselectivity canalso occur.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

ThisworkwassupportedbyHungarianNationalScienceFoun- dation grant OTKA K108847. We gratefully thank Pilar Franco (ChiralTechnologiesEurope,Illkirch,France)fortheprovisionof theCinchonaalkaloid-basedcolumnsoftheCSP-1andCSP-2type.

CSP-4wasprovidedbyDr.MichalKohout(DepartmentofOrganic Chemistry,InstituteofChemicalTechnology,Prague,CzechRepub- lic).WealsothankDr.KevinSchug(UniversityofArlington,Texas, USA)forproofreadingthearticle.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.chroma.2016.05.

041.

References

[1]C.V.Hoffmann,R.Pell,M.Lämmerhofer,W.Lindner,Effectson

enantioselectivityofzwitterionicchiralstationaryphasesforseparationsof chiralacidsbases,andaminoacidsbyHPLC,Anal.Chem.80(2008) 8780–8789.

[2]I.Ilisz,A.Péter,W.Lindner,State-of-the-artenantioseparationsofnaturaland unnaturalaminoacidsbyhigh-performanceliquidchromatography,Trends Anal.Chem.(2016),http://dx.doi.org/10.1016/j.trac.2016.01.016.

[3]L.Kiss,F.Fülöp,Synthesisofcarbocyclicandheterocyclicü-aminocarboxylic acids,Chem.Rev.114(2014)1116–1169.

[4]I.Ilisz,R.Berkecz,A.Péter,Applicationofchiralderivatizingagentsinthe high-performanceliquidchromatographicseparationofaminoacid enantiomers:areview,J.Pharm.Biomed.Anal.47(2008)1–15.

[5]I.Ilisz,Z.Pataj,A.Aranyi,A.Péter,High-performanceliquidchromatography ofbiologicallyimportantsmallepimericpeptidesandtheirl,d-aminoacid content,MiniRev.Med.Chem.10(2010)287–298.

[6]M.Lämmerhofer,Chiralrecognitionbyenantioselectiveliquid chromatography:mechanismsandmodernchiralstationaryphases,J.

Chromatogr.A1217(2010)814–856.

[7]I.Ilisz,Z.Pataj,A.Aranyi,A.Péter,Macrocyclicantibioticselectorsindirect HPLCenantioseparations,Sep.Purif.Rev.41(2012)207–249.

[8]I.Ilisz,A.Aranyi,Z.Pataj,A.Péter,Recentadvancesintheenantioseparation ofaminoacidsandrelatedcompounds:areview,J.Pharm.Biomed.Anal.69 (2012)28–41.

[9]I.Ilisz,A.Aranyi,Z.Pataj,A.Péter,Enantiomericseparationof

nonproteinogenicaminoacidsbyhigh-performanceliquidchromatography, J.Chromatogr.A1269(2012)94–121.

[10]I.Ilisz,A.Aranyi,Z.Pataj,A.Péter,Enantioseparationsbyhigh-performance liquidchromatographyusingmacrocyclicglycopeptide-basedchiral stationaryphasesanoverview,in:G.Scriba(Ed.),ChiralSeparations, MethodsandProtocols,HumanaPress,NewYork,2013,pp.137–163.

[11]M.H.Hyun,Developmentandapplicationofcrownether-basedHPLCchiral stationaryphases,Bull.KoreanChem.Soc.26(2005)1153–1163.

[12]H.Brückner,EnantiomericresolutionofN-methyl-␣-aminoacidsand

␣-alkyl-␣-aminoacidsbyligand-exchangechromatography, Chromatographia24(1987)725–738.

[13]S.Hess,K.R.Gustafson,D.J.Milanowski,E.Alvira,M.A.Lipton,L.K.Panell, Chiralitydeterminationofunusualaminoacidsusingprecolumn derivatizationandliquidchromatography-electrosprayionizationmass spectrometry,J.Chromatogr.A1035(2004)211–219.

[14]M.Tsesarskaia,E.Galindo,G.Szókán,G.Fisher,HPLCdeterminationofacidic d-aminoacidsandtheirN-methylderivativesinbiologicaltissues,Biomed.

Chromatogr.23(2009)581–587.

[15]R.Pell,S.Sic,W.Lindner,MechanisticinvestigationofCinchonaalkaloid-based zwitterionicchiralstationaryphases,J.Chromatogr.A1269(2012)287–296.

[16]A.Mandl,L.Nicoletti,M.Lämmerhofer,W.Lindner,Quinineversus carbamoylatedquinine-basedchiralaninonexchangers.Acomparison regardingenantioselectivityforN-protectedaminoacidsandotherchiral acids,J.Chromatogr.A858(1999)1–11.

[17]V.Piette,W.Lindner,J.Crommen,EnantiomerseparationofN-protected aminoacidsbynon-aqueouscapillaryelectrophoresiswithdimericformsof quinineandquinidinederivativesservingaschiralselector,J.Chromatogr.A 948(2002)295–302.

[18]S.Allenmark,V.Schurig,Chromatographyonchiralstationaryphases,J.

Mater.Sci.7(1977)1955–1963.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

In what follows I will survey stage productions of Shakespeare’s Macbeth in Hungary in the two decades after the political changes, and go back to the early 1980s to touch upon

Therefore, this raises questions for the governance of reform, including what types of accountability, trust, pro- fessionalism or leadership can foster a culture of innovation

Therefore, this raises questions for the governance of reform, including what types of accountability, trust, pro- fessionalism or leadership can foster a culture of innovation

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the

In this article, I discuss the need for curriculum changes in Finnish art education and how the new national cur- riculum for visual art education has tried to respond to

Abstract: In order to better understand the chiral recognition mechanisms of positively charged cyclodextrin (CD) derivatives, the synthesis, the pK a determination by 1 H

Therefore, this research study wanted to answer the questions: (i) What are the myxoymcete species found in fragmented forest patches in two municipalities (Calauan and Los Baños)

In this paper the following questions are going to be answered: What are the main differences and similarities related to the border situation of the two sides?; How the