• Nem Talált Eredményt

Árvakelésből származó L. inflata növények

In document 3. ANYAG ÉS MÓDSZER (Pldal 45-0)

3. ANYAG ÉS MÓDSZER

3.5. Árvakelésből származó L. inflata növények

A 2012. évben az árvakelésből származó L. inflata növényeket is kiültettem a kísérleti területre. Megfigyeléseim a morfológiai (15.

ábra) és a beltartalmi értékekre irányultak. Az árvakelést a szabadföldön vettem észre. Az árvakelésből származó növények júniusban kezdtek fejlődni természetes körülmények között.

15. ábra. Árvakelésből származó L. inflata (Mosonmagyaróvár) (Fotó: Vojnich, 2012)

46 3.6. Lobelia erinus (törpe lobélia)

3.6.1. A növényanyag szaporítása és üvegházi palántanevelése

A törpe lobélia szaporítása magvetéssel történt. A csíráztatást a szaporítóládában, klimatizált üvegházban végeztem. Vetésre a Rédei Kertimag Zrt. (Komárom-Esztergom megye) által csomagolt L. erinus vetőmagot használtam fel. 2011. évben a Leier-féle virágföldet alkalmaztam. 1000 növény előállításához körülbelül 0,5 g mag szükséges. Hasonlóan a Lobelia inflata növényhez, a magvetéses módszer megegyezik. A szaporítóládát üveglappal fedtem le, hogy magasabb hőmérsékletet biztosítsak, illetve a virágföld ne száradjon ki. Magvetést követően fokozott figyelemmel kísértem, hogy a virágföld állandóan nedves állapotban legyen (URL6). Két héttel a vetés után, a magok elkezdtek csírázni. Az üveglapokat a 3-4. héten távolítottam el a szaporítóládákról. A virágföld minősége nagyban befolyásolja a mag, illetve később a palánta fejlődését. A fejlődésnek indult palántákat Wuxal-lal permeteztem le két hetes periódusokban (keverési arány: 10 l vízben 10 ml Wuxal). A magvetésből származó L. erinus palántákat az üvegházi nevelést követően ültettem ki a szabadföldbe.

47 3.6.2. A palánták kiültetése

A törpe lobélia palánták a palántanevelő sejttálcákból a földlabdával együtt ültettük ki a kísérleti területre. A kézi ültető eszköz segítségével készítettem el a 9-10 cm mélységű lyukakat, amibe a földlabdás palántákat ültettem ki. Sor- és tőtávolság: 30 x 15 cm. Az ültetést megelőző napon történt a N-műtrágya (NH4NO3 34%) és a Mg-műtrágya (MgSO4 2%) kijuttatása a művelt talajba.

A palánták szabadföldi kiültetésének ideje: május vége – június eleje. A kiültetett palántákat az első hónapban árnyékoltuk, a nap elleni védekezésként (16. ábra).

16. ábra. Kiültetett L. erinus palánták (Mosonmagyaróvár)

(Fotó: Vojnich, 2011)

48 3.6.3. Növényápolási munkák

I. Kártevők elleni védekezés

A L. erinus palántákat az üvegházi nevelés ideje alatt fungiciddel (Fundazol 50 WP) kezeltem a palántakori levélbetegségek ellen. A szabadföldbe való kiültetést követően nem kellett védekezni a kártevők ellen.

II. Gyomirtás

A kutatási területen vegyszeres gyomirtást nem, mechanikai (kapálás) gyom elleni védekezést alkalmaztam.

A leggyakrabban előforduló gyom fajok a következők voltak:

pásztortáska (Capsella bursa-pastoris), fehér libatop (Chenopodium album), közönséges tarackbúza (Elymus repens), egynyári perje (Poa annua), apró szulák (Convolvulus arvensis), tyúkhúr (Stellaria media), perzsa veronika (Veronica persica).

3.7. Kísérleti elrendezések 3.7.1. Szabadföldi kísérletek

A kísérleti területet előkészítettem a palánták kiültetésére. A három éves szabadföldi kísérlet során alaptrágya kezeléseket alkalmaztam (N-műtrágyát és Mg-műtrágyát) a kezeletlen kontroll mellett. A kezeléseket a 7. táblázat szemlélteti.

49

7. táblázat. A kísérletben alkalmazott kezelések (2010-2012)

Év Kezelések

Kísérleti terület méretei: 2010-ben 47,16 m2 (egy parcella 1,2 m2); 2011-ben 47,52 m2 (1,8 m2 a parcella mérete); 2012-ben 53,55 m2 palánta (28 darab magvetett, 12 darab in vitro szaporított), 2012-ben 39 darab palánta (28 darab magvetett, 11 darab in vitro szaporított).

Ültetés előtt a parcellákat beöntöztem. Továbbiakban az időjárási viszonyoknak megfelelően öntöztem, a nagy hőségben naponta kétszer (reggel, este).

50

3.7.2. In vitro mikroszaporítási kísérletek

2012-ben a szabadföldi tápanyag kísérlet egy részének kivonását megismételtük in vitro körülmények között, a Semmelweis Egyetem Farmakognóziai Intézet laboratóriumában. A MgSO4 kísérletet 2012.

január 10-én, a táptalaj (MS) előkészítéssel (8. táblázat), főzéssel kezdtem. Hat kezelést alkalmaztam, kezelésenként 6 darab 300 ml Erlenmeyer lombikot használtam, lombikonkénti növényszám 5 darab volt. A táptalajba történő átoltás időpontja: január 16-17. (17. ábra). A növény magassága 1 cm, mikor a táptalajba paszáltuk, a kísérlet végére a 15 cm magasságot is elérte. A kezeléseket a 9. táblázatba foglaltam össze. A friss tömeg mérésre március 12.-én került sor.

17. ábra. Magnéziummal kezelt in vitro L. inflata növények (Budapest, Semmelweis Egyetem) (Fotó: Vojnich, 2012)

51

8. táblázat. Az MS (Murashige-Skoog) táptalaj összetétele.

Összetevők MS

1. Makroelemek Koncentrációk (mg/l)

KNO3 1.900

NH4NO3 1.650

CaCl2 2H2O 440

MgSO4 7H2O 370

KH2PO4 170

2. Mikroelemek Koncentrációk (mg/l)

MnSO4 4H2O 22.300

ZnSO4 7H2O 8.600

H3BO3 6.200

KI 830

CuSO4 5H2O 25

Na2MoO4 2H2O 250

CoCl2 6H2O 25

FeSO4 7H2O 27.850

Na2EDTA 2H2O 37.250

3. Vitaminok Koncentrációk (mg/l)

Inozit 100 mg/l

Tiamin -HCL 100

Nikotinsav 500

Piridoxin-HCL 500

52

9. táblázat. A MgSO4 mennyisége (mg/l) a különböző kezeléseknél.

Semmelweis Egyetem, Laboratórium (2012)

1 kezelés 0 mg/l

2 kezelés 185 mg/l

3 kezelés 370 mg/l (kontroll)

4 kezelés 740 mg/l

5 kezelés 1.480 mg/l

6 kezelés 2.960 mg/l

A táptalaj összetevőket (makro-, mikroelemek és vitaminok) bidesztillált vízben oldottam fel, majd a táptalajba 3% szacharózt adagoltam. Szilárd táptalaj készítéséhez 8 g/l agart adagoltam. A táptalajok pH-ját (néhány csepp 1 M NaOH-dal) 5,7-5,8-ra állítotottuk be, majd autoklávban sterileztük Erlenmeyer lombikokban (18. ábra).

18. ábra. Táptalajok sterilizálás előtt (Budapest, Semmelweis Egyetem) (Fotó: Vojnich, 2012)

53

A nitrát kísérletet 2012. január 25-én, a táptalaj (MS) előkészítéssel, sterilezéssel kezdtem meg. Öt kezelést alkalmaztam, kezelésenként 6 darab 300 ml Erlenmeyer lombikot használtam, lombikonként 5 darab in vitro növényt ültettem a táptalajba. A szilárd táptalajba történő paszálás január 26. történt. A növények magassága 1-2 cm volt, mikor a táptalajra kerültek. A friss tömeg mérésre (8 héttel később) március 22-én történt. A kontroll (A1) és a felére csökkentett KNO3 tartalmú kezelés (D1) esetén nött a legintenzívebben a L. inflata magassága, akár a 15 cm-t is elérte. A friss tömegmérést követően liofilizáltam a L. inflata levágott növényeket. A kezeléseket a 10. táblázat és 19. ábra tartalmazza.

10. táblázat. Az NH4NO3 és a KNO3 táptalaj-komponensek kombinációi. Semmelweis Egyetem, Laboratórium (2012) A1 kezelés NH4NO3 alap (990 mg) + KNO3 alap (1.140 mg)

(kontroll)

B1 kezelés NH4NO3 dupla (1.980 mg) + KNO3 alap (1.140 mg) C1 kezelés NH4NO3 alap (990 mg) + KNO3 dupla (2.280 mg) D1 kezelés NH4NO3 alap (990 mg) + KNO3 fél (570 mg) E1 kezelés NH4NO3 fél (495 mg) + KNO3 alap (1.140 mg)

54

19. ábra. Nitrogénnel kezelt in vitro L. inflata (Budapest, Semmelweis Egyetem) (Fotó: Vojnich, 2012)

3.8. Hatóanyag tartalmi vizsgálatok

3.8.1. Mintaelőkészítés és extrakció

Az 1 g száraz és elporított L. inflata kimérését követően extrakciót végeztem. A kivonás Braun Labsonic U (Melsungen, Germany) ultrahangos készülékkel történt, kivonószerként 1x20 ml, majd 2x10 ml 0,1N HCl/metanol (1:1, v/v) arányú elegyét alkalmaztam. Minden kivonási művelet 10–10 percig tartott. Az egyes kivonásokat követően 6000 rpm fordulatszámon történő centrifugálás követte, ezután a leülepedett „szuszpenzió” tisztáját vattapamaton, üvegtölcsér segítségével 50 ml-es mérőlombikba szűrtem. A centrifuga csőben maradt anyagot újra kivontam a már említett

55

módszerrel. Végül az 50 ml-es mérőlombikban az egyesített folyadék fázisokat 50 ml-re egészítettem ki a kivonószerrel.

3.8.2. Összalkaloid tartalom mérés

Az összalkaloid tartalom meghatározására a MAHMUD és EL-MASRY (1980) által kidolgozott, majd KRAJEWSKA (1986) által módosított spektrofotometriás módszert alkalmaztam. A törzsoldat 5 ml-t 0,1N NaOH-dal semlegesítettem, majd hozzáadtam 10,0 ml 0,01%-os metil-narancs oldatot Mc-Ilvaine pufferben (3,69 g Na2HPO4 * 12 H2O és 1,02 g citromsav-monohidrát 100 ml vízben oldva, pH = 5,0) (TODD, 1975). Az elegyet háromszor (20, 20, 20 ml) kloroformmal rázótölcsérben kiráztam, majd az egyesített kloroformos fázist rázótölcsérben 3x15 ml 5%-os NaCl-ot tartalmazó 0,1N HCl oldattal ráztam ki (20. ábra). Az egyesített vizes fázist mérőlombikban 5% NaCl-ot tartalmazó 0,1N HCl oldattal pontosan 50 ml-re egészítettem ki, majd az oldat abszorbanciáját 510 nanométeren mértem Hitachi U 1100 spektrofotométerben az 5% NaCl-ot tartalmazó 0,1N HCl oldattal szemben. Az összalkaloid tartalmat lobelin bázisra vonatkoztattuk. A számításhoz megmértem a lobelin bázis különböző koncentrációjú oldatainak abszorbancia értékeit (21.

ábra). A kalibrációs egyenes egyenlete: y=0,0013+0,00057x, ahol y:

az abszorbancia és x: a lobelin koncentrációja (µg/100 ml). A mérés korrelációs koefficiense: 0,9999 volt. Az összalkaloid tartalmat lobelinben kifejezve adjuk meg. A lobelin (0,1N HCl-ban felvett) UV spektrumának maximuma 249 nm (SZŐKE, 1994).

56

20. ábra. Összalkaloid tartalom mérés (Budapest, Semmelweis Egyetem) (Fotó: Tóth, 2012)

21. ábra. A lobelin kalibrációs egyenese spektrofotometriás meghatározáshoz (510 nm-en).

57 3.8.3. Lobelin tartalom meghatározása

Szilárdfázisú extrakció (SPE)

A L. inflata extraktum 10 ml-ét négy részletben (4 x 2,5 ml) vittem fel a SPE oszlopra (Supelclean LC-8, 3 ml), melyet előzetesen 2 x 2,5 ml metanollal és 2 x 2,5 ml vízzel aktiváltam. A mintafelvitelt követően az oszlopot 1x2,5 ml vízzel mostam, majd az oszlopról a vizet vákuummal leszívattam. Az alkaloid (lobelin) tartalmú frakciót 2 x 2,5 ml metanollal eluáltam. A metanol lepárlását követően a mintákat pontosan 2,00 ml metanolban oldottam HPLC vizsgálat céljára. A HPLC mérés alapján lobelin visszanyerése az SPE oszlopról: 102 ±5,3 % volt (n = 3).

Lobelin tartalom meghatározása HPLC módszerrel

A lobelin tartalmat HPLC (nagynyomású folyadék kromatográfia) módszerrel, a BÁLVÁNYOS és mtsai (2001, 2002) által kidolgozott, majd a KURSINSZKI és mtsai (2008) által módosított módszerrel határoztuk meg.

Az alkaloidok analízisét Surveyor HPLC rendszeren (Thermo Finnigan, San Jose, CA, USA) végeztem, melynek fontosabb elemei egy kvaterner gradiens pumpa integrált vácuumos gázmentesítővel, diódasoros detektor, valamint automata mintaadagoló. Az adatok feldolgozása a Thermo Finnigan ChromQuest 4.0 szoftver segítségével történt. Az elválasztást Eurospher

100-fordított fázisú Vertex oszlopon (250 x 3 mm i.d.) végeztem, előtétoszlopot alkalmazva (5 x 3 mm i.d., Knauer). Az eluens

58

acetonitril: 0,1 % trifluorecetsav 30:70 (v/v) arányú elegye volt, az áramlási sebesség 1 ml/perc volt (22. ábra).

A minták kivonását, majd tisztítását (folyadék-folyadék extrakció vagy SPE) követően injektáltam a HPLC rendszerbe. A lobelin csúcs azonosítása standard addícióval (lobelin bázis¬; Sigma) és UV-spektrum analízissel történt (23. ábra).

22. ábra. A lobelin meghatározásához használt Surveyor HPLC készülék. (Budapest, Semmelweis Egyetem) (Fotó: Vojnich, 2012)

59

23. ábra. A lobelin HPLC analízise Lobeliae herba 0,1N HCl/MeOH (1/1; v/v) kivonatában, és a lobelin UV spektruma.

A lobelin kvantitatív meghatározását külső standard módszerrel végeztem, a kalibrációs egyenes felvételéhez a lobelin HCl 2,4 g/ml, 4,8 g/ml, 12 g/ml és 20 g/ml koncentrációjú 0,1N HCl-al készített oldatait alkalmaztuk. A lobelin tartalmat száraz súlyra vonatkoztatva adtuk meg.

60

3.9. Az eredmények biometriai értékelési módszerei

A szabadföldi kísérletek random blokkelrendezésben (RCB) kerültek beállításra. A variabilitásnak három forrása van az RCB elrendezésben: a kezelés, az ismétlés (vagy blokk), és a kísérleti hiba (SVÁB, 1981; BERZSENYI, 2007).

Az eredmények biometriai értékelését, a p-értéket (szignifikancia foka) Tukey-teszttel határoztam meg (HUZSVAI, 2004). A mérések adatainak kiértékelésénél Microsoft Excel 2007/2010 és az IBM SPSS v19 programokat használtam.

61

4. EREDMÉNYEK

4.1. A tápanyagellátás hatása a L. inflata növekedésére

A hatóanyagukért termesztett gyógynövények hasznosításánál a hatóanyagprodukció vizsgálata a cél. A hatóanyagprodukciót főként a növényi biomassza hozama, és az egységnyi biomasszában felhalmozott hatóanyag mennyiségével lehet jellemezni. Ezen szempontokra tekintettel termesztésbevonási célú vizsgálataim is e két tényező jellemzésére irányultak.

4.1.1. A tápanyagellátás hatása a növények magasságára

A növényi biomassza alakulása szempontjából egyik legjellemzőbb tényező a növények növekedése. Magról szaporított növények magasságát, figyelemmel a kezelésként kijuttatott 50 kg/ha N, 100 kg/ha N, 50 kg/ha Mg műtrágya hatására is, mindhárom kísérleti évben (2010, 2011, 2012) mértük (1. számú, 3. számú és az 5.

számú melléklet). A herba betakarítása előtt mért adatokat, átlag növénymagasság formájában kifejezve a 24. ábra mutatja. A növénymagasságot évenkénti átlagként kifejezve a 2010-es évben mértük a legkisebb (16 cm) és 2012-ben a legnagyobb (47,9 cm) növénymagassági értékeket. Ez feltehetőleg a tenyészidőszak alatti csapadék viszonyokkal magyarázható (11. táblázat).

62

24. ábra. L. inflata átlag magasság (cm) értékei (2010-2012).

A műtrágya hatás érvényesülése szempontjából az 50 kg/ha N kezelés alkalmazására mértük a legnagyobb (31,7%) magassági növekedést (2010-ben) és a legkisebbet (8,6%) is (2012-ben). A magnézium magasabb dózisainak vizsgálatára 2011. és a 2012.

kísérleti évben lehetőség nyílott (100 kg/ha Mg, 150 kg/ha Mg) (25.

ábra). Az 50 kg/ha - és a 100 kg/ha magnézium kezelések hatása a növény magasság tekintetében nem volt szignifikáns különbség.

63

11. táblázat. Csapadék mennyiség (mm) alakulása 2010-2012. között.

Hónap 2010 2011 2012

Kontroll 100 kg/ha Mg 150 kg/ha Mg

2011 2012

25. ábra. L. inflata-nál alkalmazott Mg műtrágya kezelések értékei a magasságra (2011-2012).

A 100 kg/ha Mg alaptrágya kezelés hatására 2011-ben 11,9%

nőtt meg a növénymagasság (a kontrollhoz viszonyítva). 2012-ben a 100 kg/ha Mg műtrágya kezelés esetében 5,5%-os növekedést, a 150 kg/ha Mg kezelés alkalmazásában 3,8%-os csökkenést tapasztaltunk a növények magasságában.

64

Az eredmények statisztikai értékelését SPSS analízissel, Tukey-teszttel elvégezve 2010. évben az 50 kg/ha N - és a 100 kg/ha N műtrágya kezelés eredménye volt szignifikánsan magasabb. A 2011.

és a 2012. évi kísérlet értékei nem eltérőek szignifikánsan. Az adatokat a 2. számú, a 4. számú és a 6. számú melléklet szemlélteti.

Összefoglalóan megállapítható a növény magasság vizsgálatakor, hogy a 2011. kísérleti évben a műtrágyák magasságnövelő hatása érvényesült, minden kezelés esetében magasabb adatot mértünk a kontrollnál. Ez feltehetőleg a május-június hónap csapadék viszonyaival is összefüggésbe hozható, ugyanis a 2010. év túlzottan csapadékos volt, míg a 2012. év nagyon száraz. 50 kg/ha N (mindhárom évben), addig a 100 kg/ha Mg műtrágyakezelés (2011. és 2012. évben) kedvező hatással volt a növekedésre, a növénymagasságok nagyobb értéket mutattak, mint a kontroll.

4.1.2. Tápanyagellátás hatása a tőlevél méretére

A növény növekedésének jellemzésére a tőlevél felületek növekedését is mértünk. A mérési adatokat a 26. ábra mutatja. A három kutatási évet figyelembe véve a kezeletlen növények tőleveleinek felülete 2010-ben volt a legkisebb (7,9 cm2). Ez, egyben a három kísérleti évben mért növények legkisebb értéke is.

Ugyanebben az évben mértük a legnagyobb levélfelület értéket is (12,7 cm2), de ezt már az 50 kg/ha nitrogén műtrágya kezelés hatására.

Betakarításkor a teljes növényt, a tőlevélrózsával együtt hasznosítottam a későbbi vizsgálatokra.

65

26. ábra. L. inflata átlag tőlevél felület (cm2) értékei (2010-2012) a N és a Mg kezelés hatására.

A műtrágya hatás szempontjából az 50 kg/ha N kezelés mutatta a legkedvezőbb növekedést 2010-ben, míg kevésbé az 50 kg/ha Mg kezelés 2012-ben.

A nagyobb dózisú Mg műtrágya kezelések nem mutattak lényegesen kimagasló eredményeket (27. ábra). A 100 kg/ha Mg műtrágya kezelés hatására, 2011-ben 17,4%-os növekedést, míg 2012-ben 17,7% csökkenést tapasztaltunk a kontroll növényeihez képest.

Figyelemre méltó, hogy a 150 kg/ha Mg műtrágya kezelés adatai 19,5%-kal kisebbek a kezeletlen kontrollnál.

66

Kontroll 100 kg/ha Mg 150 kg/ha Mg 2011 2012

27. ábra. Alkalmazott Mg kezelések hatása a L. inflata tőlevél méretére (cm2) (2011-2012).

A Tukey-teszttel végzett statisztikai értékelés kimutatja, hogy az átlag tőlevél felület mérésekor a 2010. évben az 50 kg/ha N - és a 100 kg/ha N kezelés hatására értünk el szignifikáns külömbséget. Egy évvel később már csak a 100 kg/ha N kezelés mutatott szignifikanciát.

A 2012. évben pedig egyik kezelés sem adott megbizható külömbséget. A tőlevél felület átlagok szignifikancia értékeit a 7.

számú, a 8. számú és a 9. számú mellékletek mutatják be.

Vizsgálataink alapján azt a következtetést vonhatjuk le, hogy a 2010. és a 2011. év minden kezelése hatásosnak bizonyult, mivel a tőlevél felület átlagok meghaladták a kontroll növénynél mért értékeket. 2010-ben az 50 kg/ha N kezelés hatására 60,8%-os, míg a 100 kg/ha N hatására 51,8%-os növekedést értünk el.

67

4.2. L. inflata biomassza-produkciójának vizsgálata

Magvetett L. inflata herba száraz tömeg produkciója

2010. és a 2011. évi kísérletben a magvetett indián dohány száraz tömegének alakulását vizsgáltuk a N- és Mg műtrágya kezelések hatására (28. ábra). A növényi szárazanyag-produkció növekedése volt megfigyelhető a 2010-es évben. A két év kutatási eredményeit összehasonlítva megállapítható, hogy a 2011. évben mértük a legnagyobb (100 kg/ha N kezelés=6,9 g) száraz tömeg értéket, és 2010-ben a legkisebb (kontroll=3,51 g) herba biomasszát.

A műtrágya hatását tekintve a 2010. évben az 50 kg/ha N kezelés hatása (67,2%) érvényesült a legjobban, míg 2011-ben az 50 kg/ha Mg kezelés hatására 23,7%-kal csökkent a száraz tömeg érték a kontrollhoz viszonyítva. 2011-ben, a nagyobb dozisú kezelés (100 kg/ha Mg) hatása is elmaradt, mert a kontrollhoz képest 26%-kal kevesebb biomassza értéket mutatott.

Összefoglalva megállapítható, hogy a magvetett lobéliánál a 2010. évben a kontrollnál mértük a legkisebb száraz tömeg értéket, míg egy évvel később a kontroll mutatta a második (az 50 kg/ha N kezeléssel együtt) legnagyobb eredményt. A műtrágya érvényesülése szempontjából az 50 kg/ha N kezelés hatására 67,2%-kal adott nagyobb értéket a kontrollnál 2010-ben. A 17. számú melléklet ismerteti a magvetett herba száraz tömeg értékét.

A nagyarányú száraz tömeg eltérés a 2010. és a 2011. kísérleti évek között több okkal magyarázható. Az első indok, hogy 2011-ben

68

minden kezelés átlag növénymagassági értéke magasabb a 2010-ben mért növényeknél. A másik indok a meteorológiai adatok, amely a 2011-ben elültetett palántáknak kedvezett. A csapadék mennyiség kevesebb, a napsütéses órák száma és az átlag hőmérséklet nagyobb volt 2011-ben, mint a 2010-es évben.

3,5 5,9 3,6

Kontroll 50 kg/ha N 100 kg/ha N 50 kg/ha Mg

g/nöny

Kezelések

2010 magvetett 2011 magvetett 2011 in vitro 2012 in vitro

28. ábra. Magvetett és az in vitro szaporított L. inflata herba száraz tömeg értéke.

In vitro szaporított L. inflata herba száraz tömeg produkciója A 2011. és a 2012. kutatási évben az in vitro szaporított lobélia herba biomassza értékét vizsgáltuk (28. ábra). A két év eredményeit

69

összehasonlítva megállapítható, hogy 2011-ben mértük a legnagyobb (9,08 g), és 2012. évben a legkisebb (2,17 g) száraz tömeg értéket. A 2011. évben az 50 kg/ha N kezelést leszámítva mindenhol emelkedett a száraz tömeg érték adatai. A nagyobb dózisú 100 kg/ha Mg kezelés hatására 283,5%-s produkció-növekedés tapasztalható a kontrollhoz képest. A 2012. kutatási évben a nagyobb dózisú kezeléseknél a 100 kg/ha Mg esetében 113,7%-s, a 150 kg/ha N kezelésnél 97,4%-s, és a 150 kg/ha Mg műtrágya hatására 91%-s produkció-növekedést mutatott. A magnézium kezelés kedvező hatással van az in vitro szaporított növény száraz tömeg értékére.

A 2011. évben az 50 kg/ha Mg kezelés száraz tömeg értéke háromszor nagyobb volt a kontrollnál, illetve az 50 kg/ha N- és a 100 kg/ha N kezelésnél. A 2012. évben az in vitro szaporított L. inflata száraz tömeg értékének alakulásakor azt tapasztaltuk, hogy a nagyobb dózisú kezelések hatására megduplázodtak a biomassza értékek. A 18.

számú melléklet illusztrálja az adatokat.

4.2.1. Magvetett és az in vitro szaporított L. inflata herba növények száraz tömegének összehasonlítása

Összehasonlítva a 2011. évi magvetett és a 2011. évi in vitro lobélia herba száraz tömeg értéket megállapítható, hogy az in vitro szaporított L. inflata növény értéke az 50 kg/ha magnézium hatására 213,1%-kal, a 100 kg/ha Mg kezeléssel 283,5%-kal emelkedett a száraz tömeg. 2011-ben és 2012-ben a nitrogén nem érvényesült.

70

Magvetett L. inflata gyökerek száraz tömege

A 2010. évben a magvetett gyökér produkcióját vizsgáltuk meg (29. ábra), mert az is tartalmaz hatóanyagot. Azt tapasztaltuk, hogy a kontroll növénynek volt a legkisebb értéke (0,47 gramm). A műtrágya hatás érvényesülése szempontjából a 100 kg/ha N kezelés (29,8%) adta a legnagyobb értéket. Ezt követte az 50 kg/ha N műtrágya kezelés (19,1%), illetve az 50 kg/ha Mg kezelés (12,8%). Ebben a kísérleti évben nem alkalmaztunk nagyobb dózisú műtrágya kezeléseket.

29. ábra. Magvetett és in vitro szaporított L. inflata gyökér száraz tömeg értéke.

A 2010. évi magvetett gyökérnél a 100 kg/ha N kezelés hatására közel 30%-kal nőtt a produkció. Az 50 kg/ha Mg hatására volt a legkisebb növekedés (12,8%).

71

In vitro szaporított L. inflata gyökerek száraz tömege

A 2012. kutatási évben az in vitro szaporított indián dohány gyökér produkcióját vizsgáltuk meg (29. ábra). A kontrollnál mértük a legnagyobb értéket (2,4 gramm). Hasonló eredményt értünk el a 2012-es laboratóriumi kísérlet során (MS táptalajon in vitro L. inflata), ahol a szabadföldi tápanyag-ellátási kísérleteket kiegészítettük laboratóriumi körülmények között. Az 50 kg/ha Mg kezelés esetében találtuk a legkisebb értéket, ami 66,6%-kal kevesebb a kontrollnál. A nagyobb dózisú műtrágya kezeléseknél (100 kg/ha Mg-, 150 kg/ha N- és a 150 kg/ha Mg kezelés) minden esetben alacsonyabb értékeket mértünk, mint a kezeletlen kontroll.

Azt tapasztaltuk, hogy az in vitro szaporított L. inflata gyökér esetében a kontroll mutatta a legnagyobb száraz tömeg értéket (2,4 g).

A műtrágya hatás érvényesülése szempontjából a 100 kg/ha Mg adta a legjobb eredményt a kezelések közül, de így is 25%-kal kevesebb a kontrollnál.

4.2.2. Magvetett és az in vitro szaporított L. inflata gyökerének száraz tömeg összehasonlítása

Összehasonlítva a 2010. évi magvetett és a 2012. évi in vitro szaporított L. inflata gyökérrész biomassza adatai alapján megállapítható, hogy mindenhol kevesebb a száraz tömeg értéke a magvetett gyökérnek. A 2012. évi kontroll növény eredménye ötszöröse a 2010. évi kontrollnak. A 19. számú melléklet ábrázolja a gyökérrész száraz tömeg értékeit.

72

4.3. Tápanyagellátás hatása a L. inflata hatóanyag-tartalmára

Magvetett L. inflata herba összalkaloid tartalma

2010. és a 2011. évben a magvetett L. inflata herbát vizsgáltuk a műtrágya kezelések (50 kg/ha N, 100 kg/ha N, 50 kg/ha Mg) hatására.

A két kutatási évet figyelembe véve a 2010-es évben mértük a legnagyobb (490,2 mg/100g), míg a 2011-ben a legkisebb (362,2 mg/100g) összalkaloid tartalmat.

A magvetett herba összalkaloid tartalom (mg/100g) vizsgálatakor azt tapasztaltuk (30. ábra), hogy a 2010-es évben a100 kg/ha N alapkezelés mutatta a legkisebb, míg az 50 kg/ha kezelés a legnagyobb értéket. 2011-ben figyelemre méltó módon a kontroll növények termelték a legtöbb összalkaloidot, míg a műtrágya kezelés hatására szinte csökkenés állt be a hatóanyagtartalomban. Ennek magyarázatára a rendelkezésre álló kísérleti adatokból nem lehet következtetni. A 2010. és a 2011. évi összalkaloid tartalom értékeket a 11. számú melléklet mutatja be.

Az eredmények kiértékelése után azt a megállapítást tehetjük, hogy a 2010. évi kezelések hatásosnak bizonyultak (kivéve a 100 kg/ha N), de 2011-ben már nem, mert a kezeletlen kontroll értéke volt a legnagyobb.

A műtrágya hatás érvényesülése szempontjából az 50 kg/ha Mg kezelés hatására mértük a legnagyobb (8,9%) összalkaloid tartalmat (2010-ben), és az 50 kg/ha N hatására (2011-ben) a legkisebbet (20,7%).

73

30. ábra. Magvetett és az in vitro szaporított L. inflata herba összalkaloid tartalma.

In vitro szaporított L. inflata herba összalkaloid tartalma

A 2011. és a 2012. évben az in vitro szaporított L. inflata herbát vizsgáltuk virágzási stádiumban. 2011-ben az 50 kg/ha Mg műtrágya kezelés (32,7%), míg a 2012. évben a kontroll (874,8 mg/100g) adta a legnagyobb herba összalkaloid értéket (30. ábra). A 2012. évi eredmények kimagaslóan nagyok, mint a 2011-ben mért összalkaloid értékek. A 2012-es évben alkalmazott nagyobb dózisú műtrágya kezelések hatása elmaradt (100 kg/ha Mg 19,8%; 150 kg/ha Mg 14,3%). A kontrollhoz képest kisebb eredményt mutattak. Ez arra utal, hogy ezek a tápelemek a hatóanyagszintézis szempontjából kevésbé hasznosultak, s esetleg gátlólag hatottak.

74

A herba összalkaloid tartalom elemzése során azt a következtetést vonhatjuk le, hogy a 2012. évi eredmények 151-225%-kal nagyobbak a 2011-ben mért értékeknél. A legkisebb adatot (688,5 mg/100g) az 50 kg/ha N hatására, míg a legnagyobb értéket (874,8 mg/100g) a kezeletlen kontrollnál mértünk. Ez utóbbi eredmény értelmezése a kevesebb csapadék és a magasabb napsütéses órák

A herba összalkaloid tartalom elemzése során azt a következtetést vonhatjuk le, hogy a 2012. évi eredmények 151-225%-kal nagyobbak a 2011-ben mért értékeknél. A legkisebb adatot (688,5 mg/100g) az 50 kg/ha N hatására, míg a legnagyobb értéket (874,8 mg/100g) a kezeletlen kontrollnál mértünk. Ez utóbbi eredmény értelmezése a kevesebb csapadék és a magasabb napsütéses órák

In document 3. ANYAG ÉS MÓDSZER (Pldal 45-0)